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The generalized dynamical theory of X-ray scattering by single crystals containing randomly dis-
tributed microdefects has been applied to characterize structural imperfections in the Czochralski-
grown dislocation-free silicon sample annealed at 1080 �C during 6 h. Measurements of rocking
curves for 111 and 333 reflections of CuKa1 radiation have been performed by the high-resolution
double-crystal diffractometer. The sizes and concentrations of oxygen precipitates and dislocation
loops, which have been determined by independent fitting of the two rocking curves, are in good
agreement confirming the validity of the developed theory.

Obob§enna� dinamiqeska� teori� rasse�ni� rentgenovskih luqej monokristallami, so-
derwa§imi sluqajno raspredelennye mikrodefekty, primenena dl� diagnostiki struk-
turnyh nesoverxenstv v obrazce bezdislokacionnogo kremni�, vyra§ennogo metodom
Qohral#skogo i otowwennogo pri 1080 �C v teqenie 6 q. Izmereni� krivyh kaqani� dl�
otrawenij 111 i 333 izluqeni� CuKa1 byli vypolneny na vysokorazrexaˇ§em dvuhk-
ristal#nom difraktometre. Razmery i koncentracii precipitatov kisloroda i disloka-
cionnyh petel#, kotorye byli opredeleny putem nezavisimoj podgonki dvuh krivyh
kaqani�, nahod�ts� v horoxem vzaimnom soglasii, podtverwdaˇ§em pravil#nost# razra-
botannoj teorii.

1. Introduction

The measurement of diffuse scattering (DS) intensity distributions in the reciprocal lat-
tice space can provide the most complete diffractometric information about structural
defects in crystals [1]. In practice, however, any X-ray diffractometer has a finite resolu-
tion and, consequently, the scattered X-ray intensity is integrated partially, which leads
to some loss of obtainable information. On the other hand, the increasing resolution
causes a reduction in gained diffraction intensity. Therefore, X-ray diffractometric meas-
urements by double-crystal diffractometry (DCD) are still extensively used representing
a compromise between the volume of obtained information and sensitivity of measure-
ments.
Particularly, the method of integral DS, that has been proposed by Dederichs [2, 3]

and developed by Larson [4, 5], is widely applied to characterize point defects and their
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clusters in various crystalline materials [6–14]. In this method, the angular dependen-
cies of DS intensity integrated over exit angles, which are measured by DCD with a
wide open detector window, are treated using the formulas derived for various types of
defects from the known expressions of the kinematical theory for the differential DS
intensity [1, 2, 15, 16]. The method is very effective due to the high sensitivity of these
dependencies to defect sizes and concentrations.
However, in the investigations of microdefects in silicon single crystals [17–19], this

method encounters difficulties. Firstly, the measurable DS intensity distributions are
very close to the Bragg peak because of the large effective sizes of microdefects. In
such cases, at sufficiently high microdefect concentrations giving DS intensity compar-
able with coherent component, the correct interpretation of the measured angular
distributions of X-ray scattering intensity in this region requires taking into account
the dynamical DS effects and the contribution of the coherent component. Secondly,
it is necessary to account for the simultaneous presence of several types of microde-
fects in the silicon crystal, namely, oxygen precipitates, dislocation loops, stacking
faults etc. [20, 21].
These difficulties can be overcome using the generalized dynamical theory of X-ray

scattering by single crystals that contain homogeneously distributed defects [22–26].
This theory has been extended in Refs. [27, 28] to the case of single crystals with
microdefects having large effective radii comparable with the extinction length. Here,
the analytical expressions derived in Refs. [27, 28] for the coherent and diffuse com-
ponents of reflection power of such crystals, which have been integrated over exit
angles, will be applied to characterize microdefects in an annealed silicon single crys-
tal using rocking curves measured by high-resolution DCD with a wide open detector
window.
X-ray optic schemes of the measurements and the investigated silicon sample are

described in Section 2. The measurement of rocking curves is explained and the ob-
tained results are discussed in Section 3. The formulas from Ref. [27] and Ref. [28] will
be referred to as (I.1) etc. and (II.1) etc., respectively.

2. Experimental Setup and Investigated Sample

The measurements of rocking curves of the investigated silicon sample, which was in
the parallel non-dispersive setting relatively to the last reflection of the collimator, were
performed using a high-resolution four-circle X-ray DCD (Fig. 1). In the case of sym-
metric 111 reflections at the sample, the collimator consisted of two separated three-
reflection channel-cut perfect Si monochromators in the antiparallel (dispersive) setting
with symmetric 220 reflections (Fig. 1a). For symmetric 333 reflections at the sample,
the first one-reflection Ge monochromator and the second two-reflection channel-cut Si
monochromator in the antiparallel setting were both used with symmetric 333 reflec-
tions (Fig. 1b). The CuKa1 radiation was emitted by a 1.2 kW (V ¼ 30 kV, I ¼ 40 mA)
X-ray tube with minimum projection of the focus 0.4 � 8 mm2. In the optical schemes
used, the vertical divergence was estimated to be approximately 10 arc min, the hori-
zontal divergences were less than 5 arcsec and 2 arcsec for 111 and 333 reflections,
respectively. The irradiated sample surface area was 0.25 � 2.0 mm2. The specimen was
rotated around a vertical axis by a stepping motor controlled by a computer in steps of
0.4 arcsec and 0.2 arcsec for 111 and 333 reflections, respectively.
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The investigated sample of a dislocation-free silicon single crystal with a thickness of
488 mm was cut perpendicularly to the growth axis [111] from a Czochralski-grown in-
got with p-type conductivity (r ¼ 10 W cm) and with an oxygen concentration of
1.1 � 1018 cm––3 and a carbon concentration lower than 1 � 1016 cm––3, respectively. The
sample was annealed in the air at 1080 �C for 6 h.
In the transmission X-ray topograph of the annealed sample, which was obtained in

symmetric Laue reflection of MoKa1 radiation (Fig. 2), the homogeneous distribution of
microdefects can be seen with contrast dimensions not exceeding 50 mm and the num-
ber density estimated to be not less than 1 � 105 cm––3.
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Fig. 1. High-resolution diffraction schemes for measurements of rocking curves for symmetric
Bragg reflections Si 111 (a) and 333 (b) using CuKa1 radiation. Notation: X X-ray tube, M1 and
M2 monochromators, S sample, D detector

Fig. 2. Lang topograph of the annealed silicon sample (the symmetric 220 reflection of MoKa1

radiation), ten-fold magnification



3. Treatment of Experimental Results and Discussion

It is well known (see, e.g., Refs. [20, 21]) that in the Czochralski-grown silicon, which is
the supersaturated solid solution of oxygen, the oxygen precipitates grow during the
annealing at elevated temperatures. The high stress at the interface between the silicon
matrix and SiOx particles (x � 2) is released by the emission of interstitial silicon atoms,
which agglomerate into dislocation loops and stacking faults. There exist various the-
ories, which give the analytical description of precipitation and growth kinetics of new
phase particles in supersaturated solid solutions [29–35]. These theories, however,
ignore (except for Ref. [32]) the presence of dislocation loops formed by interstitial
atoms, which are emitted by new phase particles, and their influence on the precipitate
growth kinetics. To describe in details the growth and dissolution kinetics of precipitates
and loops, it is necessary, in general, to solve numerically the set of coupled second order
differential discrete rate equations for small defect sizes and Fokker-Planck equations for
larger ones [36]. The solutions of these equations give the distribution functions for size
and density of the microdefects (precipitates and stacking faults) versus annealing time
and temperature. Corresponding numerical calculations, however, are very time-consum-
ing, even for modern computers, and cannot be while used as a routine tool.
On the other hand, both numerical and analytical approaches are based on model as-

sumptions and contain some physical parameters to be refined. It is clear, that in order to
check all these theories a method to diagnose structural parameters of such systems is
necessary, which permits to receive information from statistically significant crystal vol-
umes. Additionally, in case of supersaturated solid solution of oxygen in silicon, such
method should allow to diagnose simultaneously parameters of different types of defects
with arbitrary sizes. The existing methods for diagnostics of imperfections in silicon
(transmission electron microscopy, method of infrared absorption, X-ray topography, op-
tical microscopy of etch pits) have the exclusively important role for an establishment of a
nature of imperfections, but have restrictions in reference to researched crystal volumes
and defect sizes (see, e.g., Ref. [21]). The X-ray diffraction method of diagnostics using
angular DS intensity distributions from imperfections is to a large extent free of such
restrictions. The existing problem of diagnostics of large microdefects, DS intensity from
which is concentrated under Bragg peak, has been solved in the previous publications [27,
28], where the self-consistent description of dynamical coherent and diffuse scattering in
the total reflection range has been given and the explicit analytical expressions have been
derived for the corresponding components of crystal reflectivity.
Here, we demonstrate the application of the generalized method of integral DS for

the determination of microdefects characteristics in annealed silicon single crystal. This
procedure is based on the analytical expressions for coherent and diffuse reflectivity
components integrated over exit angles for single crystals with randomly distributed
microdefects [27, 28].
The rocking curves for 111 and 333 reflections of CuKa1 radiation, which have been

measured in the symmetric Bragg diffraction geometry, are shown in Figs. 3 and 4,
respectively. It is remarkable that due to the high-resolution optical schemes used one
can observe the extinction gap in the diffuse component of reflectivity, which has been
obtained by subtracting the fitted coherent component of reflectivity from the mea-
sured rocking curve. This gap is seen for both reflections (Figs. 3b and 4b) and, to our
knowledge, has been demonstrated experimentally for the first time.
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In the fitting procedure, the defect radii and concentrations were the fit parameters.
The high sensitivity of the rocking curves to the fit parameters has required also to
refine the zeroth position of the Dq-scale. To obtain a more accurate fitting in the vici-
nity of and within the total reflection range, the intrinsic reflection coefficient of the
investigated sample

R(Dq) ¼ Rcoh(Dq) þ Rdiff(Dq) ,

where the coherent (Rcoh) and diffuse (Rdiff) components are defined by Eqs. (I.34) and
(II.46), respectively, was convoluted with the reflection coefficient of the collimator sys-
tem at the final stage of the fitting procedure.
To characterize the fit quality the weighted agreement factor was used:

RW ¼ c=f ; c2 ¼
PM
j¼1

wj Rcalc
j � Rmeas

j

� �2
;

f 2 ¼
PM
j¼1

wj Rmeas
j

� �2
; wj ¼ sjR

meas
j

� ��2
;
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Fig. 3. a) Rocking curve of the si-
licon sample annealed for 6 h at
1080 �C for the symmetric Bragg
reflection 111 of CuKa radiation.
The fitted total rocking curve, its
coherent (Rcoh) and diffuse (Rdiff)
components are plotted by solid,
dashed, and dotted lines, respec-
tively. b) The “extracted” experi-
mental diffuse component has
been obtained by subtracting cal-
culated Rcoh from the measured
rocking curve, the theoretical dif-
fuse component Rdiff and its com-
ponents resulting from dislocation
loops and precipitates are plotted
by solid, dotted, and dashed lines,
respectively



where Rmeas
j and Rcalc

j are the measured and calculated reflectivities at the angular posi-
tions Dqj of the sample, respectively, M is the number of measurement points, and s2

j is
the mean-square deviation of the j-th measured point. Such a Rw-factor is usually ap-
plied to give the uniform estimate of the fit quality for measured intensity dependen-
cies within the whole measurement range (see, e.g., Ref. [37]). The obtained fitting
results were characterized also by the agreement R-factor calculated with weight
wj ¼ s�2

j . This factor describes the fit quality mainly in the total reflection range, where
the peak intensity is observed.
In the first step of the treatment, we have restricted ourselves to the most simplified

microdefect models supposing subsequently the presence (i.e., the dominant influence
on the diffraction pattern) of only spherical clusters (precipitates) or circular dislocation
loops. The spherical cluster model gave the unrealistic low number densities of precipi-
tates about nP = cP/Vc � 102 cm––3 with the obtained large precipitate radii of about
RP � 9 mm and was recognized as unacceptable (cP is the precipitate concentration per
lattice site and Vc is the unit cell volume). For the dislocation loop model, supposing
the random distribution of prismatic dislocation loops with Burgers vector b ¼ 1

2 h110i,
the best fit values of the parameters that have been obtained are RL � 9 mm, nL ¼ cL/
Vc � 2 � 106 cm––3 for both reflections.
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Fig. 4. See caption of Fig. 3, 333
reflection of CuKa radiation



In a second step, we fitted the measured rocking curves taking into account the pre-
sence of both types of microdefects (loops and precipitates) simultaneously. The corre-
sponding modification of the formulas obtained in Refs. [27, 28] can be made easily, if
the random distribution of defects of both types is supposed to be without mutual cor-
relation. Generally, the correlation between growing precipitates particles and disloca-
tion loops emitted by them has been observed experimentally (see, e.g., [20, 21]). Also,
the colonies of precipitates are encountered near dislocation loop lines. However, after
sufficiently large annealing times the predominate part of microdefects of both types is
chaotically distributed in the crystal volume. In such a case, the ensemble averaging can
be performed independently for each defect type and results in replacing the param-
eters LH and mds in Eqs. (I.34) and (II.46) for Rcoh and Rdiff, respectively, with the corre-
sponding sums of these parameters calculated for each type of defects:

LH ¼
P
a

La
H ; mds ¼

P
a

mads :

Here, a enumerates the defect types.
The exponent LH of the static Debye-Waller factor for precipitates was calculated

according to the known expression [16] modified for the case of disc-shaped clusters as
follows:

LH ffi cPn0h
2
�
2 ; h2 � 10

cPn0h3=2 ; h2 � 10 ;

�

where n0 ¼ pR2
PhP=Vc is the number of unit cells substituted by precipitate volume, hP

is the precipitate thickness, h ¼ a0n
1=3
0 Ha0=ð2pÞ, a0 = Ge(3p2/4)1/3, H is the modulus of

the reciprocal lattice vector, and a0 is the lattice constant. The cluster power has been
also modified for the clusters of the disc-shaped form as Acl ¼ GeR2

PhP=2. In the fitting,
the precipitate thickness was assumed to be equal hP ¼ 2RP/ra, and the aspect ratio ra
was determined by solving numerically the transcendental equation, which connects the
diameter of the disc-shaped precipitate with its radius RP, and which has been obtained
by minimizing the total free energy of the precipitate [34]. The parameter of the defor-
mation at the amorphous SiO2 precipitate boundary was set equal to e � 0.0242 [38].
The values of microdefect characteristics determined by fitting the measured rocking

curves for two types of microdefects simultaneously are listed in the Table. As can be
seen, the sizes and densities of precipitates and dislocation loops, which have been de-
termined independently for each reflection, are in a good mutual agreement. The densi-
ties and sizes of dislocation loops well correspond to the results of X-ray topographic
observation (Fig. 2). It is clear, that precipitates with sizes of about 0.6 mm cannot be
resolved with a X-ray topograph, but the obtained sizes and densities of precipitates, as
well as those of dislocation loops, satisfactorily correlate with known results of direct
observations [32, 39–43] and theoretical calculations [42, 43] for silicon single crystals
with similar characteristics (initial concentration of oxygen and carbon, temperature
and duration of an annealing). Namely, Patel [39] has observed on a X-ray topograph
from a Si sample, annealed at 1000 �C for 6 h, dislocation loops with radii of about
10 mm, and for these loops by results of measurements of anomalous X-rays transmis-
sion has estimated their density to be about 106 cm––3. The dimensions of etch pits from
stacking faults in silicon annealed at 1105 �C for 5 h, which have been observed by
Patel et al. [32] and Murarka [40] using an optical microscope, were 10 and 14 mm,
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respectively. Patrick et al. [41], using the transmission electron microscope, observed in
silicon annealed at 1000 �C during 8 h the plate-like precipitates with sizes of about
0.16 mm and thickness of about 100 �A. In similar observations of Wada et al. [42], after
annealing at 1050 �C for 6 h, the sizes of plate-like precipitates with thickness 40 �A
were about 0.5 mm. The densities of precipitates after similar thermal treatment, as de-
termined by Livingston et al. [43] using optical methods, was about 2 � 109 cm––3. Alto-
gether, all these values of the microdefect parameters, which have been obtained by
various researchers using different investigation methods for silicon samples being ana-
logous, to more or less extent, to that investigated by us, are sufficiently close related to
the values of microdefect characteristics, which have been determined in the present
investigation (see Table 1).
Thus, the good mutual agreement of the values of defect characteristics determined

from the rocking curves for two reflections and the fair correlation of these parameters
with the published experimental data can be considered as the experimental verification
of the developed generalized method of integral DS as well as the demonstration of its
high diagnostic possibilities. In order to bring off these possibilities, however, it is neces-
sary to use the additional experimental and theoretical information about nature and
morphology of defects in single crystals under investigation.

4. Summary

The generalized dynamical theory of X-ray scattering by imperfect single crystals was
used to analyze the total rocking curves of silicon single crystals containing simulta-
neously large (dislocation loops and stacking faults) and small (oxygen precipitates)
defects. The analytical expressions for coherent and diffuse components of crystal
reflectivity integrated over exit angles form the theoretical foundation for the general-
ized method of integral DS, which has allowed to treat the measured rocking curves
in the whole angle range including the total reflection range and to determine the
microdefect characteristics with good precision and without any restrictions on the
defect sizes.
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Tab l e 1
Characteristics of oxygen precipitates and dislocation loops in silicon sample annealed at
1080�C for 6 h

hkl 111 333

nP (cm––3) 5.8� 109 5.4� 109

RP (mm) 0.66 0.57
hP (�A) 135 127
nL (cm––3) 5.9� 105 4.2� 105

RL (mm) 16.6 16.0
R (%) 9.4 4.5
Rw (%) 10 18
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