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Spectroscopic dielectric tensor of monoclinic crystals: CdWO4
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Generalized ellipsometry measurements were made using 12 orientations of a monoclinic CdWO4 crystal.
Using these measurements and the associated analytical methods presented here, it is shown that the four
independent complex elements of the dielectric tensor can be determined at each wavelength. Below the band
edge (∼4 eV), the dielectric tensor is real, and, therefore, it is possible to uniquely diagonalize the dielectric
tensor and determine the birefringence for light passing along the unique axis, but the orientation of the dielectric
tensor axes will be a function of wavelength. Above the band edge, unique diagonalization is not possible. The
generalized ellipsometric spectra show some symmetry in the cross-polarization coefficients. When the unique
axis is perpendicular to the sample surface, the condition ρps = −ρsp is valid. If the unique axis is perpendicular
to the plane of incidence, ρsp = ρps = 0, and if the unique axis is in the plane of incidence, parallel to the sample
surface, then ρps = ρsp �= 0. The combined experimental and analytical methods described here are applicable
to the determination of the spectroscopic dielectric tensors of monoclinic crystals in general.
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I. INTRODUCTION

The optical functions of a material are essential parameters
describing the interaction of the material with light.1–3 These
functions are often expressed as the complex dielectric
function ε = ε1 − iε2, which is the quantity that relates the
electric displacement vector to the electric field vector D =
κoεE in Maxwell’s equations (κo is the permittivity of free
space = 8.85 × 10−12 C2/J-m). For many applications, it is
often useful to express ε in terms of the complex refractive
index, which is related to the dielectric function ε = ñ2 = (n −
ik)2. The quantity n is the refractive index, and k is the
extinction coefficient, where the optical absorption coefficient
is given by α = 4πk/λ, where λ is the wavelength of light.

Since both the displacement and electric field quantities
(D and E) are three-element complex vectors, then ε is, in
general, a 3 × 3 complex tensor. The ε tensor simplifies to a
complex scalar for materials with cubic or isotropic symmetry.
Materials with hexagonal, trigonal, or tetragonal symmetry are
optically uniaxial materials, requiring a tensor to describe the
relationship between D and E, but the tensor has only two
independent parameters in the principal axis system of the
dielectric tensor. These are normally called the ordinary (o)
and extraordinary (e) dielectric functions, where εo = ε11 =
ε22 and εe = ε33, where the prescription (a,b,c) → (1,2,3)
is used and the optic axis is aligned along the c-axis of the
crystal. Crystals with orthorhombic symmetry are biaxial and
require three elements in the complex dielectric tensor, where
ε11 �= ε22 �= ε33. The principal axes of uniaxial and biaxial
crystals with orthorhombic symmetry are determined by the
symmetry of the crystal, and the resulting dielectric tensors
can be diagonalized. That is, it is possible to find a coordinate
system determined by the crystal symmetry such that the
dielectric tensor is diagonal with the off-diagonal elements
equal to 0. Since this coordinate system is determined by the
symmetry of the material, it is not a function of wavelength.1–3

However, monoclinic and triclinic materials are different.2,3

Monoclinic materials have one principal axis of the dielectric
tensor that is defined by the crystalline symmetry, but there is
no crystal symmetry that specifies the other two axes. For this

case, the complex dielectric tensor is given by:

ε =

⎡
⎢⎣

ε11 ε12 0

ε12 ε22 0

0 0 ε33

⎤
⎥⎦ . (1)

It is possible to find a coordinate system that will diagonalize
a monoclinic dielectric tensor at a specific wavelength if ε

is real, but the axes will now be a function of wavelength.
If ε is complex, then it is not possible to diagonalize ε.
Triclinic materials are even more complicated in that there
are no principal axes defined by symmetry, and the complex
dielectric function tensor has six independent components, and
it is not in general diagonalizable.

The method of determination of the complex dielectric
function for isotropic materials is well known and is best
done using spectroscopic ellipsometry.4–8 Since the dielectric
function for an isotropic material is a scalar, any orientation of
the material will suffice, and most ellipsometers will be capable
of performing the required measurements. The isotropy of the
sample means that the plane of incidence defines the geometry
of the measurement, and there is no cross polarization. (Cross
polarization occurs when incident s- or p-polarized light
is transformed by reflection into a mixed polarization state
including both s- and p-polarized light.) Determination of
the dielectric functions of uniaxial materials is somewhat
more difficult, but there are several examples of successful
measurements in the literature.9–12 The difficulty in such cases
occurs because the ellipsometric response is now a function
of the orientation of the crystal. If the optic axis is not in the
plane of incidence or perpendicular to the plane of incidence,
then cross polarization occurs. This measurement requires
either multiple measurements using standard ellipsometry or
a single measurement of a sample with the optic axis appro-
priately oriented using generalized ellipsometry. (Generalized
ellipsometry measures the cross-polarization terms as well as
the standard ellipsometric parameters.) Measurement of the
complex dielectric function of biaxial materials can only be
done using multiple measurements at different orientations of
the crystal.
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Given the complexity of the measurement and the required
data reduction, there are very few measurements of the
optical functions of monoclinic materials in the literature.
Using a standard rotating polarizer ellipsometer (RPE), Alonso
et al.13,14 measured the ellipsometric parameters at several
orientations of a 3,4,9,10-perylene tetracarboxylic dianhydride
(PTCDA) organic crystal. The data were reduced to three
complex refractive indices (refractive index and extinction
coefficient) and two angles at each wavelength, thus taking
into account the monoclinic symmetry of the crystal. Later,
Tavazzi et al.15,16 performed similar measurements on organic
monoclinic crystals, including polarization-sensitive optical
absorption and reflection. Recently, Schmidt et al.17–19 per-
formed generalized ellipsometry measurements on a series
of nanostructured films, which exhibit structural morphology
akin to monoclinic symmetry. To take into account the
assumed monoclinic structure of the films, Schmidt et al.
applied an additional projection operator to transform the
system to a nonorthogonal coordinate system.20 The work of
Refs. 15–20 reduced the dielectric functions to three complex
diagonal components, compared to the four components that
are required by group theory.

While it is well understood from a theoretical perspec-
tive that monoclinic crystals require four complex elements
of the dielectric tensor, often the off-diagonal element is
not determined experimentally, particularly for spectroscopic
determinations of the dielectric tensor. In this work, we
address this issue and show that it is possible to determine
all four complex dielectric functions associated with the
dielectric tensor for monoclinic materials. We accomplish
this by performing a series of 12 generalized ellipsometry
measurements on different orientations of a CdWO4 crystal
and by reducing the data using Berreman matrices.21 By using
this approach, we obtain accurate spectra of the four complex
dielectric functions, including the off-diagonal term. We also
show that the transform employed by Schmidt et al.17–19 cannot
be used for CdWO4. In addition, the generalized ellipsometry
measurement also measures the cross-polarization compo-
nents very accurately, enabling us to explore the symmetries
of these cross-polarization components as a function of the
orientation of the crystal.

II. EXPERIMENT

A. Sample

Generalized ellipsometry measurements were performed
on a CdWO4 single crystal that had been cut into a cube
1 × 1 × 1 cm3. CdWO4 is a known scintillator material22

with a monoclinic, Wolframite-type structure, and it belongs
to the space group P2/c ≡ C2h,4 number 13 in the Inter-
national Tables for X-Ray Crystallography.23 This material
was chosen because of its technological relevance and its
availability in large single-crystal form. There is one unique
axis b that has two-fold rotational symmetry and a reflection
plane perpendicular to the b-axis. (Either of these symmetry
operations will result in the b-axis being a principal axis
of the dielectric tensor.) The a-c plane is a cleavage plane,
but the angle between the a- and c-axes is not normal but
rather 91.5 ◦.23 Therefore, the direction of the reciprocal-space
b∗-axis is parallel to the unique real-space b-axis, but the

reciprocal-space a∗ and c∗ directions are not aligned with the
a- and c-axes, with deviations by 1.5 ◦ (see Fig. 1).

The CdWO4 crystal is transparent, it is not hygroscopic,
and the band gap is estimated to be 3.8–4.1 eV.24 Prior to the
ellipsometric measurements, three sides were polished using
a Syton polish to reduce the surface roughness, while one of
the remaining sides remained as-cut as a reference. A mark
was placed on the as-cut surface indicating the b∗ plane. The
sample was nearly cubic with all face angles at 90 ◦ ± 0.4 ◦.
Four-circle x-ray measurements were performed to determine
the crystallographic axes with respect to the sample faces.

There can often be confusion with respect to axis labeling,
and there are different conventions among various commu-
nities. In this paper, we will use the right-handed coordinate
system (x, y, z) to refer to the laboratory reference frame and
(c, a, b) to refer to the axes of the crystal, described previously
(see Fig. 1). The laboratory frame has z perpendicular to the
sample surface pointing up, x in the plane of incidence, and
y perpendicular to the plane of incidence. The faces of the
sample cube are labeled (C, A, B). As determined from x-ray
diffraction measurements, the crystallographic unique b-axis
is perpendicular to the B face of the sample cube. The x-ray
measurements showed that the a- and c-axes are mutually
perpendicular to the unique b-axis, but the angle between the
a- and c-axes is 91.5 ◦. This is in agreement with previous

FIG. 1. (Color online) Schematic diagram relating the actual
sample cube with the coordinate system of the crystal. The unique
b-axis is perpendicular to the plane, out of the drawing. The a-
and c-axes are denoted by the red arrows, while the (001) plane
is perpendicular to the a- and b-axes, and the (100) plane is
perpendicular to the b- and c-axes. The angle between the (100)
and (001) planes is 88.5 ◦, making the angle between the a- and
c-axes 91.5 ◦. The (100) plane is off the normal of the A face by 0.8 ◦,
and the (001) plane is off the normal of the C face by 2.3 ◦. Similarly,
the a-axis is off the normal of the A face by 2.3 ◦, and the c-axis is
off the normal of the C face by 0.8◦. The sample cube as drawn is in
the laboratory reference frame with the Euler angles (θ , φ, ψ) = (0 ◦,
0 ◦, 0 ◦), where the z-axis is perpendicular to the plane of the page,
the x-axis perpendicular to the C face and the y-axis perpendicular
to the A face. The angles are not drawn to scale.
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x-ray measurements.23 The A face is 2.3 ◦ off the a-axis and
0.8 ◦ off the (100) plane. The C face is 0.8 ◦ off the c-axis and
2.3 ◦ off the (001) plane (see Fig. 1).

The initial values of the complex dielectric function as
described in Eq. (1) are aligned with the sample cube. That is,
ε33 corresponds to the dielectric function for light polarized
parallel to the principal axis (the b-axis), perpendicular to the
B face, while the quantities ε11 and ε22 correspond to the
dielectric function for light polarized perpendicular to the C
and A faces, respectively.

For an arbitrarily oriented monoclinic crystal with the
dielectric tensor given in Eq. (1), one must apply an orthogonal
coordinate transformation,

εlab=A(θ,φ,ψ)εoAT(θ,φ,ψ), (2a)

to rotate the crystal from its present position to the laboratory
coordinate system. The transformation matrix A uses the Euler
angles θ , φ, and ψ ,25 and is given by

A =

⎡
⎢⎣

CφCψ − CθSφSψ SφCψ + CθCφSψ SθSψ

−CφSψ − CθSφCψ −SφSψ + CθCφCψ SθCψ

SθSφ −SθCφ Cθ

⎤
⎥⎦ ,

(2b)

where we use the short-hand notation Cθ = cos(θ ), Sθ = sin(θ ),
etc.

B. Reflection 2-MGE measurements

Generalized ellipsometry measurements were performed
using the two-modulator generalized ellipsometer (2-
MGE)26,27 at an angle of incidence of 64.84 ◦. Twelve
measurements were made, four measurements on each of the
polished A, B, and C faces, with the sample rotated about the
z-axis in the laboratory reference frame by 45 ◦ for each of
the four measurements. For each of the faces measured, the
accuracy of the Euler angle ψ for the initial alignment of the
crystal cube on the sample stage was ∼0.5 ◦, while the error
in ψ for subsequent positions of the crystal was ∼0.2 ◦. The
configuration identity and Euler angles of rotation are shown
in Table I. The letter associated with the configuration name

corresponds to the face that was used for the ellipsometric
measurements, while the numbers refer to the Euler angle ψ .

The 2-MGE measures eight parameters simultaneously at
each wavelength. If the polarization state generator (PSG) and
the polarization state analyzer (PSA) are oriented at angles
that are modulo 45 ◦ with respect to the plane of incidence,
then the eight parameters correspond to eight elements of the
normalized Mueller matrix (that is, Ms ,11 is set to 1).26 Two
zones were measured for this experiment, where the angles of
the PSG and PSA were set to (0 ◦, 45 ◦) for zone 1 and (45 ◦,
0 ◦) for zone 2. Thus, all the off-block-diagonal elements of the
sample Mueller matrix were measured at least one time (see
Ref. 26 for the details). The accuracy of the 2-MGE data is
typically 0.001–0.002 for parameters that range from –1 to +1,
and it includes both systematic and random components. The
accuracy does decrease in the ultraviolet (UV) range due to re-
duced light levels from the xenon lamp and in the near infrared
due to the reduced sensitivity of the photomultiplier tube.

The elements of the sample Mueller matrix are then con-
verted to the NSC representation, as described in Ref. 26. For
isotropic samples, the NSC representation is directly related
to the traditional ψ� and ρ representation of ellipsometry by

ρ = rpp

rss

= tan (ψ) ei� = C + iS

1 + N
. (3a)

The NSC parameters are directly related to the elements of
the sample Mueller matrix Ms , where N = −Ms,12 = −Ms,21,
S = Ms,34 = −Ms,43 components, and C = Ms,33 = Ms,44.
For anisotropic samples, cross polarization can occur, and this
requires that four additional parameters become nonzero in
any of the representations. These are given by:

ρsp = rsp

rss

= tan(ψsp)ei�sp = Csp + iSsp

1 + N
, (3b)

ρps = rps

rss

= tan(ψps)e
i�ps = Cps + iSps

1 + N
. (3c)

The complex reflection coefficients are given by rij = Ej
o/Ei

i ,
where Ej

o (Ei
i) is the output (input) complex electric field

projected parallel (p) or perpendicular (s) to the plane of

TABLE I. A summary of the configurations used in this study including the Euler angles. The column labeled (φ1, ψ1) gives the Euler
angles used for the measurements, while the column labeled (φ2, ψ2) shows Euler angles that result in the same spectra. The fitted surface
roughness and goodness of fit (χ 2) are also listed. The angle given for the B configurations is φ + ψ .

Euler angles (◦) Rough

Config. name θ (φ1, ψ1) (φ2, ψ2) d (nm) χ 2

B000 0 0 180 4.38 0.94
B045 0 45 −135 4.29 0.96
B090 0 90 −90 4.21 1.22
B135 0 135 −45 4.23 1.11
C090 90 (−90, 90) (90, 90) 2.88 0.62
C135 90 (−90, 135) (90, 135) 2.83 0.72
C000 90 (−90, 180) (±90, 0); (90, 180) 2.68 0.86
Cm135 90 (−90, −135) (90, −135) 2.65 0.49
A000 90 (0, 180) (0, 0); (0, 180); (180, 180) 3.39 0.96
Am135 90 (0, −135) (180, −135) 3.32 0.74
Am90 90 (0, −90) (180, −90) 3.31 0.55
Am45 90 (0, −45) (180, −45) 3.20 0.53
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incidence. The angles ψ and � are the traditional ellipsometric
parameters (note that ψ here is the ellipsometric parameter
and not the Euler angle). The cross-polarization terms are
determined from the off-block-diagonal elements of the
sample Mueller matrix, as described in Ref. 26.

The degree of polarization is given by:

β2 = N2 + S2 + C2 + S2
sp+C2

sp + S2
ps + C2

ps. (3d)

If β = 1, then no depolarization occurs, and β < 1
indicates that some depolarization has occurred. There is some
residual depolarization in these measurements above ∼5.4 eV

(<230 nm), and β = 0.92 at 220 nm. To correct for this
small amount of depolarization, the NSC parameters are first
normalized using the β factor (Nm = N/β, etc.) before the ρ

parameters are determined.
Note that we use the cross-polarization convention found

in Azzam and Bashara28 rather than that of Schubert.29,30 The
primary reason is that symmetries in the cross-polarization
terms that are obvious in the former representation are hidden
in the latter representation.

Figure 2 shows representative generalized ellipsometry data
for four different orientations of the sample, as described in

FIG. 2. (Color online) The real and imaginary parts of the complex reflection ratios for four different orientations of the sample, described
in Table I. The thin lines show the fit to the data, described in the text, and the resulting χ2 is also shown.
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Table I. The thin black lines show the fit to the data using
a procedure described later herein. As can be seen from
the figures, the typical errors in ρ are 0.001–0.002. (This
error estimate does not include the possible errors from the
orientation of the crystal cube as reflected in the error in the
Euler angle ψ .) Secondly, in all but a few cases (A000 and
C000), the cross-polarization terms are nonzero at nearly all
wavelengths. In some cases, obvious symmetry is observed,
such as B000 in Fig. 2, while in other cases, such as Cm90
and Am135 in Fig. 2, the symmetry is lost, particularly
above 4.0 eV. Furthermore, the ellipsometry data from several
different orientations of the crystal show definite relationships
one with another, which will be discussed later in the paper.

III. DATA ANALYSIS

The calculation of the complex reflection ratios shown in
Eq. (2) for anisotropic materials is considerably more com-
plicated than for isotropic materials, since cross polarization
becomes nonzero in general. The procedure used for this paper
is outlined in Refs. 31 and 32, but it basically follows the
theory of Berreman21 as modified by Lin-Chung and Teitler,33

Lin-Chung,34 and Ong.35 There are strong similarities with the
formalism discussed by Schubert.29,30

The Berreman equation is given by

d�

dz
= i��, (4)

where � = (Ex , Hy , Ey , −Hx)T (not to be confused with
the ellipsometric parameter ψ or the Euler angle ψ), and �

is the complex Berreman matrix (not to be confused with the
ellipsometric parameter �). For materials that are not optically
active or magnetic, the Berreman matrix reduces to

� =

⎡
⎢⎣

�11 �12 �13 0
�21 �11 �23 0

0 0 0 1
�23 �13 �43 0

⎤
⎥⎦ . (5a)

The elements of the Berreman matrix are

�11 = −ξε13/ε33, (5b)

�12 = (ε33 − ξ 2)/ε33, (5c)

�21 = ε11 − ε2
13/ε33, (5d)

�13 = −ξε23/ε33, (5e)

�23 = ε12 − ε13ε23/ε33, (5f)

�43 = ε22 − ξ 2 − ε2
23/ε33, (5g)

where ξ = sin(ϕ), and ϕ is the angle of incidence. The
Berreman matrix of Eq. (5a) is not Hermitian, so its eigenvalues
can be complex, and its eigenvectors are not orthogonal. The
form of the Berreman matrix is different in Refs. 29 and 30,
where a different vector � is used. The two representations
of the Berreman matrix are related by an orthogonal permu-
tation transformation, so the eigenvalues and eigenvectors are
unchanged.

A three-medium model was used for the near-surface
region: air/surface roughness/bulk. The surface roughness was
modeled using the Bruggeman effective medium model,36

consisting of 50% voids and 50% material, where the isotropic
dielectric function was the average of the three diagonal

components of the dielectric tensor. While this is clearly an
approximation of the optical functions of the overlayer, the
validity of the approximation is supported by the fitting pro-
cedure discussed below, where the goodness-of-fit parameter
indicated a good fit. This is primarily because the overlayer
thickness is thin, and the resulting dielectric functions are quite
similar. A more accurate model of the surface overlayer would
include the directionally dependent values of the dielectric
tensor and would be necessary for a more anisotropic material.

The 4 × 4 transfer matrix χs for the material is the column-
wise set of eigenvectors for the � matrix associated with the
oriented bulk.31–34 The eigenvalues of the � matrix are first
determined by solving the fourth-order secular equation. (This
can be done analytically using Ferrari’s method.) Once the
eigenvalues λi are found, then the eigenvectors are given by

V =

⎡
⎢⎢⎢⎣

V1

V2

V3

V4

⎤
⎥⎥⎥⎦ = A

⎡
⎢⎢⎢⎣

�11�13 − �12�23 − λ�13

�11�23 − �21�13 − λ�23

−(
�2

11 − �21�12 − 2λ�11 + λ2
)

−λ
(
�2

11 − �21�12 − 2λ�11 + λ2
)

⎤
⎥⎥⎥⎦ .

(6)

Once these four eigenvectors are calculated, the two eigen-
vectors associated with the backward-propagating waves
must be selected. These correspond to the two eigenval-
ues with negative imaginary parts. If the eigenvalues are
real, then the positive eigenvalues are selected. The two
eigenvectors associated with these eigenvalues are placed
in the first and third columns of the χs matrix, where
the first column contains the eigenvector where (V1V1

∗ +
V2V2

∗) > (V3V3
∗ + V4V4

∗) and the third column contains
the eigenvector where (V1V1

∗ + V2V2
∗) < (V3V3

∗ +
V4V4

∗).
Note that the procedure discussed here is not valid for

isotropic materials or anisotropic materials in certain sym-
metries that lead to cross-polarization coefficients that are
zero. For isotropic materials, the equivalent Berreman transfer
matrix consists of the 2 × 2 Abeles matrix for p-polarized light
in the upper left block and the 2 × 2 Abeles for s-polarized
light in the lower right block, where the off-block diagonal
elements are zero.35

The final characteristic matrix for the configuration consid-
ered here is given by:

M = χoχf χs. (7)

The matrix χo is the characteristic matrix for the ambient,
assuming that the ambient refractive index is 1:

χo =

⎡
⎢⎢⎢⎣

1 cos(ϕ) 0 0

−1 cos(ϕ) 0 0

0 0 cos(ϕ) 1

0 0 cos(ϕ) −1

⎤
⎥⎥⎥⎦ . (8)

Similarly, χf is the characteristic matrix for the film, given by:
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χf =

⎡
⎢⎢⎢⎣

cos(ζ ) i∗ sin (ζ )∗ η/ñ 0 0

i∗ sin (ζ )∗ ñ/η cos(ζ ) 0 0

0 0 cos(ζ ) i∗sin(ζ )/(ñ∗η)

0 0 i∗ sin (ζ )∗ ñ∗η cos(ζ )

⎤
⎥⎥⎥⎦ , (9)

where ζ = 2πdñη/λ, η = cos(ϕf ), d is the thickness of
the film, ñ is the complex refractive index, ϕf is the angle
of incidence inside the film (possibly complex), and λ is
the wavelength of light. The complex reflection ratios are
calculated from the elements of the M matrix:

rpp = M23M31 − M21M33

M13M31 − M11M33
, (10a)

rps = M43M31 − M41M33

M13M31 − M11M33
, (10b)

rsp = M21M13 − M23M11

M13M31 − M11M33
, (10c)

rss = M41M13 − M43M11

M13M31 − M11M33
. (10d)

The initial value of the surface roughness thickness for all
the sample configurations was calculated using a Levenberg-
Marquardt fit of the data below the band edge of the material
(350 to 850 nm), using the Bruggeman effective medium
approximation (50% voids, 50% bulk) for the film and the
Sellmeier approximation for the bulk.31 These thicknesses,
as well as the Euler angles given in Table I were then used to
determine the initial values of the complex dielectric tensor for
CdWO4 by performing a point-by-point Levenberg-Marquardt
fit on all 12 data sets. Since there are only eight independent
values of the dielectric tensor, and there are 12 × 6 = 72
experimental data points at each wavelength, the system is
significantly overdetermined. As a further refinement, the
spectroscopic dielectric tensor components for CdWO4 were
then used in a fit to redetermine the surface roughness for
each of the 12 measurements, and the spectroscopic dielectric
tensor elements for monoclinic CdWO4 were redetermined. A
final fit of the individual spectra using the new spectroscopic
dielectric tensor was performed, with the resulting χ2 and
surface roughness values shown in Table I for each of the
12 orientations. This determines the complex dielectric tensor
for the sample cube in the ABC coordinate system, which is
shown in Fig. 3.

IV. DISCUSSION

A. Dielectric Function

From Fig. 3, it can be seen that the monoclinic crystal
CdWO4 has four distinct complex values of the dielectric
tensor at each wavelength. Below the band edge, the imaginary
parts of the dielectric functions are 0, since the material
is transparent in this region. The complex quantity ε33

corresponds to light polarized along the unique b-axis, which is
the principal axis of the monoclinic crystal. The quantities ε11

and ε22 are not associated with fundamental axes in the crystal,
but rather with the pseudocubic directions perpendicular to

the C and A faces, respectively, which are close to the c- and
a-axes of the crystal. Although the angle between the a- and
c-axes is nearly normal (91.5 ◦), the unit cell still possesses
only monoclinic symmetry. Naively, one might expect that the
optical properties would be very close to an orthorhombic
crystal, where the ε12 component of the dielectric tensor
would be close to zero. However, the optical properties of
the monoclinic crystal are determined by the symmetry of the
unit cell, not the angles of the axes. As can be seen from Figs. 3
and 4, the ε12 component is significantly different from zero,
and the monoclinic symmetry of the crystal structure has a
distinctive optical signature. One consequence of this is that
only the ε33 is definitively specified. The quantities ε11, ε22,
and ε12 are given here with the a- and c-axes nearly aligned
along the 22 and 11 directions, respectively. If a different
coordinate system were defined using a rotation about the
b-axis, then different quantities ε11, ε22, and ε12 would be
obtained. Given the quantities ε11, ε22, and ε12 defined here,

FIG. 3. (Color online) The complex dielectric tensor for CdWO4.
The values of the real part of ε12 are small but not 0. Figure 4 shows
this data on an expanded scale.
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FIG. 4. (Color online) The real part of the off-diagonal element
of the dielectric tensor below the band edge. This is expanded from
the equivalent data shown in Fig. 3.

the new values would be simply those resulting from the Euler
angle transformation of Eq. (2).

The values of the principal dielectric functions shown in
Fig. 3 below the direct band edge obey the two-term Sellmeier
approximation:

εii = 1 + A1λ
2

λ2 − λ2
1o

+ A2λ
2

λ2 − λ2
2o

, (11)

with the fitting parameters shown in Table II. It will be noted
that the reduced χ2 is used as the figure of merit and is well
below 1, indicating that the fit is good.

While it is not possible to diagonalize the dielectric tensor
of a monoclinic crystal in general, it is possible to diagonalize
the real and imaginary parts separately. Figure 5 shows the
direction of the fast axis as a function of photon energy for
the real and imaginary parts of the dielectric tensor, where the
direction perpendicular to the C face is the reference axis. Note
that the fast axis is the polarization direction of the smallest
refractive index (real part) or smallest extinction coefficient
(imaginary part) for light traveling along the unique b-axis of
the crystal. As can be seen, the direction of the fast axis is a
function of energy, and the directions of the fast axis for the
real and imaginary parts are significantly different one from
the other. The sign change in the fast axis for the real part near

TABLE II. The Sellmeier coefficients resulting from fits to the
real part of the dielectric functions shown in Fig. 3 using Eq. (11).
The fit was performed from 320 to 850 nm (3.88 to 1.46 eV). The
goodness of fit parameter is the reduced χ 2, indicating a good fit to
the data (a good fit occurs when χ 2 < ∼1).

ε11 ε22 ε33

A1 2.842 2.697 2.860
λ1o (nm) 135.2 118.5 144.1
A2 0.643 1.000 0.387
λ2o (nm) 251.1 250.8 260.5
χ 2 0.16 0.14 0.18

FIG. 5. (Color online) The direction of the fast axis as a function
of photon energy for the real and imaginary parts. The light is passing
along the b-axis, and the c-axis is the reference axis.

5.2 eV occurs because the sign of the real part of ε22 − ε11

changes at that energy.
Below ∼4 eV, CdWO4 is transparent, so the imaginary part

of the dielectric tensor vanishes, and it is possible to determine
a unique principal axis system at each energy as shown in
Fig. 5. Although the dielectric tensor is diagonalizable in the
transparent region and the crystal is optically orthorhombic,
the direction of the dielectric function axes perpendicular to
the unique b-axis is a function of energy. The direction of the
fast axis crosses zero (the C face normal) near 3.8 eV (i.e.,
326 nm), corresponding to ε12 = 0, within error. Moreover, at
this energy, both the real and imaginary parts of ρps and ρsp of
the data sets where the projected principal axes are in the plane
of incidence or perpendicular to the plane of incidence (B000,
B090, A000, Am90, C000, C090) are also zero within error.
This can be seen in Fig. 2 for data sets A000, B000, and Am90,
respectively. The other data sets are not shown, but they behave
in a similar manner. Therefore, at this wavelength, the mono-
clinic CdWO4 crystal is optically orthorhombic with the prin-
cipal axes aligned with the laboratory coordinate system. This
is very similar to the case of ZnO, where the normally uniaxial
ZnO crystal is optically isotropic at 292 nm (i.e., 4.25 eV).11,37

It has been suggested by Schmidt et al.17–19 that one can
apply a projection operator to the dielectric tensor to reduce
the four complex elements of the dielectric tensor to three
complex elements of a polarization matrix. To examine this, we
have applied this projection operator on the dielectric function
tensor data shown in Fig. 3, varying the Euler angle φ and
projection angle γ to minimize the off-diagonal elements
in the polarization matrix, where the details are shown in
Appendix A. The results show that this model works well
on the data of Fig. 3 in the transparent region of the crystal,
but it does not work well if the entire measured spectrum
is included. Thus, four spectroscopic complex values of the
dielectric tensor are required to describe monoclinic crystals.
This is totally in accord with the theoretical understanding of
the dielectric functions.1–3
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FIG. 6. (Color online) The birefringence of CdWO4 in the
transparent region for light passing parallel to the b-axis.

Another feature of a monoclinic crystal is that it behaves
as a retarder for light passing along the b-axis. However, as
discussed above, the direction of the fast axis changes with
wavelength. Figure 6 shows the birefringence of the crystal
for light passing along the unique b-axis.

B. Symmetry in the complex reflection ratios ρ

As can be seen from Fig. 2, the complex Fresnel reflection
ratios ρ, ρsp, and ρps show quite a complicated behavior as a
function of crystal orientation, but there also is a considerable
amount of apparent symmetry in the data. The observed
symmetries are summarized in Table III.

For ellipsometric measurements on the B face of the crystal,
the principal axis is perpendicular to the sample surface.
This corresponds to the measured configurations B000, B045,
B090, and B135, where the Euler angle θ = 0 ◦. The Euler
angles φ and ψ are degenerate, so we can set ψ = 0 ◦ without
loss of generality. In this set of configurations, we observe
that ρps = −ρsp for any orientation of φ (see Fig. 2, B000).
That is, one can rotate the Euler φ angle to any value, and
this relation will hold. If two ellipsometric spectra are taken
with orientations of φ and φ + 90 ◦, then the magnitudes of
the cross-polarization terms appear to be the same, but they
will change sign. However, the magnitude of the ρpp term

will depend on φ. Any rotation of the crystal by 180 ◦ will
leave the ellipsometric response unchanged, as required by the
2-fold rotational symmetry of the crystal.

If the b-axis is perpendicular to the plane of incidence (Euler
angles θ = 90 ◦,ψ = 0 ◦, 180 ◦, φ variable, configurations
A000 and C000), then the cross-polarization terms are 0,
regardless of the angle φ (see Fig. 2, A000). However, the ρpp

term does depend upon φ and still shows the 180 ◦ rotational
symmetry about the b-axis, so ρpp(φ) = ρpp(φ + 180 ◦).

If the b-axis is parallel to the plane of incidence and in
the sample surface plane (Euler angles θ = 90 ◦, ψ = ±90 ◦,
φ variable, configurations Am090 and C090), then the cross-
polarization terms are equal, but not equal to zero (see Fig. 2,
Am90). That is, ρsp(φ) = ρps(φ) �= 0 and will depend upon
the angle φ. The ρpp term will also vary with φ but will give
the same values when φ is rotated by 180 ◦. From Table I, it
can be seen that experimental configurations Am90 and C090
correspond to equivalent Euler angles and should, therefore,
yield identical spectra. Within experimental error, this is the
case.

Other configurations (Am135, Am45, C135, and Cm135)
show no symmetry within the data for that particular ori-
entation (see Fig. 2, Am135), but they do show apparent
symmetry when compared with ellipsometric data taken in
other orientations. For example, the data for the Am135 orien-
tation shows no correlation between ρps and ρsp. However,
comparing the data of Cm135 with C135, one finds that
ρsp(Cm135) ∼= ρps(C135), ρps(Cm135) ∼= ρsp(C135), and
ρpp(Cm135) ∼= ρpp(C135). Another similar finding can be
applied to the Am45 and Am135 pair of ellipsometric data.
Here, the rotation of the crystal changes the sign of the cross-
polarization terms but leaves the ρpp term unchanged. That is,
ρps(Am45) ∼= −ρps(Am135), ρsp(Am45) ∼= − ρsp(Am135),
and ρpp(Am45) ∼= ρpp(Am135).

To understand these observed symmetries, we need to
transform the dielectric tensor into the laboratory reference
frame, calculate the Berreman matrix, determine the eigen-
values and eigenvectors, calculate the transfer matrix and
the characteristic matrix of the system, and then calculate
the complex reflection coefficients. This process was outlined
previously herein and is applied to three symmetry directions
in Appendices B–D.

When the b-axis is perpendicular to the plane of incidence,
then the dielectric tensor takes the form of Eq. (1). As the
crystal is rotated about the b-axis (Euler angle rotation φ), the

TABLE III. The observed symmetries in the complex reflection ratios from monoclinic crystals for various orientations of the unique b-axis.
The B face is perpendicular to the b-axis.

Axis orientation Symmetries

b⊥SS ρps(φ) = −ρsp(φ)
ρ(φ) = ρ(φ + 180 ◦) for pp, sp, and ps

ρps(φ) ∼= −ρps(φ + 90 ◦); ρsp(φ) ∼= −ρsp(φ + 90 ◦), but ρpp(φ) �= ρpp(φ + 90 ◦)

b⊥POI; ‖SS ρsp(φ) = ρps(φ) = 0

b‖POI; ‖SS ρps(φ) = ρsp(φ) �= 0

SS = sample surface. POI = plane of incidence.
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tensor values will change (except for the ε33 term), but the
tensor will remain symmetric, and the 0 elements will remain
zero (see Appendix B). From the calculations in Appendix B
[Eq. (B9a)], we obtain:

ρps = −ρsp = 2ηo�12�23(φ)

Fss(φ)
, (12)

where ηo = cos(ϕ), ϕ is the angle of incidence, �12 and �23(φ)
are elements of the Berreman matrix [see Eq. (5)], and Fss (φ)
is a complicated factor containing the dielectric functions and
the angles. If φ is rotated by 90 ◦, then �12 remains the same,
but �23(φ) changes sign, and Fss(φ) will also change. For many
cases, Fss(φ) is much larger than the numerator and will not
change significantly with φ, resulting in the pseudosymmetry
shown in Table II. A rotation of 180 ◦ of a monoclinic crystal
will result in the same dielectric tensor, so the ellipsometric
response will be unchanged.

The observation that ρps = −ρsp for b perpendicular to
the sample surface can also be explained using the argument
of Li,38 who invoked the reciprocity theorem of conical
grating diffraction of Vincent and Neviere.39 References 38
and 39 were applied specifically to diffraction gratings, but
the only required symmetry feature that was invoked was the
2-fold rotational symmetry about the surface normal. Since
a monoclinic crystal with the principal axis perpendicular to
the sample surface has the same symmetry, then the same
relationship holds.

If the b-axis is perpendicular to the plane of incidence, then
it is observed that the cross-polarization terms are zero. From
the calculation described in Appendix C, this comes about
because the Berreman matrix is block-diagonal, giving rise to a
block-diagonal set of eigenvectors, which will naturally lead to
cross-polarization terms that are zero. Another way of looking
at the situation is that if the principal axis is perpendicular to
the plane of incidence, then the other two axes will have to
be in the plane of incidence. Therefore, the plane of incidence
determines the symmetry of the ellipsometric experiment (as
for isotropic media), there is no mixing of the s-polarized state
with the p-polarized state, and no cross polarization should
result.

If the b-axis is in the plane of incidence, parallel to the
sample surface, then cross polarization is observed, but ρps =
ρsp for all angles φ. This is shown in Appendix D.

V. CONCLUSIONS

We have shown that generalized ellipsometry spectra taken
on 12 orientations of a monoclinic crystal can be used
to determine the complex dielectric tensor of the material.
For a given orientation of the crystal, the dielectric tensor
is symmetric with four independent complex quantities.
Although x-ray measurements show that the a- and c-axes are
nearly orthogonal, the off-diagonal element ε12 is significantly
different from zero, particularly above the band gap at
∼4 eV. Moreover, the energy dependence of both the real
and imaginary parts of ε12 bears no relation to the other
components of the dielectric tensor. Below the band edge,
it is possible to uniquely diagonalize the dielectric tensor, but
the fast-axis angle will now depend on energy. Above the band
edge, it is not possible to uniquely diagonalize the dielectric

tensor. The nonorthogonal transformation of Suh et al.20 as
employed by Schmidt et al.17–19 cannot be used to describe
this monoclinic crystal.

The raw ellipsometric spectra show various symmetries in
the complex reflection ratios ρ, depending on the orientation of
the principal symmetry b-axis. If the b-axis is perpendicular to
the sample surface, then the cross-polarization terms ρsp and
ρps will be equal in magnitude but opposite in sign, and their
magnitudes will depend upon the orientation of the crystal as
represented by the Euler angle φ. That is: ρps(φ) = −ρsp(φ).
If the b-axis is perpendicular to the plane of incidence, then
both the cross-polarization terms go to: ρsp(φ) = ρps(φ) =
0. This is because the a- and c-axes now lie in the plane of
incidence, and there is no mixing of the s- and p-polarization
states. If the b-axis is in the plane of incidence, parallel to the
sample surface, then the cross-polarization terms are equal but
generally unequal to zero. That is: ρps(φ) = ρsp(φ).
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APPENDIX A: COMPARISON WITH THE PROJECTION
OPERATOR FORMALISM OF SCHMIDT ET AL.

(REFS. 17–19)

In Refs. 17–19, Schmidt et al. propose a nonorthogonal
transformation to reduce the dielectric tensor containing four
complex values at each wavelength to a diagonal complex
matrix. The expression used for this transformation is given
by

ε = RT (TPT T − I )R, (A1a)

TABLE IV. The best-fit results of the projection operator trans-
formation shown in Eq. (A2) using the complex dielectric function
data shown in Fig. 3. Column A shows the resultant χ 2 when no
projection occurs from the projection operator. Columns B through
E show the fitted values of φ and γ and the resultant χ2 for four
different values of (φ, γ ) resulting in local minima in χ2. Columns C
and E are symmetry replicas of columns B and D resulting from the
symmetry operation φ− > φ + 180 ◦.

A B C D E

Transparent region
Euler φ ( ◦) 0 25.6 205.6 115.6 295.6
Tilt angle γ ( ◦) 90 92.2 92.2 87.7 87.7
χ 2 181.5 0.33 0.32 0.92 0.92
Full spectrum
Euler φ ( ◦) 0 34.9 214.9 124.9 304.9
Tilt angle γ ( ◦) 90 92.4 92.4 87.6 87.6
χ 2 428.8 40.32 40.32 48.73 48.83
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where R is the rotation matrix

R =

⎡
⎢⎣

cos(φ) −sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

⎤
⎥⎦ , (A1b)

and T is the nonorthogonal transformation, given by

T =

⎡
⎢⎣

1 cos(γ ) 0

0 sin(γ ) 0

0 0 1

⎤
⎥⎦ . (A1c)

The dielectric function tensor is given in Eq. (1), the quasipo-
larization matrix P (normally notated as ρ in Refs. 17–19) is
given by

P =

⎡
⎢⎣

P11 P12 0

P21 P22 0

0 0 P33

⎤
⎥⎦ , (A1d)

and I is the identity matrix.
Equation (A1a) can be inverted using pre- and postmulti-

plication by appropriate matrices to give

P = T −1(RεRT − I )(T T )−1. (A2)

The matrix T is not orthogonal, but it is also nonsingular,
so it does possess an inverse. However, the inverse is not
the transpose, as it would be for an orthogonal transformation
matrix. Using this expression, it can be shown that the P matrix
is symmetric, so P12 = P21. If this transformation is valid, then
it must be possible to find angles γ and φ, where the complex
off-diagonal element P12 is 0 over the entire wavelength range,
where we are to use the CdWO4 data shown in Fig. 3 for the
spectroscopic values of the dielectric tensor ε. The figure of
merit used for this calculation is the reduced χ2:

χ2 = 1

2N

N∑
k=0

[
Re(P12 (λk))2

Re(δP12 (λk))2
+ Im(P12 (λk))2

Im(δP12 (λk))2

]
, (A3)

where N is the number of wavelength points, Re(P12) and
Im(P12) are the real and imaginary parts of the off-diagonal
matrix element P12, and Re(δP12) and Im(δP12) are the real
and imaginary parts of the propagated errors from the errors
of the measured elements of the complex dielectric function
tensor ε. If the lowest values of the reduced χ2 are <∼1, then
the model fits the data including errors. The best-fit values of
the angles γ and φ were found by a combination of Monte
Carlo analysis used for a global search over −90 ◦ < γ < 90 ◦
and 0 � φ < 360 ◦ and a Levenberg-Marquardt algorithm to
polish the fit, reducing the reduced χ2 to its local minimum.

The results of the calculation are shown in Table IV, where
column A shows the results if no projection operator is used.
In the transparent region of the crystal (1.5–4.0 eV), where

FIG. 7. (Color online) The spectroscopic real and imaginary parts
of the off-diagonal element of the polarization matrix P12.

the complex dielectric tensor is real, four values of (γ , φ)
can be found where χ2 < 1, indicating that the projection
operator model does fit the data. For this calculation, Im(P12)
is set to 0, and the prefactor in Eq. (A3) is 1/N rather than
1/(2N ). From symmetry, if one solution is found for (γ , φ),
then a complementary solution must also be found for (γ , φ +
180 ◦). In addition, nearly complementary solutions must be

found at (180 ◦ − γ , φ + 90 ◦) and (180 ◦ − γ , φ − 90 ◦). This
is the case with the data shown in Table IV.

The bottom of Table IV shows the results if the entire
spectrum is included in the fit. As with the results limited
to the transparent region, there are four solutions related by
symmetry. However, the resulting reduced χ2 values for the
entire spectrum for all four solutions are >40, indicating that
the projection operator model does not fit the values of the
complex dielectric tensor shown in Fig. 3. The spectroscopic
values of the real and imaginary parts of P12 are shown in
Fig. 7 using the values of γ and φ for which the χ2 was a
minimum.

APPENDIX B. PRINCIPAL AXIS PERPENDICULAR TO
THE SAMPLE SURFACE: B FACE

To determine the dielectric tensor in the laboratory ref-
erence frame, the monoclinic dielectric tensor in Eq. (1) is
rotated using the Euler transformation shown in Eq. (2). For
the case where the unique b-axis is perpendicular to the sample
surface, θ = 0 ◦, the effective angle is φ + ψ , so ψ can be set
to 0 ◦ with no loss of generality. The dielectric tensor in the
laboratory reference frame takes the form

εlab =

⎡
⎢⎣

ε11C
2
φ + 2ε12CφSφ + ε22S

2
φ ε12

(
C2

φ − S2
φ

) + CφSφ(ε22 − ε11) 0

ε12
(
C2

φ − S2
φ

) + CφSφ(ε22 − ε11) ε22C
2
φ − 2ε12CφSφ + ε11S

2
φ 0

0 0 ε33

⎤
⎥⎦ . (B1)
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Applying this to the Berreman matrix [Eq. (5)], we find that
�11 = �13 = 0 and

�23(φ) = ε12
(
C2

φ − S2
φ

) + CφSφ(ε22 − ε11)

= ε12C2φ + S2φ

2
(ε22 − ε11), (B2a)

�12= 1 − ξ 2/ε33; (B2b)

�21(φ) =ε11,lab; (B2c)

�43(φ) =ε22,lab − ξ 2. (B2d)

Therefore, �23(φ) = �23(φ + 180 ◦) = −�23(φ ± 90 ◦).
The Berreman matrix element �12 is independent of φ, but
�21 and �43 are functions of φ. Rotations about the unique
b-axis by 180 ◦ will result in the same dielectric tensor and the
same Berreman matrix and, therefore, the same ellipsometric
response. The resulting Berreman matrix will be:

� =

⎡
⎢⎢⎢⎣

0 �12 0 0

�21(φ) 0 �23(φ) 0

0 0 0 1

�23(φ) 0 �43(φ) 0

⎤
⎥⎥⎥⎦ . (B3)

We use the secular equation to determine the eigenvalues λ

∣∣∣∣∣∣∣∣∣

−λ �12 0 0

�21 (φ) −λ �23 (φ) 0

0 0 −λ 1

�23 (φ) 0 �43 (φ) −λ

∣∣∣∣∣∣∣∣∣
= λ4 − λ2 [�43(φ) + �12�21(φ)]

+�12
[
�21(φ)�43(φ) − �2

23(φ)
] = 0. (B4)

Note that the secular equation has only even powers of λ, and
the �23 term enters only to second order. Using the quadratic
formula to solve Eq. (B4) yields

λ2 = 1
2

[
�43(φ) + �12�21(φ)

±
√

(�12�21(φ) − �43(φ))2 + 4�12�23(φ)2
]
. (B5)

From Eq. (6), the four eigenvectors of the Berreman matrix
will be of the form

V =

⎡
⎢⎢⎢⎣

V1

V2

V3

V4

⎤
⎥⎥⎥⎦ = A

⎡
⎢⎢⎢⎣

−�12�23(φ)

−λ�23(φ)

−λ2 + �21(φ)�12

−λ(λ2 − �21(φ)�12)

⎤
⎥⎥⎥⎦ . (B6)

Two of the eigenvalues will correspond to the positive sign in
Eq. (B5), which we label λp, and two will correspond to the

negative sign, which we label λn. The characteristic matrix for
the bulk becomes

χS =

⎡
⎢⎢⎢⎣

−�12�23(φ) 0 −�12�23(φ) 0

−λp�23(φ) 0 −λn�23(φ) 0

λ2
p − �21(φ)�12 0 λ2

n − �21(φ)�12 0

λp

(
λ2

p − �21(φ)�12
)

0 λn

(
λ2

n − �21(φ)�12
)

0

⎤
⎥⎥⎥⎦ .

(B7)

If the film is ignored, then the total characteristic matrix M =
χoχs . From Eq. (10), the complex reflection ratios are given
by

rps = −2ηo�12�23(φ)2(λp − λn)

Denom
, (B8a)

rsp = 2ηo�12�23(φ)2(λp − λn)

Denom
, (B8b)

rpp = −�23(φ)(λp − λn)Fpp(φ)

Denom
, (B8c)

rss = −�23(φ)(λp − λn)Fss(φ)

Denom
. (B8d)

The eigenvalues λp and λn are for the forward-propagating
waves, and the terms Fpp and Fss are complicated terms
containing the eigenvalues λp and λn, ηo, and all the matrix
elements of the Berreman matrix. From the definition of the
reflection coefficient ratios in Eq. (3), we get:

ρps = −ρsp = 2ηo�12�23(φ)

Fss(φ)
, (B9a)

where

Fss(φ) = �12
[
�43 − η2

o�21 − ηo(λn + λp) + λnλp

]
+ λnλpηo(λn + λp − ηo). (B9b)

Therefore, the magnitudes of the ρps and ρsp reflection ratios
are equal, but they differ by their signs. From Eq. (B2a), a 90 ◦
rotation of φ switches the sign of �23(φ), but Fss(φ) �= Fss(φ
+ 90 ◦), resulting in ρsp(φ) ∼= −ρsp(φ + 90 ◦), ρps(φ) ∼=
−ρps(φ + 90 ◦). A rotation of 180 ◦ leaves ρps and ρsp

invariant.

APPENDIX C: PRINCIPAL AXIS PERPENDICULAR TO
THE PLANE OF INCIDENCE

If the b-axis is perpendicular to the plane of incidence, then
the eigenvalues and eigenvectors of the Berreman matrix are
simplified considerably. This case was measured using the two
configurations A000 and C000. Both configurations require the
Euler angle θ to be 90 ◦, the ψ angle set to 0 ◦ or 180 ◦, and φ

is free. For this orientation of the crystal, the dielectric tensor
in the laboratory reference frame is given by:

εlab =

⎡
⎢⎢⎣

ε11C
2
φ + 2ε12CφSφ + ε22S

2
φ 0 −b

[
ε12

(
C2

φ − S2
φ

) + CφSφ(ε22 − ε11)
]

0 ε33 0

−b
[
ε12

(
C2

φ − S2
φ

) + CφSφ

(
ε22 − ε11

)]
0 ε22C

2
φ − 2ε12CφSφ + ε11S

2
φ

⎤
⎥⎥⎦ , (C1)

where b = cos(ψ) = ±1.
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The Berreman matrix elements �13 = �23 = 0, and

�11(φ) = ξb
ε12C2φ + S2φ

2 (ε22 − ε11)

ε22C
2
φ − 2ε12CφSφ + ε11S

2
φ

, (C2a)

�12(φ) = 1 − ξ 2/ε33,lab(φ); (C2b)

�21(φ) = ε11,lab(φ) − ε13,lab(φ)2/ε33,lab(φ), (C2c)

�43 = ε22,lab − ξ 2. (C2d)

That is, �43 is independent of φ, while the other Berreman
matrix elements depend on φ. The resulting Berreman matrix
is:

� =

⎡
⎢⎣

�11(φ) �12(φ) 0 0
�21(φ) �11(φ) 0 0

0 0 0 1
0 0 �43(φ) 0

⎤
⎥⎦ . (C3)

Since the Berreman matrix � in Eq. (C3) is block-diagonal, the
eigenvalues and eigenvectors are simple. The four eigenvalues

are just (�43, −�43, b�11 +√
[�12�21], b�11 +√

[�12�21]),
and the ordered eigenvectors give the transfer matrix

χs =

⎡
⎢⎢⎢⎢⎣

√
�12(φ)
�21(φ) −

√
�12(φ)
�21(φ) 0 0

1 1 0 0

0 0
√

�43 −√
�43

0 0 1 1

⎤
⎥⎥⎥⎥⎦ . (C4)

Since this transfer matrix is block-diagonal, then the cross-
polarization reflection ratios ρps and ρsp must be 0. This also
holds true if there is a surface film, as long as the film is
isotropic. Since this holds for any value of φ, then the cross-
polarization terms are equal zero whenever the principal axis
is perpendicular to the plane of incidence

APPENDIX D: PRINCIPAL AXIS IS PARALLEL TO THE
PLANE OF INCIDENCE, PARALLEL TO

THE SAMPLE SURFACE

If the Euler angle θ = 90 ◦ and ψ = ±90 ◦, then the
dielectric tensor in the laboratory reference frame simplifies
to:

εlab =

⎡
⎢⎣

ε33 0 0

0 ε11C
2
φ + 2ε12CφSφ + ε22S

2
φ b

[
ε12

(
C2

φ − S2
φ

) + CφSφ(ε22 − ε11)
]

0 b
[
ε12

(
C2

φ − S2
φ

) + CφSφ

(
ε22 − ε11

)]
ε22C

2
φ − 2ε12CφSφ + ε11S

2
φ

⎤
⎥⎦ . (D1)

The Berreman matrix elements �11 = �23 = 0 and

�13 (φ) = ξb
ε12C2φ + S2φ

2 (ε22 − ε11)

ε22C
2
φ − 2ε12CφSφ + ε11S

2
φ

, (D2a)

�12(φ) = 1 − ξ 2/ε33,lab; (D2b)

�21=ε11,lab; (D2c)

�43(φ) =ε22,lab − ξ 2 − ε2
23,lab/ε33,lab. (D2d)

The quantity b = sin(ψ) = ±1. The Berreman matrix
element �21 is independent of φ, while the other ele-
ments are dependent on φ. The resulting Berreman matrix
becomes:

� =

⎡
⎢⎢⎢⎣

0 �12(φ) �13(φ) 0

�21 0 0 0

0 0 0 1

0 �13(φ) �43(φ) 0

⎤
⎥⎥⎥⎦ . (D3)

The secular equation is

λ4 − λ2[�43(φ) + �12(φ)�21]

+�21[�12(φ)�43(φ) − �13(φ)2] = 0, (D4)

which is very similar to Eq. (B4), but �12 and �21 are
interchanged, and �23 is replaced with �13. Following the
same procedure as in Appendix B, we obtain:

rps = rsp = 2ηo�21�13(φ)

Fss(φ)
, (D5a)

where

Fss(φ) = −ηo�21[�43 − �12 − ηo(λn + λp) + λnλp]

− λnλp(λn + λp − ηo). (D5b)
Therefore, the cross-polarization terms are equal if the princi-
pal axis is parallel to the sample surface and in the plane of
incidence. Rotations about φ will alter the magnitudes of ρsp

and ρps , but the relations Eq. (D5a) will hold.
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