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Abstract
The known method of the ‘integral’ diffuse scattering has been generalized
in the Bragg case of x-ray diffraction for crystals, which contain large
microdefects commensurable with the extinction length. In the framework
of the developed statistical dynamical theory, relatively simple analytical
expressions have been derived for coherent and diffuse components of
reflectivity of single crystals with randomly distributed microdefects.

To test the characterization possibilities of the proposed method, the
rocking curves (RCs) of Czochralski-grown silicon single crystal annealed
at 1080 ◦C for 6 h have been measured for 111 and 333 reflections of Cu Kα1
radiation using a high-resolution double-crystal x-ray diffractometer. The
fitting results for the two RCs are in good mutual agreement and
demonstrate the high information ability of the method.

1. Introduction

The method of integral diffuse scattering (DS) of x-rays,
proposed by Dederichs [1, 2] and developed by Larson [3, 4], is
widely used to characterize the point defects and their clusters
in various crystalline materials. The method makes use of the
angular dependences of the DS intensity integrated over exit
angles. These dependences are measured by double-crystal
diffractometer (DCD) far from the Bragg peak and are treated
using the formulae derived for various type defects from the
known expressions of the kinematical theory for the differential
DS intensity [1, 5]. The application efficiency of the method is
provided by the high sensitivity of these dependences to defect
sizes.

However, in the investigation of microdefects in silicon
[6–8] this method meets with some difficulties. Firstly, the
measurable DS intensity distributions are very close to the
Bragg peak because of large effective sizes of the microdefects.
In such cases, the correct interpretation of the measured angular
distributions of x-ray scattering intensity must account for the
dynamical DS effects in this region and for the contribution of
the coherent component. Secondly, it is necessary to account
for the simultaneous presence of several types of microdefects
in the silicon crystal (oxygen precipitates, dislocation loops,
stacking faults, etc [9]).

These difficulties can be overcome by using the
generalized dynamical theory of x-ray scattering by

single crystals containing homogeneously distributed defects
[10, 11]. This theory has been extended in [12] for the case of
single crystals with microdefects, which have large effective
radii commensurable with the extinction length. Here, the
analytical expressions derived in [12] for the coherent and
diffuse components of reflection power of such crystals will
be applied to characterize the defects in the annealed silicon
single crystal by using the RCs measured by the high-resolution
DCD with widely open detector window.

The theoretical bases and formulae used are elucidated in
section 2. X-ray optic schemes of the measurements and the
investigated silicon sample are described in section 3. The
procedure of the treatment of measured RCs is explained and
the obtained results are discussed in section 4.

2. Reflection coefficient of imperfect single crystal

The coherent scattering of x-rays by the periodical part of
the crystal potential in imperfect single crystals containing
randomly distributed microdefects is accompanied by elastic
DS on the fluctuations of static displacement fields of matrix
atoms. The influence of DS on the amplitudes of coherent
waves rises significantly with increasing defect sizes. The
enlarged defect radii also cause a concentration of DS intensity
in the close vicinity of reciprocal lattice points, i.e. near the
directions exactly satisfying the Bragg condition, and therefore
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an account of the dynamical effects in DS becomes necessary
for the detailed quantitative description of diffraction patterns.

The amplitudes of the strong Bragg (coherent) waves in
a crystal with chaotically distributed microdefects satisfy the
same homogeneous set of algebraic equations as in the perfect
crystal [13], but with the coefficients including the modified
Fourier components of the crystal polarizability [10–12]. The
modification consists of multiplying the Fourier components of
perfect crystal polarizability χ±H by the static Debye–Waller
factor E = exp(−LH), where H is 2π times the reciprocal
lattice vector corresponding to the considered Bragg reflection,
and adding to this term, and to χ0, the so-called dispersion
corrections arising due to the elastic scattering of coherent
waves into diffuse ones. For the two-beam case of x-ray
diffraction, this basic equation set can be solved easily, and,
after substitution of the found wave amplitudes into the usual
boundary conditions for the Bragg case of x-ray diffraction by
the parallel-sided crystal plate, one can calculate the amplitude
Ea

H of the diffracted plane wave in vacuum.
When the approximation of the semi-infinite crystal is

valid, i.e. the inequality µ0t � 1 holds, where µ0 is the
linear coefficient of photoelectric absorption and t is the crystal
thickness, only one wave field remains in the crystal. Then, the
expression forEa

H is simplified, and the coherent component of
reflection coefficient can be calculated by the known formula
for perfect crystal [13] but with some modification [12]:

Rcoh(�θ) = |γH ||Ea
H |2

γ0|E0|2 = ς(L −
√
L2 − 1) (1)

with

L = [z2 + (g + h)2 + {[z2 − (g + h)2 − E2(1 − κ2 − a2)]2

+4[z(g + h) − E2(p + d)]2}1/2]

×
[
E2

√
(1 − κ2 − a2)2 + 4(p + d)2

]−1

z = �θ sin(2θB)

C|χrH |
√
b b = γ0

|γH | .

Here, E0 is the incident plane wave amplitude, γ0 and γH are
direction cosines of incident and diffracted x-rays respectively,
ζ ≈ 1, �θ is rocking angle, θB is Bragg angle, C = 1
or cos(2θB) is the polarization factor, χrH is the Fourier
component of the real part of crystal polarizability and the
parameters g, κ and p account for the absorption due to
the inelastic scattering processes (photoelectric absorption,
Compton scattering and thermal diffuse scattering) and are
the same as in perfect crystal [13]. Parameters h, d and a

take account of the additional effective absorption of the strong
Bragg waves due to the elastic DS caused by defects. The joint
influence of the static Debye–Waller factor and the additional
absorption parameters leads to the narrowing and decreasing
of the coherent component of the reflection coefficient as
compared to that of perfect crystal.

Diffusely scattered waves are created due to the scattering
of the strong Bragg waves by the fluctuation field of the
static displacements of crystal atoms, which are caused by
chaotically distributed defects, and also form in crystal the
dynamical wave field. In the two-beam case of diffraction,
the amplitudes of two diffusely scattered plane waves forming
the diffuse quasi-Bloch wave satisfy the set of inhomogeneous

equations which describe the multiple rescattering processes
of diffuse waves on the periodical part of the crystal potential
as well as the multiple processes of diffuse scattering from
the strong Bragg and diffusely scattered waves into the diffuse
ones.

Imposing the boundary conditions on the diffuse wave
amplitudes for the Bragg case of diffraction and transforming
the derived plane wave amplitudes at the crystal surface into
the scattering amplitude fH(K ′,K) and the corresponding
differential cross section dσ/d#K ′ of the DS into the solid
angle in the direction K ′, one can obtain the diffuse component
of the differential reflection power of the crystal (δ = 1, 2;
G = 0, H):

RDS(k) = 〈|fH(K ′,K)|2〉
γ0S|E0|2 (2)

fH(K ′,K) =
∑
δ

∑
G

Dδ
G(K)F δ

HG(K
′,K) (3)

where the corner brackets denote the averaging over a random
distribution of defects, S is the entrance surface area, Dδ

G(K)

are amplitudes of strong Bragg waves, F δ
HG(K

′,K) are the
partial amplitudes of the scattering of strong Bragg waves into
the diffuse ones, the vector k = K ′ − K − H is the deviation
of the wave vector K ′ of diffusely scattered wave in vacuum
from the reciprocal lattice point, and K is the incident wave
vector.

Expression (3) can be simplified substantially when the
approximation of the semi-infinite crystal is valid, i.e. at
µ0t � 1. In such a case, only one quasi-Bloch wave remains
in the wave fields of both strong Bragg and diffusely scattered
waves, and equation (2) can be reduced to the form

RDS(k) = 1

γ0S

(
CVK2

4π

)2

FdynS(q)

S(q) = 〈|δχH+q|2〉 (4)

where V is the crystal volume, the extinction factor Fdyn ≈ 1
describes the modulation of diffuse scattering intensity, which
is caused by the extinction of strong Bragg waves, δχH+q

is Fourier component of fluctuating part of the crystal
polarizability, q = k + iµin, n is the inner normal to the
entrance crystal surface, the interference absorption coefficient
can be estimated as µi ≈ (1 + b)µ0/(2γ0) at |y|, |y ′| � 1
and µi ∼ π/- at |y|, |y ′| � 1, where - is the extinction
length, and y and y ′ are the angular deviations of incident and
diffusely scattered waves from exact Bragg directions, which
are normalized to the width of total reflection range w.

Integrating expression (4) over the Ewald sphere
(K ′ = K) near the reciprocal lattice point H , we obtain
the ‘integral’ diffuse component of the reflection coefficient
measured by a DCD with widely open detector window:

Rdiff (�θ) =
∫
K ′=K

RDS(k) dSK ′/K2

= Fdyn(�θ)µ
δ
00(�θ)t/γ0 (5)

µδ
00(�θ) = C2V

4λ2

∫
dSK ′ S(q) (6)
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where dSK ′ = K2 d#K ′ is the element of surface area in the
reciprocal space. Performing the two-dimensional integration
in (6), we obtain

Rdiff (�θ) ∼= Fdyn

µds(�θ)

2γ0µ(�θ)
(7)

µds(�θ) = cC2E2m0J (k0) m0 = πvc

4
(H |χrH |/λ)2 (8)

J (k0) =




b2 ln

(
e
k2
m + µ2

k2
0 + µ2

)
+ b3

(
k2

0

2k2
m

− 1

)
|k0| � km(

b2 − 1

2
b3

)
k2
m

k2
0

|k0| � km

(9)

b2 = B1 + 1
2B2 cos2 θB b3 = 1

2B2(cos2 θB − 2 sin2 θB)

µ(�θ) = µ0

2γ0

1 + b

2

(
1 +

ri

|g|E
)

r1 =
√

1
2

(√
u2 + v2 − u

)
(10)

u = (z2 − g2)E−2 + κ2 − 1 v = 2(zgE−2 − p).

Here, c is the defect concentration, vc is the crystal unit
cell volume, λ is x-ray wavelength, k0 = K�θ sin(2θB) is
the shortest distance from the reciprocal lattice point H to
the Ewald sphere, km = 2π/EReff defines the boundary
between Huang and Stokes–Wilson region, Reff = RL

√
Hb

for dislocation loops (RL is the loop radius and b is the modulus
of Burgers’ vector) and Reff = √

H |Acl| for clusters (Acl is
the cluster strength). The constants B1 and B2 also depend
on specific defect characteristics, particularly, for prismatic
dislocation loops B1 = 4(πbR2

L/vc)
2/15 and B2 = βB1,

where β = (3ν2 +6ν−1)/4(1−ν)2 and ν is the Poisson ratio,
whereas for spherical clusters B1 = 0 and B2 = (4πAcl/vc)

2.
In contrast to the known kinematical expressions for the

DS intensity integrated over Ewald sphere [3, 4], where the cut-
off parameter kc = 2π/- has been introduced to remove the
divergence at k → 0, such a cut-off parameter (µ) having the
order of magnitude kc in the total reflection range has appeared
in the expression (9) in a natural way due to the consistent
accounting for the dynamical effects in DS. This lifts the
restriction on the maximally allowable effective defect radius
(Reff < -) and gives the possibility to describe quantitatively
in explicit analytical terms the Huang DS intensity also in the
total reflection range at both Reff < - and Reff � -.

The expression for the diffuse component of the RC
Rdiff (7) includes two factors which describe the characteristic
redistribution of diffuse scattering intensity (Fdyn) and the
extinction gap (1/µ) in the total reflection range.

At sufficiently large angular deviations |�θ | � w, where
w = 2C|χrH |/(√b sin 2θB) is the width of the total reflection
range, one can put Fdyn

∼= 1 and µ ∼= µ0(1 + b)/(2γ0).
Then, for weakly absorbing crystals (kc � µ0) containing
small defects with effective radii Reff � - (km � kc), the
inequalities |k0| � µ and km � µ hold and we obtain, after
neglecting µ2 in (9), the kinematical expression for the diffuse
reflectivity:

Rdiff (�θ) = µkin
ds (�θ)

(1 + b)µ0

����

Figure 1. Lang topograph of the annealed silicon sample (the
symmetric 220 reflection of Mo Kα1 radiation), magnification 10×.

which almost coincides with the known kinematical one [3, 4]
in the symmetric case of Bragg diffraction (b = 1) and differs
only in terms with b3 coefficient.

3. Experimental set-up and investigated sample

The measurements of RCs of the investigated sample, which
was in the parallel, non-dispersive setting relative to the last
reflection of the collimator, were performed using a high-
resolution four-circle x-ray DCD. For 111 reflection, the
collimator consisted of two separated three-reflection channel-
cut perfect Si monochromators in antiparallel setting with
symmetric 220 reflections. For 333 reflection, a one-reflection
Ge monochromator and a second two-reflection channel-cut Si
monochromator in the antiparallel setting were used both with
symmetric 333 reflections.

The investigated sample of dislocation-free silicon single
crystal (thickness 488 mkm) was cut perpendicularly to the
growth axis [111] from a Czochralski-grown ingot with p-type
conductivity (ρ = 10 # cm) and with concentrations of
oxygen 1.1×1018 cm−3 and carbon lower than 1×1016 cm−3,
respectively. The sample was annealed in air atmosphere at
1080 ◦C for 6 h.

The transmission x-ray topograph of the sample
(symmetric 22̄0 reflection of Mo Kα1 radiation, figure 1) shows
the homogeneous distribution of microdefects with contrast
dimensions not exceeding 50 mkm and the concentration
estimated to be not less than 1 × 105 cm−3.

4. Treatment of experimental results and discussion

The RC of the sample for 333 reflection of Cu Kα1 radiation,
which has been measured in the symmetric Bragg diffraction
geometry, is shown in figure 2 together with the theoretical
RC separately for the central part (total reflection range) and
for the tails in logarithmic and double-logarithmic scales. In
the fitting procedure, the defect radii and concentrations were
the fit parameters. The high sensitivity of the RC to the fit
parameters required refining the zeroth position of �θ scale.
To obtain a more accurate fitting in the vicinity of and within
the total reflection range, the intrinsic reflection coefficient of
the investigated sample

R(�θ) = Rcoh(�θ) + Rdiff (�θ)

(where the coherent (Rcoh) and diffuse (Rdiff ) components are
defined by equations (1) and (7), respectively) was convoluted
with the reflection coefficient of the collimator system at the
final stage of the fitting procedure.
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Figure 2. (a) RC of the silicon sample annealed for 6 h at 1080 ◦C for the symmetric Bragg reflection 333 of Cu Kα1 radiation. Full curve is
the fitted total RC, dashed and dotted curves are its coherent (Rcoh) and diffuse (Rdiff ) components, respectively. The diffuse component
Rdiff (b) and ln Rdiff (c) are plotted versus ln |�θ |, the filled and open circles correspond to �θ > 0 and �θ < 0, respectively, and have
been obtained by subtracting Rcoh from the measured RC.

In the first step of the treatment, the most simplified
microdefect models supposing the presence (i.e. the dominant
influence on the diffraction pattern) of only spherical clusters
(precipitates) or circular dislocation loops were applied to
fit the measured RCs for both 111 and 333 reflections.
Such attempts, however, failed because it was impossible to
simultaneously fit the central part and tails of each RC, on the
one hand, and to match the defect parameters for both RCs, on
the other hand.

In the second step, we fitted the measured RCs by
accounting for the presence of both types of defects (loops and
precipitates) simultaneously. The corresponding modification
of the formulae (1) and (7)–(10) can be made easily, if the
random distribution of defects of both types is supposed to
be without mutual correlation. In such a case, ensemble
averaging can be performed independently for each defect
type, and results in replacing the parameters LH and µds by
the corresponding sums of these parameters calculated for each
type of defects:

LH =
∑
α

Lα
H µds =

∑
α

µα
ds

where α numerates the defect types.
The exponent LH of the static Debye–Waller factor for

dislocation loops was calculated according to the known

expression [5]

LH
∼= 1

2
cL

R3
L

vc
(Hb)3/2

where cL is the concentration of dislocation loops per unit
cell. The formula for LH in the case of spherical clusters [5]
has been modified for the case of disc-shaped precipitates as
follows:

LH
∼=

{
cP n0η

2/2 at η2 � 10

cP n0η
3/2 at η2 � 10

where cP is the precipitate concentration, n0 = πR2
P hP /vc

is the number of unit cells substituted by the precipitate
volume, RP is the precipitate radius, hP is the precipitate
thickness, η = α0n

1/3
0 Ha0/(2π), α0 = @ε(3π2/4)1/3,

@ = (1 + ν)/3(1 − ν), ε is the deformation at precipitate
boundary, and a0 is the lattice constant. The cluster strength
has been also modified for the clusters of disc-shaped form as
Acl = @εR2

P hP /2. In the fitting, the precipitate thickness was
assumed to be equal to hP = 2RP/ra , and ra was determined
by solving numerically the transcendental equation, which
connects the diameter of the disc-shaped precipitate with
its thickness [14]. The parameter of the deformation at
the amorphous SiO2 precipitate boundary was put equal to
ε ≈ 0.0242 [15].
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The values of microdefect characteristics determined
by fitting the measured RCs for two types of microdefects
simultaneously are listed in table 1. As can be seen, the sizes
and densities of precipitates and dislocation loops, which have
been determined independently for each reflection, are in a
good mutual agreement. The densities and sizes of dislocation
loops correspond well with the results of x-ray topographic
observation (figure 1). It is clear that precipitates with sizes
of about 0.6 mkm cannot be resolved by x-ray topograph,
but the obtained sizes and densities of precipitates, as well
as those of dislocation loops, satisfactorily correlate with
known results of direct observations [16–21] and theoretical
calculations [20, 21] for silicon single crystals with similar
characteristics (initial concentrations of oxygen and carbon,
temperature and duration of annealing). It should be remarked
here that direct observation methods such as transmission
electron microscopy, which are exclusively important for the
establishment of the nature (and of some characteristics) of
microdefects, are destructive and require a large number of
samples to give the representative statistical information about
defect sizes and distributions, and cannot provide the full
extent of such information from the whole crystal volume as
compared to x-ray diffraction methods. Concerning the fit
quality of the present x-ray measurement (see figure 2), a good
match of the calculated reflectivity with the measured one in the
total reflection range and at tails should be noticed, but a worse
coincidence is observed in the close vicinity of the Bragg peak.
In this region, according to the obtained microdefect radii, lie
the boundaries between Huang and Stokes–Wilson scattering
regions for both microdefect types. Because of the existence
of a spread of actual microdefect radii in the sample, which
causes a smearing of these boundaries, better agreement of
theory and experiment might be achieved by accounting for
the size distributions of microdefects. The correct solution
of this problem, however, requires consideration of a realistic
model of microdefect size distribution and thorough analysis
of all the factors influencing the uniqueness of determined
defect characteristics from the view of both diffraction theory
and experiment, and this will be investigated separately. On
the other hand, it should be emphasized that, in the case
when the whole of Huang scattering region even for one
type of microdefects lies under Bragg peak, the kinematical
approach obviously does not allow one to obtain the unique
information about the characteristics of the defects, because
then the tails of both diffuse and coherent scattering intensity
decrease as (�θ)−2. So, the important advantage of the
suggested method is the self-consistent description of coherent
and diffuse components of scattering intensity in the whole
angular interval including the total reflection range.

In conclusion, the good mutual agreement of the values
of defect characteristics determined from the measured RCs
for two reflections and the fair correlation of these parameters
with the published relevant experimental data can be
considered as experimental verification of the developed x-ray
characterization method. The results obtained demonstrate
its high diagnostic possibilities. In order to fulfil these
possibilities, however, it is necessary to use additional
experimental and theoretical information about the nature
and morphology of defects in the single crystals under
investigation.

Table 1. Characteristics of oxygen precipitates (nP = cP /vc, RP ,
hP ) and dislocation loops (nL = cL/vc, RL) in Czochralski-grown
silicon sample annealed at 1080 ◦C for 6 h.

hkl

111 333

nP (cm−3) (5.8 ± 0.5) × 109 (5.4 ± 0.4) × 109

RP (mkm) 0.66 ± 0.06 0.57 ± 0.04
hP (Å) 135 ± 12 127 ± 9
nL (cm−3) (5.9 ± 0.5) × 105 (4.2 ± 0.3) × 105

RL (mkm) 16.6 ± 1.5 16.0 ± 1.1

5. Summary

A theoretical model, based on the generalized dynamical
theory of x-ray scattering by imperfect single crystals
with randomly distributed defects, has been used to
analyse the measured RCs of silicon single crystal
containing simultaneously large (dislocation loops) and small
(oxygen precipitates) defects. The determined microdefect
characteristics are in good agreement for two measured
reflections and correlate well with existing experimental and
theoretical data. The result obtained allow us to propose a
new generalized method of integral DS for the quantitative
characterization of various types of microdefects in single
crystals, including those with large effective radii.
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