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OBJECTIVE 
 
The theory of radiation damage in metallic materials predicts that under cascade-irradiation conditions the 
voids should approach a steady state, which is characterised by a maximum mean void size.  It is shown 
in this Letter that the steady-state concentrations of voids of different size are described by the Gaussian 
distribution with the maximum size mentioned above to be the most probable value.  The evolution of 
voids towards the steady state is analysed. 
 
SUMMARY 
 
The steady state of the void population predicted by the theory under cascade-irradiation conditions has 
been analyzed.  The following conclusions have been drawn.  
 

1) The theoretical steady-state SDF of voids is described by a Gaussian distribution, which is quite 
narrow, in contrast to much bigger spread of void sizes observed. 

2) At high void density, when α >> 1 , the irradiation dose required to reach the steady state is 
higher than those at which void lattices are observed. Hence, the void size saturation of randomly 
distributed voids and in the lattice are not related to each other. 

3) At low void density, when α ≤ 1 , the irradiation dose required to reach the steady state is 
relatively small and might be a reason for the incubation period of swelling frequently observed. 

 
PROGRESS AND STATUS 
 
I. Introduction 
 
Since the prediction [1] and discovery [2] of swelling in metals in nuclear reactors, much effort has been 
made to formulate a theory of the phenomenon.  The ‘Production Bias Model’ (PBM) in its modern form 
succeeds in explaining several striking observations, for example, enhanced swelling rates near grain 
boundaries and in materials with small grain size and under neutron compared to electron irradiation [3-
6].  The model owns its success to the recognition of two distinguishing features of defect production by 
high-energy recoils.  First, that clusters of self-interstitial atoms (SIAs) are formed directly in displacement 
cascades, the fact revealed both experimentally [7] and in molecular dynamics (MD) simulations [8,9], 
and, second, that these clusters execute one-dimensional diffusion [9-13], a phenomenon proposed in 
[9,14] for the explanation of the void-lattice formation [15,16].   
 
The model predicts that, if a random distribution of voids is maintained, a steady state should establish at 
high irradiation doses, which is characterised by a maximum void size, , above which the net vacancy 
flux to voids is negative.  This is because the cross-section of the interaction of three-dimensionally (3-D) 
diffusing vacancies with voids is proportional to the void radius 

rm

r , while that of the 1-D migrating SIA 
clusters to r2 .  As a result, above some critical radius, the latter becomes higher than the former.  It has 
been shown that , where r  is the dislocation capture radius for the SIA clusters and Z  is 
the capture efficiency of dislocations for vacancies [3].  Note that this expression does not include the 
dependence on the dislocation bias for point defects: , where  is the capture efficiency 
of dislocations for single SIAs, which accounts for one of the main driving forces for the void growth [1]. 

rm ≈ 2πrd / Zv d v

B = Zi / Z 1v − Zi

 
In this Letter we derive the dependence of the critical void radius on the dislocation bias factor and an 
equation for the steady-state size distribution function (SDF) of voids and analyse how voids approach 
the steady state. 
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II. Steady-state size-distribution function 
 
Let us assume that the primary damage produced in cascades consists of 3-D mobile single vacancies 
and SIAs and 1-D mobile SIA clusters.  In addition, let us assume that the void nucleation stage is over 
and the mobile defects interact only with existing voids of the number density N  and dislocations of the 
density ρ .  Then, according to the PBM (see, e.g. [6]), the rate of swelling is equal to the difference in 
arrival rates of vacancies, , single SIAs, , and SIAs in clusters, , to voids jv ji jcl
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where , S = 4πr3N / 3 r  is the mean radius of voids,  is the fraction of the SIAs produced in the 
clustered form and 

ε i
g

φ  is the irradiation dose.  The irradiation dose is in displacements per atom (dpa) and 

accounts for the fraction of defects that survived intra-cascade recombination, Sε ; hence it corresponds 

to the dpa calculated using the NRT standard procedure [17] and multiplied by Sε . 
 
Eq. (1) cannot be used below some temperature, when the vacancy or SIA diffusivity is so low that 
recombination reactions between mobile species are important.  At higher temperature, the defect 
nobilities do not enter the analysis and the swelling is determined by partitioning of defects between 
sinks, as in Eq. (1).  Since the recombination between cascade-produced mobile vacancies and SIAs in 
clusters have not been studied so far, any estimates are not available.  Another limitation is due to 
neglecting vacancy emission from voids, which requires high vacancy super-saturation and thus restricts 
the analysis to temperatures below ~(0.5÷0.6) , where T  is the melting temperature, depending on 
the dose rate.  Also, it is assumed that the void nucleation stage is separated from the growth stage due 
to reduced thermal stability of void nuclei.  The validity of this assumption and the nucleation itself is in 
fact one of the fundamental unresolved problems, which is closely connected with the validity of 
conventional assumption of homogeneous spatial distribution of defects in the system and is analysed in 
[18,19].  

Tm m

 
It can readily be obtained from Eq. (1) that the maximum mean void radius, which corresponds to zero 
swelling rate, is 

  rm ≈
2πrd

Zv

1+
1− ε i

g

ε i
g B

⎛

⎝⎜
⎞

⎠⎟
,       (2) 

where we omitted higher order terms in B .  (For a comprehensive analysis see in a separate paper [18].)  
According to Eq. (2),  increases with decreasing , so that there is no saturation of swelling in the limit 

of , i.e. for electron irradiation, as expected. It worth mentioning that a more rigorous analysis 

predicts an unlimited swelling even at finite    somewhat smaller than B [18]. 

rm ε i
g

ε i
g = 0

ε i
g

 
In order to derive the steady-state SDF of voids, f (x) = f (x,φ = ∞) , where the number of vacancies in 

a void of radius rx  is , x = 4πrx
3 / 3Ω Ω  is the atomic volume, we consider the Smoluchowski 

(continuity) equation for the diffusion of voids in the size space: 

  limϕ→∞

∂f (x,φ)
∂φ

=
d
dx

−V (x) f (x) +
d
dx

D(x) f (x)[ ]⎧
⎨
⎩

⎫
⎬
⎭
= 0 .   (3) 

Here  is the velocity and V (x) = jvx − jix − jclx D(x) = ( jvx + jix + jclx ) / 2
/ r2N

 is the diffusion coefficient, 

where  ( k ) and .  Eq. (3) represents the familiar master equation jkx = jkrx / rN = v,i jclx = jclrx
2
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for the evolution of the SDF of voids via absorption and emission of different defects in the diffusion limit 
of large void size (see, e.g. [20,21]).  Its solution that provides zero flux of voids (the term in curly 
brackets) is 

  ,     (4) f (x) = Aexp dxV (x) / D(x)∫⎡⎣ ⎤
⎦ / D(x)

where  is a normalising constant.  We expect that, in most cases, the SDF will be a narrow function 
around , such that 

A
xm = 4πrm

3 / 3Ω x / xm −1 << 1 .  With this condition, it is readily obtained that, to a 
first approximation, D(x)  is a constant and  
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where  

  λ = 1+
1− ε i

g

ε i
g

B
1+α

,        (6) 

α = 4πrmN / Zvρ  and only the first order term in B  is retained.  By substituting Eq. (5) into Eq. (4), one 
obtains the SDF as Gaussian distribution centred on the most probable size, : xm

  f (x) ≈ C0
λε i

g

6π xm

exp −
x − xm( )2

6xm / λε i
g
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,      (7) 

where  is the total void concentration.  The SDF has a half-width at half-maximum of C0 ≈ dxf (x)∫
xm 6 ln2 / λε i

gσ =  and is thus narrow: σ << xm  for reasonable values of  (~0.5 according to MD 

studies of displacement cascades in Fe and Cu for the primary knock-on atom energy 

ε i
g

EPKA ≈ 10keV 
[22]).  We note that the experimentally observed spreads of void sizes are obviously much bigger and 
reasons for this are discussed below. 
  
Figure 1 shows the SDF calculated using Eq. (7) for B =0.04, α =1, =0.25, 0.5 and 1 (open symbols 

and connecting lines).  In this figure,  corresponds to r  nm and is the most probable void 

size for =1.  As can be seen, with decreasing , the SDF becomes wider and shifts towards bigger 
void size due to increase of  according to Eq. (2).  Additional data shown on the same graph by full 
symbols are the result of a full-scale calculations of the temporal evolution of SDF, performed using a 
computer code described in ref. [4,21], and compare perfectly well with the analytical results. We note 
that the case of electron irradiation is obtained in the limit .  Eqs. (2) and (7) are not supposed to 
be valid in this case, but, show qualitatively correct behaviour, namely, that there is no saturation of 
swelling. 
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Figure 1. The SDF of voids calculated for B =0.04, α =1 and =0.25, 0.5 and 1.  =104 is the most 

probable void size for =1.  The SDFs are normalised by the maximum value, , calculated for 

=1, assuming  to be the same. 
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The analysis presented is limited to random distribution of voids and any correlation in void positions, e.g. 
due to formation of ordered structures [15,16], would unavoidably change the kinetics [23].  The most 
significant result is the contradiction of a very narrow width of the theoretical SDF with much bigger 
spreads of the void sizes observed.  This discrepancy seems important for uncovering fundamental 
mechanisms of damage accumulation, and is discussed further below. 
 
III. Approach of the steady state  
 
To analyse how the steady state is established, we simplify Eq. (1) by taking : Zi = Zv

  
dS
dφ

≈
ε i

gαrrm rm − r( )
rm +αr( ) rm

2 +αr2( ).       (8) 

In the limiting case, when  and voids are dominant sinks, the dose dependence of the mean void 
radius from its initial value , formed during nucleation stage not considered here, is readily obtained 

r << rm

r0
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2

>> 1 ,       (9) 

which is similar to that obtained in [4,24].  
 
Eq. (8) predicts a big difference in doses required to reach the equilibrium at low and high void density. 
This effect is demonstrated by the full-scale calculations of the dose dependence of the mean void radius 
on the irradiation dose performed using a computer code described in ref. [4,21].  The results are shown 
in Fig. 2.  The value of εS  is assumed to be equal to 0.1 (i.e. ~ half that given by MD simulation of 
cascades for > 5keV  [22]; the factor of ½ is an assumed fraction of defects that recombine during 

the cascade annealing).  The value of π corresponds to the void saturation radius at  or 

EPKA

ε i
g = 1 B =0.  As 
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can be seen, when the void size is small enough, the curve calculated for α =100 is described 
satisfactorily by Eq. (9).  Also, the doses required for reaching the steady state in this case is higher 
compared to that for α =0.01 by more than three orders of magnitude (a precise value is unknown since 
the calculations for α =100 were terminated at 100dpa).  There are two importa nsequences of this 
ffect.   

 

nt co
e

 
Figure 2. e dep φTh ence of the mean void radius on the irradiation dose, end , calculated for different 

alues of  and  ε i
g αv . 

 
   
First, the steady state of void population distributed randomly is likely to be unrelated to the void lattices 
formation and possible saturation of swelling in void lattices.  Indeed, the formation of void lattices in 
metals and alloys under cascade irradiation is observed at high void densities and in the dose range from 

o several tens of dpa [16].  As can be seen from Fig. 2, at a high void density, several t α =100 (for 
ε i

g = 0.5 ), the irradiation dose required to reach the steady state is much higher than 100 dpa, hence 
much higher than in experiments.  In addition, it has been shown previously [23] that the formation of free 
channels between voids in void lattices provides escape roots for the SIA clusters to dislocations and 
leads to a significant increase of the void saturation radius.  Thus, there must be me other reasons 

tio served. 
so

behind the satura n ob
  
Second, it is usually observed that, at relatively low void densities, when α ≤ 1, voids start to grow after 
some incubation period and the growth is unlimited [25].  Our calculations presented n Fig. 2 s w that 
the dose required to reach the steady state in these condition is small, ~1 dpa for 

o ho
s α =1 and ε i =0.25, 

and generally in the range from 10-2 to 10 dpa depending on ε i
g  and 

g

α .  It is tempting to think that the 
incubation period of swelling could be because voids reached their critical radius.  It is worth mentioning 
that, despite many successes of the PBM in explaining features of microstructure evolution of metallic 
materials under neutron irradiation at low irradiation doses (<1dpa), an unlimited void growth observed at 
higher doses after the incubation period of swelling cannot be explained in the framework of the model as 

rmulated.  Possible ways of resolving this contradiction are proposed in a sepa per [18]. 

 smallest and made the smallest contribution to swelli  the a-type voids 
ere the largest. 
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w
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