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Extended Abstract

Because the internal geometry of deforming crystals is very complex, a physically based
description of plastic deformation can be very challenging. The topological complexity is
manifest in the existence of dislocation structures within otherwise perfect atomic arrangements.
Dislocation loops delineate regions where large atomic displacements are encountered. As a
result, long-range elastic fields are set up in response to such large, localized atomic
displacements. As the external load is maintained, the material deforms plastically by generating
more dislocations. Thus, macroscopically observed plastic deformation is a consequence of
dislocation generation and motion. A closer examination of atomic positions associated with
dislocations shows that large displacements are confined only to a small region around the
dislocation line (i.e. the dislocation core). The majority of the displacement field can be
conveniently described as elastic deformation. Even though one utilizes the concept of
dislocation distributions to account for large displacements close to dislocation lines, a physically
based plasticity theory can paradoxically be based on the theory of elasticity!

Recently, a surge in interest towards understanding the physical nature of plastic deformation
has developed. This interest is motivated by the extensive experimental evidence, which shows
that the distribution of plastic strain in matetrials is fundamentally heterogeneous. Because of the
complexity of dislocation arrangements in materials during plastic deformation, an approach,
which is based on direct numerical simulations for the motion and interactions between
dislocations is now being vigorously pursued. The study of dislocation configurations at short-
range can be quite complex, because of large deformations and reconfiguration of dislocation
lines during their interaction. Thus, adaptive gridding methods and more refined treatments of
self-forces have been found to be necessary. In some special cases, however, simpler
topological configurations are encountered. For example, long straight dislocation segments
are experimentally observed in materials with high Peierel's potential barriers (e.g. covalent
materials), or when large mobility differences between screw and edge components exist (e.g.
some BCC crystals at low temperature). Under conditions conducive to glide of small prismatic
loops on glide cylinders or the uniform expansion of nearly circular loops, changes in the loop
shape is nearly minimal during its motion. It is therefore advantageous to reduce the number of
interacting segments within a given computer simulation, or to develop more efficient
approaches to computations of the long range field.

In this work, we aim at enhancing the current computational efforts on 3-D Dislocation Dynamics
(DD). We present here a new numerical method for determination of a key ingredient in DD
computer simulations; that is the elastic field of topologically complex dislocation ensembles.
The main impetus for the present work is the need to describe the complex 3-D topology of
dislocation loops in the most flexible way. A wide spectrum of dislocation line deformations,
ranging from highly curved to rigid body translations arises within the same computational
simulation. Existing methods are based on differential equations of motion for straight
segments, where the elastic field variables affecting segment motion are computed at its center.
When each segment moves under the influence of the stress field, the connectivity of the
segments must be re-established, resulting in a number of possible complications. Thus, the
motivation behind the current work can be stated as follows:
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To reduce the computational burden by providing a high degree of flexibility in the selection of
both length and shape of a dislocation segment.

To avoid numerical problems arising from singularities at intersecting straight segments.

To calculate the self-force on dislocation segments with a high degree of accuracy.

To provide a flexible tool which sheds more light on the physics of close-range interactions
involving in-plane high curvature variations.

To effectively deal with the physics of climb and cross-slip, which require out-of-plane dislocation
line curvature.

The fast sum method, which is based on a combination of dislocation loop geometry
parameterization, and numerical quadrature integration along parameterized curves, is shown to
be computationally feasible and highly accurate. All calculations involve simple algebraic
operations, which can be systematically carried out by straightforward computer programming.
Although we used FORTRAN-90 to implement the results of calculations, even spreadsheets
on personal computers can be effectively utilized. The method is as efficient as analytical
solutions, especially because of the index structure associated with tensor notation (i.e. the use
of DO loops). However, because analytical solutions are available only for a limited number of
special cases, the present approach can be used for calculations involving complex loop
geometry. The present method is primarily intended for applications in Dislocation Dynamics
computer simulations, where the need for accuracy is critical in close-range dislocation
encounters. Moreover, one may consider the present method as an extension of the FEM
technique in continuum mechanics. A variety of parameterized elements can thus be chosen (
in much the same way as in the FEM approach) to handle special dislocation deformation
problems. The method may also be exploited in crack problems, where dislocation distributions
can be used to represent complex crack surfaces.

To handle the effects of free crystal surfaces on the redistribution of the elastic field inside the
crystal, and hence on computed Peach-Kohler forces, the superposition method of Cleveringa
et. al. is extended to 3-D applications. While only 2-D problems have been soived so far by their
method, we show that 3-D problems can also be successfully implemented. However, the
simple problem shown here required almost 10,000 elements, with an associated large number
of degrees of freedom. Other methods (e.g. the Boundary Integral (Bl) method) may be more
appropriate for 3-D computer simulations, since the stress field should be updated very
frequently during Dislocation Dynamics computer simulations.
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