


“I remain dedicated to the concept of fusion power, as a citizen, and |
wish | was in a position to do more about it.” Ansel Adams, July 1983



Annual Fuel Reguirements fora 7OaviW . Power Plant
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One cup of water (D-D reaction) = 20 gallons of oil
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30 meters diameter by 30 meters tall



— Tokamak vs. spherical torus, stellarator, etc.

e Materials technology will play a major role
in determining the most viable path to
commercialization



e First wall/blanket structural materials
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Plasma facing (high heat flux) components

Capital costs can be reduced by increasing the
fusion reactor power density

Steady-state heat flux limit for structural materials is
~0.5 to 2 MW/m? for 5 mm walls in a fusion reactor
— Capacity to withstand steady state heat fluxes of >35 MW/m?
has been demonstrated (He-cooled Cu divertor)
Carbon/carbon composites do not appear to be
suitable for fusion reactors due to radiation induced
thermal conductivity degradation

Plasma-facing liquid coolants can provide high
steady state heat flux removal capability (>2 MW/m?)

— Considerable technological challenges exist for application
to toroidal geometry (plasma shaping, coolant vaporization,
metal/coolant corrosion)
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e Low power absorption is maintained in CVD diamond
after irradiation to moderate neutron doses (16 dpa)
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* Suitable insulators are available for fusion reactor
applications



Structural Materialsiwill Strongly Impact
the Economics' off Fusion EEnergy

» Key issues include thermal stress capacity,
coolant compatibility, safety, waste disposal,
and radiation damage effects

e The 3 leading candidates are ferritic/
martensitic steel, V alloys, and SiC/SiC
— Ti alloys have high hydrogen (tritium) solubility
and permeability, and low thermal stress capacity

— Ni base superalloys have poor radiation stability
(grain boundary embrittlement)

— Refractory alloys (Ta, Mo, W) must be operated at
very high temperature (>650°C) to avoid radiation
embrittlement
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e Copper alloys are not attractive candidates for 1st wall/
blanket structural applications (low thermodynamic efficiency)
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e Thermal creep temperature limit for martensitic Fe-8Cr
steel is ~550°C (vs. >650°C for ODS steel)
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Radiation Damage can Produce lLarge
Changes in Structurxal Materials

¢ Radiation hardening and embrittlement (<0.4 T,,)
¢ Irradiation creep (<0.45 T,)
¢ Volumetric swelling from void formation (0.3-0.6

Tw)
e High temperature He embrittlement (>0.5 T,,)
B In addition...

e The irradiation environment associated with a
D-T fusion reactor is more severe than in fission
reactors
— Higher lifetime dose requirements for structure

— Higher He generation rates (promotes He
embrittlement of grain boundaries, void swelling)
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e Lowest swelling is observed in body-

centered cubic alloys (V alloys, ferritic steel)
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e Matrix hardening produces an increase in the
ductile-to-brittle transition temperature in body-
centered-cubic alloys (ferritic steels, V alloys)



SUmMmary

o Impressive physics advances have been
achieved from a relatively modest investment
— 1950-1995 fusion R&D funding ~5% of annual
gasoline expenditure by US consumers
e Several key questions still remain

— What is the optimal path for development of a
commercially viable power plant (magnetic vs.
inertial confinement, etc.)?

— Can fusion be cost-competitive with coal, fission?
e Materials will play a major role in determining
the fate of fusion energy

— Fusion energy economics may require new high
heat flux, radiation resistant materials



