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INCUBATION TIME FOR SUB-CRITICAL CRACK PROPAGATION IN SiC-SiC
COMPOSITES! A. El-Azab and N.M. Ghoniem, University of California, Los Angeles

OBJECTIVE

The objective of this work is to investigate the time for sub-critical crack propagation is SiC-SiC
composites at high temperatures.

SUMMARY

The effects of fiber thermal creep on the relaxation of crack bridging tractions in SiC-SiC ceramic
matrix composites (CMCs) is considered in the present work, with the objective of studying the
time-to propagation of sub-critical matrix cracks in this material at high temperatures. Under the
condition of fiber stress relaxation in the bridging zone, it is found that the crack opening and the
stress intensity factor increase with time for sub-critical matrix cracks. The time elapsed before
the stress intensity reaches the critical value for crack propagation is calculated as a function of the
initial crack length, applied stress and temperature. Stability domains for matrix cracks are defined,
which provide guidelines for conducting high-temperature crack propagation experiments.

PROGRESS AND STATUS

Introduction

Ceramic matrix fiber composites (CMCs) such as SiC-SiC materials are under consideration for high-
temperature structural applications. This class of materials shows non-catastrophic failure behavior
which is characterized by fiber bridging of matrix cracks and energy dissipation by debonding and
frictional fiber pull-out. These effects qualify CMCs to be classified as high toughness materials.
Recent interests in using SiC-SiC composites as structural materials for high heat flux components
and blanket in fusion power reactors [1] have raised some questions about the high-temperature
toughness issues and high-temperature crack propagation in such materials. At elevated temper-
atures, creep is expected to influence the stability and propagation of matrix cracks in SiC-SiC
composites. In a fusion environment, other inelastic effects such as irradiation creep and swelling
are also expected to affect the composite toughness{2-4]. -

Experimental investigations of high-temperature crack propagation in SiC-SiC composites is
underway [5]. Preliminary results have been explained in terms of conventional crack bridging models
for fiber composite materials [6], which use simplified bridging relations to study the relaxation of
fiber stresses in the bridging zone. In general, the results reported by Henager and Jones [6] have
demonstrated that SiC-SiC composites can withstand applied stress intensity factors between 20 and
25MPa-m~1/2 without catastrophic crack propagation, at 1100°C. The material, rather, exhibited
sub-critical crack growth at speeds in the range 10~%-10~7 m-s~! [6]. The reported crack growth
speeds were calculated, rather than difectly measured, based on the assumption that the specimen
compliance change is totally due to crack growth.

A theoretical model was developed to analyze the high-temperature crack propagation data in
SiC-SiC composites [6]. Although the model identifies fiber creep in the bridging zone as the growth
controlling mechanism, the model details and assumptions did not account for a number of factors,
which include the following:

! This material is based upon work supported by the U. S. Department of Energy under award number DE-FG03-
91ER54115.
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1. Fiber-matrix interface debonding upon initial crack loading, and the time evolution of the
debond profile were not considered. Thus, the effects of the interface bonding and frictional
characteristics on the behavior of matrix cracks were ignored.

2. The crack length and the applied load were not included in the developed model.

3. The bridging model was too simple. It considered fiber creep only in a local sense at the matrix
crack face, while fiber creep must be considered, at least, over the debond/slip zone.

4. The definition of the bridging stress as given by Henager and Jones [6] was not adequate to
find the effective crack tip shielding due to fiber bridging.

The objective of the present work is to analyze the stability of matrix cracks which are bridged
by creeping fibers in Nicalon- CVD SiC composites. The creep characteristics of SiC fibers and
CVD SiC are reviewed in section 2. An outline of the bridged crack model used in the present
analysis is included in sections 3. A brief discussion of the micro mechanical analysis used to obtain
the bridging stress is included in section 4. The time-to-crack propagation (incubation time) for
a sub-critical bridged matrix crack is investigated. The main results are summarized in section 5,
followed by some concluding remarks in section 6.

Creep characteristics of SiC fibers and CVD SiC

CVD SiC have been tested for creep in compression in the temperature range 1550° to 1750°C [7]
and in bending in the range 1200° to 1500°C [8]. The latter creep data are considered here, and
are shown in Fig. 1. The creep rate of CVD SiC in compression exhibits a power law dislocation

mechanism-type creep with a stress exponent of 2.5, while the data of Gulden and Driscoll [8]
exhibited a diffusional creep law of the form:

. 13.30D%2,
Ee = w (1)

where ¢ is the applied stress, D is the diffusion coefficient for the rate-controlling species, Q, is the
atomic volume, k is the Boltzmann constant, T' is the absolute temperature and d, is the grain size.
An activation energy of 640488 KJ-mole~! was measured [8].

Creep experiments on SCS-6 SiC fibers were carried out in the temperature range 1000 -1500°C
[9-11]. Creep strains were observed to increase logarithmically with time, monotonically with tem-
perature and linearly with tensile stress. Nicalon fibers were also tested for creep [10, 12]. According
to Ref. [10], thermal creep strain, €. for these two types of fibers is given, as function of stress, time
and temperature by

.= Acexp (_%) P 2)

where, for stress in MPa, T in K and ¢ in seconds, A = 13.112, Q = 25800 and p = 0.36 for SCS-6
fibers, and A = 8.316, p = 0.4 and @ = 24200 for Nicalon fibers. The constant ¢ has the units
of temperature. The stress exponent for Nicalon fibers is slightly different from unity [10], but
considered to be unity in the present ana.ly51s to allow the use of linear viscoelasticity theory.

A comparison of the thermal creep Tates of CVD SiC, SCS-6 and Nicalon fibers is shown in Fxgs
2 and 3. As can be deduced from these figures, the matrix creep can be totally ignored in comparison
to fiber creep. In fact, by using simple rules of mixture, it can be shown that the composites creep

rates can be far slower than that of single fibers. This leads to consideration of fiber creep only in
the bridging zone of a matrix crack, where fibers are not bonded to the matrix.

Bridged cracks in CMCs

Fig. 4-a shows a continuum representation of a matrix crack which is bridged by fibers. In the
present analysis, the singular integral equation method is used to solve the crack problem. Solutions
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Figure 1: Thermal creep rate of CVD-SiC as function of temperature.
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Figure 3: Thermal creep rates of CVD SiC, Nicalon and SCS-6 fibers at 1400°C.

for the crack opening displacement and the stress intensity factor follow directly from the solution of
the singular integral equation. The integral equation representing the force equilibrium of a bridged
crack perpendicular to the fiber direction in a unidirectional linearly elastic infinite composite, -
_ occupying the interval —c < z < ¢, is written as follows:

¢ (zo,t) #(zort) 4.

— T

os(z) — op(z,t) - C, z, =0, lz] < e (3)

where 0,(z) is the applied stress and og(z,t) is the time-dependent bridging stress. The function
8'(z,,t) is the gradient of the crack opening displacement. The constant C, depends on the elastic
compliance constants of the composite, s;j, and is given elsewhere [13]. Singular integral equations
similar to equation (3) are usually solved by using the Gauss-Chebyshev integration formula [14]. Due
to the presence of a bridging term, which depends non-linearly on the crack opening displacement,
an iterative technique is used along with the Gauss-Chebyshev method. Once the singular integral
equation {(3) is solved for &, the crack opening displacement §(z,t) can then be obtained as follows:

§(z,t) = -/: 8'(zo,t)dz,, jzl <e 4)

The stress intensity factor, K(2), ca also be given by:
c§ (zo,t) )
Kz(t) = hm \/21r(z -c) C, pro ——=dz,, |z] > ¢ (5)

It is to be mentioned that the bridging stress in equation (3) is assumed to be time-dependent due
to the relaxation of fiber stress by creep at high-temperature. Consequently, the crack opening
displacement, §(z,%), and the stress intensity factor, K;(t), are time-dependent.

In order to solve the singular integral equation (3), a definition of the bridging stress, in terms
of the crack opening displacement is needed. It is known that, in ceramic matrix composites, the
opening of matrix cracks under the influence of external loads is accompanied by fiber debonding

and slip on the entire bridging zone. Some energy is dissipated in these two processes, which must
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Figure 4: (a) Continuum representation of bridged cracks. (b) Fiber-matrix micro mechanics model.
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be supplied the external load. In addition the direct fiber bridging, these effects must be considered.
The debonding and frictional slip energy dissipation terms depend on the debond/slip profile around
the matrix crack. However, since the latter depends on the crack length, it is expected that these
energy terms depend on the crack length.

So far, energy dissipation by friction and debonding has been ignored in the continuum represen-
tation of bridged crack in ceramic matrix composites {15-17]. The bridging stress has been defined
as the fiber stress averaged over the matrix crack by o = fo;, where f is the fiber volume fraction
and oy is the fiber stress. This definition may be valid, if fiber debonding and slip do not occur.
However, since fiber debonding and slip occur during matrix crack opening, the effective bridging
stress is generally different from the fiber stress averaged over the crack surface. Also, having con-
sidered only the direct effect of fiber bridging, energy dissipation by debonding and slip must be
added to the critical matrix strain energy release rate (matrix fracture energy) in defining a fracture
criterion. In this case, K¢ itself will depend on the crack size and can not therefore be considered

a fundamental material property.
In the present analysis, the critical stress intensity factor, K¢, is considered to be a fundamental
property and is defined by:

Kic = Ecgm (6)

where E. = fE; +(1— f)Em is the composite modulus in the direction perpendicular to the matrix
crack, Ey and E,, are respectively the fiber and matrix moduli and Gy, is the matrix fracture energy.
2 depends on the elastic compliance constants (s;;) and is given by:

Q? = EZsy2 [24/511522 + 2512 + S66) /4 (M

A simple method to estimate the bridging stress can be illustrated as follows. Consider an
unbridged matrix crack in which the crack opening displacement is denoted by. §*, as shown in Fig.
4-b. By applying a distribution of fiber stress o7(z) on the entire crack to bring fibers from both
sides of the matrix crack together, a certain interface debond/slip profile around the matrix crack
develops. Also, a reduction of matrix crack opening from the unbridged state 6* to the bridged
state é takes place. Therefore, as the fiber stress is applied, a work of ff oz (2)8%(z)dz is used.
Ignoring friction and debonding terms, and considering the matrix crack opening from zero to a level
& against the bridging stress o5(z), the work done by the bridging stress opposing crack opening
is [°,(1= f)oB(z)6(z)dz, and the factor (1 — f) is included since only the matrix faces open. By
equating these two terms, and considering only incremental displacements, the following expression
for the local bridging stress can be obtained: '

- oa(e) = plor@ % ®

This means that the bridging stress must be defined such that the work done by fiber stress through
an incremental displacement dé* which is weighted by fiber volume fraction is equal to the work
done by the corresponding bridging stress through an incremental displacement dé and weighted by
the matrix volume fraction.

El-Azab [13] has used a thermodynamical argument to derive a complete expression for the
bridging stress which includes the effect of energy dissipation by debonding and frictional slip in
addition to the direct fiber bridging effect. For bridged cracks in which viscoelastic effects are
present, this expression is written as:

_ £ d& 4f ¢ dug 8f de
”B‘l-f"fd_s+(1-f)R/0 %Y AT PRI S ©

in which the 67 is the elastic component of fiber displacement relative to the unbridged crack surface,
R is the fiber radius, 7 is the interfacial friction stress along the debonded fiber-matrix interface
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which has a length £. u{ is the elastic component of slip displacement along the debonded interface
and G, is the interface debond energy.

In order to apply the continuum theory of fracture to bridged cracks, the matrix crack must be
initially closed and traction free. This is not the case, however, in CMCs due to residual stresses left

from the manufacturing step. For example, for composites in which the matrix shrinks more than
fibers during cooling from the manufacturing temperature, tensile and compressive stresses exist
in the matrix and fibers, respectively, in the fiber direction [13]. Once a matrix crack is formed,
and prior to application of external loads, the local residual tensile stress in the matrix is relaxed
at the crack face and the matrix crack tends to open. Imagine a hypothetical stress &; which is
uniformly acting on the composite to nullify the residual matrix stress in the fiber direction. If a
matrix crack is then introduced, it will be traction free and closed. In this case, the continuum
mechanics of fracture can be applied, and if an external load o..; is applied to open the crack, the
effective applied stress will be given by:

Og = Oezt — O (10)

The stress o; is given by:
g; = Ciegp = ~Cy (am — ay) AT (11)

where €5, is the residual misfit strain in the composite, oy and a,, are the thermal expansion
coefficients of fiber and matrix, respectively, and AT is the change from the stress-free temperature.
The constant C; depends on the fiber volume fraction and the elastic constants of fiber and matrix
and is given elsewhere {13].

If the combined effect of the thermal misfit, e4, and pre-loading stress, ¢;, is represented by an
effective misfit strain, €., the latter is given by:

€eps = Catan (12)

where C, depends on the elastic constants of fiber and matrix and the fiber volume fraction. The
procedure explained so far means that, the misfit strain €5 will be replaced by e.7; as an initial
misfit, which includes the effect of the pre-loading stress o;. Also, the crack opening stress will be
effectively given by ¢, = 0.y — 03, as given by equation (10). Fig. 5 shows the magnitudes of .5y
and o; versus the magnitude of ;5 for Nicalon-CVD SiC composite.

Micro mechanics

Single fiber analysis is carried out in order to implement the definition of og, as given by equation
(9). This analysis includes micro mechanical modeling of fiber debonding and slip processes under
creep conditions. The fiber/matrix concentric cylinder model depicted in Fig. 4-b is used. Details
of the model are found elsewhere {13]. A summary of the basic features of the micro mechanical
model are outlined below.

Over the debonded length 0 < z < £, where z is along fiber direction, axial slip between fiber
and matrix is allowed which is resisted by a Coulomb-type friction. In this interval, the model uses
an axial equilibrium condition of the form:

do}(z)  2uq(z) _ 1-f\ do}(2)
) ()l (12)

where 67(z) and 7,(z) are the axial fiber and matrix stresses, respectively, g(z) is the interface
pressure and p is the interface friction coefficient. For z > ¢, where no axial slip takes place, an
equilibrium condition of the form:

foj(2)+ (1 = flom(2) = foy (14)
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Figure 5: Effective misfit strain, €.;;, and the pre-loading stress o;, as functions of thermal misfit,
€th, in Nicalon-SiC composites. . -

is used, where o is the fiber stress at the matrix crack face. The stress-strain relationships for the
matrix are conventional thermoelastic. The fiber stress-strain relationships, however, have the form:

. €5 =y AT+ s,?,- + Efj (15)

where oy AT is the fiber thermal strain, &5; is the elastic strain component and €; is the creep strain
component. The latter depends on the full history of fiber stresses. Due to fiber creep, all stress
and strain components in fiber and matrix are time-dependent.

The crack opening displacement at a particular location along the matrix crack is defined by the
net fiber pull-out from the matrix, as given below:

6=2/£[ef-em]dz (16)
0

where €7 and ¢, are the axial fiber and matrix strains. The elastic fiber displacement component at
matrix crack face, 6, and the elastic slip displacement, u¢, which appear in equation (9) are defined
by: ’

YA
5 =2 / e5dsz,
e 0 !
. )
ui(z) = / [ej —&m) dz an

where €} is the elastic component of the axial fiber strain. The fiber debonded length is found
by applying energy balance principles to the debond crack, which brings in the effect of interface
debonding energy, Ga.

The model solution eventually yields the fiber stress, oy, the elastic fiber displacement, &7, the
elastic slip displacement over the debond length, u¢, the interfacial friction stress, 7 = —pg, and the
debond length £ as functions of the time-dependent crack opening displacement, §. The relationships
between these variables and the crack opening displacement § are then used to find the bridging
stress using equation (9).
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Figure 6: Bridging stress relaxation as function of temperature.

Results and Discussion

The model outlined in the previous sections is applied to sub-critical matrix cracks in one dimensional
Nicalon-CVD SiC composites. The fiber and matrix properties used in the present analysis are
:Ey; = 180GPa, E,, = 380GPa, v; = 0.2 and v, = 0.18. The Poisson’s ratio of fibers during creep
is vy, = 0.45. The corresponding compliance constants are found to be: 511 = 3.71 x 10~MPa~1,
S22 = 3.44 x 10~5MPa!, 510 = —6.48 X 10~"MPa~! and s¢¢ = 8.845 x 10"*MPa~!. A fiber volume
fraction of 0.4 is considered. The fiber radius is 7um. The interface debonding energy of Gy is
assumed to be 5% of the matrix fracture energy G,. The latter is typically 50J-m~2. The interface
friction coefficient p is assumed to be 0.1. These properties are adopted from El-Azab [13].

Fiber creep in the bridging zone leads to relaxation of the bridging traction that opposes crack
opening. Fig. 6 shows the time-dependent relaxation of bridging stress at the center of a bridged
crack at different temperatures before the tip stress intensity reaches its critical value, Ky¢. It is
shown that, the bridging relaxation rate is faster at higher temperatures. Due to fiber bridging
relaxation, the crack opening displacement and the stress intensity factor are expected to increase
with time. Fig. 7 shows the time evolution of the crack opening displacement over the entire matrix
crack. Initially, the crack opening profile is fairly flat in the middle section of the crack. This profile,
however, approaches the unbridged crack opening as the bridging traction continues to relax by fiber
creep. The important aspect to note here is that the increase of the crack opening displacement
with time implies that the compliance of the cracked material is increasing although the crack itself
does not propagate. This compliance #icrease may continue for longer times before the crack starts
to propagate, depending on the initial crack length, applied stress and temperature. In Henager’s
experiment [6], however, the increase in compliance was interpreted in terms of crack propagation
rather than fiber creep in the bridging zone.

The corresponding behavior of the crack tip stress intensity factor is shown in Fig. 8 for different
temperatures. The rate of increase of the crack tip stress intensity is faster at higher temperatures
since fiber creep rates are faster. Consequently, the incubation time, which is the time required for
K(t) to reach K¢, becomes shorter at higher creep temperatures. The critical tip stress intensity
factor K¢ is calculated to be 3.77 MPa-m?/2 based on matrix fracture energy of 50J-m~2 and the
composite properties given previously. Although this value is slightly lower than the toughness of



0.05

0.04
£
N 0.03
S~
~~
“
o
~ 0.02
(7]

TIME=0
0.01
ccxl/ Ersth =1.75
¢/R = 60 Eg  =108MPa T=1100 °C
o " 1 4 1 " A 1 4 A
-1 -0.5 0 0.5 1
x/c

Figure 7: Evolution of crack opening displacement under fiber creep condition.

the monolithic SiC, the applied stresses required to raise the net crack tip stress intensity to Krc
may be an order of magnitude higher in case of composites due to fiber bridging. However, under
fiber creep the crack tip shielding due to fiber bridging can be gradually lost, which sets restrictions
on the high temperature range in which SiC-SiC composites may be used.

The mechanisms of bridging relaxation by fiber creep can be explained by investigating the
individual terms in equation (9). The second term (friction term) is a few times higher than the first
terms, while the third term is a few orders of magnitude smaller. Creep relaxes the fiber stress, oy,
leading to partial reduction of the bridging traction (first term). Creep also relaxes the interfacial
pressure between fiber and matrix. This interface pressure controls the frictional energy dissipation
associated with fiber slip (second term). While the interface pressure relaxes by creep, it actually
recovers if the axial fiber stress, o, relaxes due to Poisson’s effect. Therefore, the relaxation of oy
may not have 2 great influence on the relaxation of the bridging stress.

The debond crack tips at the fiber-matrix interface are shielded by interfacial friction. Relaxation
of the interface pressure and, in turn, the interfacial friction stress allows the debond crack to
grow. This debond growth depends on the interface debonding energy as well as the friction stress
distribution over the debond length. Since the second term in equation (9) increases as the debond
length £ increases, it may be beneficial to allow growth of debond cracks by lower values of the
interface debonding energy and further controlling the interface friction characteristics. An example
of the debond growth over the entire matrix crack is shown in Fig. 9.

The time-to-crack propagation (incubation time) has been shown to depend on the temperature
(Fig. 8). In Fig. 10, the incubationtime is plotted as function of the matrix crack length and
temperature. It is observed that, depending on the matrix crack length and temperature, a wide
range of incubation times can be obtained. Here we report incubation times between 5min and
1.5 hr, for crack length in the range 120-300 fiber radii, and temperature in the range 1075-1150
°C. Smaller cracks at lower temperatures may exhibit incubation times of several hours or days,
depending on the applied loads. The effect of the applied stress is also shown in Fig. 11. It is shown
that for the same crack length, the incubation time is longer at lower applied stress.

The effect of the initial misfit strain & on the incubation time for sub-critical cracks is shown in

Fig. 12. Generally, incubation times becomes longer for higher values of ¢,;. Based on this figure,
it can be argued that a higher level of misfit strain is needed to maintain a higher bridging stress
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for longer times. This brings in some interesting questions about the expected behavior of SiC-SiC
composites in a fusion environment, where irradiation creep is expected to occur once the material
is subjected to combined mechanical and irradiation loading, even at temperatures below thermal
creep threshold. Swelling rates of the fiber and matrix are expected to control the instantaneous
misfit level. Consequently, the relative irradiation creep and swelling rates of the fiber and matrix
must be beneficially adjusted to maintain certain levels of misfit between fiber and matrix.

In Figs. 10 through 12, the incubation times for shorter cracks are longer. There is a minimum
crack length, which is determined by the effective applied stress alone, below which incubation times
must be infinitely long. This limiting value is the length of an unbridged crack which satisfies the
condition K7 = Kjc at the given applied stress. This means that a horizontal asymptotic line exists
for each curve on Figs. 10 through 12. These asymptotes must be the same for the same effective
applied stress, o, irrespective the creep temperature. In the large crack length limit, incubation
time curves tend to have asymptotic behavior too. Each curve tends to have a vertical asymptote,
which means that there exists a minimum incubation time, which depends on the applied stress and
temperature, below which large cracks are sub-critical.

The plots shown in Figs. 10 through 12 are useful in two circumstances; studying crack behavior
in ceramic matrix composites operating at high temperatures and designing experiments to study
crack propagation in such class of materials. In the first case, designers may be interested in allowing
for cracks to exist in structural components. If the life time of the component is specified or limited
by some factor other than crack growth, then a defect tolerant design can be conducted with the help
of incubation charts similar to those given in the present study, by choosing incubation times which
are longer than the specified life time of the component. Consequently, an upper defect size limit
can be tolerated. In designing crack growth exxperiments, the incubation charts may help choose the
right combination of crack length, applied stress and temperature to run the experiment in a specific
time frame.

The present analysis can be advanced to study the time-dependent deformation behavior of
structural ceramic matrix composites which contain large numbers of matrix micro-cracks. This
can be achieved by using some averaging methodology to predict the global time-dependent load-
deformation of the composite using crack solution outlined here as a unit cell solution.
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Conclusions

A study of the time-dependent behavior of sub-critical bridged crack in SiC-SiC composites at high
temperatures is presented. A new concept of bridging stress is used, which considers the effects of
energy dissipation in fiber debonding and frictional slip, in addition to the direct fiber bridging, on
the matrix crack opening. A fracture criterion which is based on the matrix fracture energy alone, is
used. The effects of the initial residual misfit strains on matrix cracking, and the subsequent crack
opening evolution are considered.

It is found that the incubation time for sub-critical bridged cracks is controlled by fiber creep
in the bridging zone. Maintaining specific levels of misfit strains may actually delay the relaxation
of bridging tractions and, in turn, increase the incubation time of a crack for a given applied stress
and creep temperature. For fusion applications, the relative swelling and irradiation creep rates of
fibers and matrix will ultimately control the misfit level between fiber and matrix, and particular
optimization techniques must be explored-to maintain the viability of fiber bridging mechanism of
toughening under fusion conditions.

For sub-critical cracks at high temperatures, the incubation time becomes shorter at higher
values of applied stress and creep temperature and lower initial misfit strains. The domains of
stability of high-temperature bridged cracks can be explored by systematically producing incubation
charts of the type shown in Figs. 10 through 12, therefore, a SiC-SiC composite structural element
can be designed for reasonably long incubation times for tolerable sizes of matrix cracks, prior to
propagation.

FUTURE WORK

The analysis presented here will be advanced to study transient and steady state crack propagation
in SiC-SiC composites at elevated temperatures.
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