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Quantitative microdiffraction from deformed crystals with unpaired
dislocations and dislocation walls
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This article describes how unpaired dislocations alter white-beam Laue patterns for either isolated
dislocations, dislocation walls, or combinations of dislocation walls and isolated dislocations. The
intensity distribution of Laue diffraction is analyzed as a function of local misorientation. We show
how to quantitatively determine the dislocation structure of single crystals and polycrystals with
plastic deformation. The technique is applied to interpret the complicated plastic—elastic field in an
iridium weld sample. [DOI: 10.1063/1.1534378

I. INTRODUCTION and on the local boundary conditions. Previous studies of
) ) ) ) deformation in these materials were based on electron back-
Polychromatic x-ray microdiffraction offers an approach geaiter diffraction methodshowever, until recently, nonde-
to the stysdy of mesoscale dynamics in polycrystallinegy,ctive three-dimensional analysis of plastic deformation
matenals-}. As a polychromatic x-ray beam penetrates ayih micron resolution was not possible for bulk materials.
sample, it produces a Laue pattern from each subgrain that jjore \ve illustrate how the 12 most likely dislocation sys-
intercepts[Fig. 1(a)]. The intensity at each position in the temg in a face-centered-cubic sample can produce distinctive
Laue pattern is proportlonal to a I!ne integral through 'eCIP-streaking in a polychromatic microdiffraction image and how
rocal space weighted by the incident spectrum. The Laug,e measured streaking can be used to quantitatively deter-

pattern is sensitive to grain orientation, unit cell shape, anghine the local deformation tensor with subgrain resolution in
deformation. Polychromatic microdiffraction has major ad- ., |r weld.

vantages over traditional monochromatic diffraction for mi-

cron scale spatial resolution because no sample rotations are

required; furthermore, the depth at which the scattering origi-

nates can be resolved through a differential aperture microdl: INDEXING AND PSEUDOSTEREOGRAPHIC
copy techniqué.In addition to providing precise information PROJECTION OF LAUE PATTERN

on the phase, grain orientation, and morphology of polycrys- |, raditional white-beam Laue diffraction, a continuum
talline materials, polychromatic microdiffraction is sensitive spectrum is diffracted by a single cryst@r single grai.

to elastic and plastic distortion. As illustrated in previouShe crystal scatters the beam into a characteristic Laue pat-
papers, the deviatoric strain tensor can be recovered ity that depends on the crystal space lattice, its orientation,
x-ray Laue methods, and the full elastic strain tensor can bSnd the incident-beam energy distributifffig. 1(b)]. Each
recovereg_f the energywavelength of one reflection is  cparacteristic reflectiohkl is scattered specularly from the
measured. crystal planesikl, which allows the planar orientations with

Ithas also been shown previously that quantitative inforyggnect to the incident beam to be determined directly. The
mation on the number and kind of unpaired random dislocay, ~igent spectral distribution can be described kyk)

tions can_be rec;overed from streaking in L_aue imagAs. where k=|Ko|). In reciprocal space the exact positions of
general kinematic treatment of polychromatic x-ray scatteryeq|ar reflectionstkl) are related to the orientation, space
ing by crystals with random unpaired dislocations has beefyice and to the real-space unit cell size. The momentum
presented in Ref. 5. This approach is appropriate for analysignsfer corresponding to a Bragg/Laue reflect®y, we

of deformation where a kinematic description of scattering iyefine asGp = Kn— Ko, Where (Ko = [kn| =K). Here ko

a valid approximation. Here, we summarize the key featureg; ihe incident wave vector ankl, is the scattered wave
of the earlier paper and extend the approach to cases Whefgcor that satisfies the Bragg/Laue conditions. The diffusely

the dislocations are organized into dislocation walls. Withgcattered intensity about the centroid of the Laue spot de-
this formalism, the diffraction from plastically deformed ma- pends on the deviation=Q— Gy =k—kp,, between the

terials with random unpaired dislocations, dislocation walls it action vector Q=k—k,, and the momentum transfer

or combinations of unpaired dislocations and dlslocatlonGhkl for a Laue reflection. For each wavelength of radiation

walls, can all be modeled. _ _ \, the center of the Ewald sphe(@) and the origin in recip-
As an example, we apply our deformation analysis 10 alyocq| spacd0), are separated by the distanca.IThis dis-

Ir weld sample. Welded grains show an interesting deformag,ce is different for each reflectidrkl and corresponds to

tion pattern that depends on the thermal history of a graiyigterent Ewald spheres; this complicates the analysis for

polychromatic beams. We write the Laue equation in a man-

dElectronic mail: barabashr@ornl.gov ner that takes into account thespectrum in the beam.
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White Beam

GNBs

FIG. 2. Schematic of crystals with local rotations caused by different ar-
rangements of unpaired dislocations) randomly distributed individual
unpaired dislocation€GNDs); (b) randomly distributed tilt dislocation walls
(GNByg); and (c) randomly distributed tilt dislocation boundari€&NBs)

with randomly distributed individual unpaired dislocatioi@NDs) and in-
cidental dislocation boundarigfDBs) in inner regions.

b

FIG. 1. Experimental setup for white-beam Laue diffractighand forma-  an equal number of random+h” and “ —b” dislocations,

the X axis and dislocations linesparallel to theZ axis. For

tion of Laue images as a function of the misorientation ventopetween

radial integrals around a Bragg ped. the average deformation tensor is negligible. Broadening of

the diffuse scattering is induced by random local fluctuations
in the unit cell orientations and spacing that tend to cancel

The scattering angle into each pixel is calibrated to a fewPUt over long length scales. _ _ _
parts in 16. The Laue pattern is then indeXed determine To describe the distribution of dislocations, we introduce
the unit cell orientation with respect to a model basis. Athe numberc, . It can take two values:
rotation matrix is then used to go from the sample to the unit
cell basis. In nondistorted crystals each Laue reflection with B 1, (+)
incident beamk, and diffracted beank,, determines the €= 0, ()
direction of the Bragg plane norm@,,.*’~1° The Bragg
plane normal and @ Bragg angle for each reflection are |If there is a dislocation in the positiar the corresponding
fixed and compared to possible pairs of indices for thenumberc,=1, and in positions without dislocatiors=0.
sample crystal structure. To simplify the computation, weEach edge dislocation creates a displacement field with dis-
project the reciprocal lattice space directions ontoe  placementu;; of the ith scattering cell in the planXOY
m, plane. This projection, as opposed to a more standargerpendicular to its line. The projections of the displacement
stereographic projection, is used for the analysis of experivector in this plane for the simple case of elastically isotropic
mental results in Figs. 5 and 6. crystals, are described by the following equatidhs:

Ill. MODEL OF DISLOCATION ARRANGEMENTS Y Xy

X 2(1— ) (Z+yD)

tan”

: (1a

Uy=5—

21

We follow the concept of the cell-block structure first
introduced by Mughrabi and co-workétsnd further devel- .
oped in a number of papefsee, for example, Ref. 12We U= — i[ 1=2p In(x2+y?)+ (x*=y%)
restrict ourselves to models where the unpaired edge dislo- °  27|2(1—p)
cations have one of three organizatiol¥) random geo-
metrically necessargunpaired dislocationg GNDs); (2) un-
paired geometrically necessary boundari@&\NBs) formed
by thin dislocations walls; anB) GNBs separating region
with incidental dislocation boundari€¢tDB) and individual
GNDs. A sketch of these structures is presented at Fig. 2.

Consider the set of edge dislocations illustrated in Fig. 2. _ _

. . . ul E Ctult- (2)
Dislocations from this set have Burgers vectbrparallel to t

4(1= p)(x*+y?)
(b

Here, u is Poisson’s ratio. The total displacementithf cell
s Ui is due to superposition of all dislocations and is defined by
the equatioH
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For unpaired dislocation$ig. 2), the mean deformation ten- increase with displacement i\ The number of GNBs per
sor can be written in terms of the antisymmetric Levi—Civitaunit length and the length of the crystal in tiedirection
tensor of third ranke,, and a dislocation density tensor of determine the total rotation of the lattice.

second rankp,,:>* Generally, real crystal contains a hierarchy of dislocation
structures. Some of the GNDs are distributed randomly, and

Jomn| the rest may form different kinds of nonrandom arrange-

il Tgx, | P ) ments IDBs and GNBs. It has been found that dislocation

boundaries evolve within a regular pattern of grain subdivi-
Here, the Levi—Civita tensor has elemenrtgs=€,3;  sion on two scale¥!’ The smaller scale is related to the
=€315= 1, €713= €13= €3;= —1; and all othere;;,=0. The  usual cell boundaries—so-called incidental dislocation
tensor of dislocation density ., has indicesr that specify  boundaries. The larger scale is related to long and continuous
the crystallographic direction of the dislocation line, and in-so-called geometrically necessary dislocation boundaries.
dicesn that specify the Burgers vector direction. For a gen-Usually, GNBs separate volume elements, which deform by
eral set of dislocations with dislocation density, unitline  different slip system modes with different strain
directions7, and Burgers vector componetits by, b,, we amplitudest®!’ Typically there are many IDBs separating
write the tensor of dislocation density as ordinary dislocation cells between two cell-block boundaries
formed by GNB9Fig. 2(c)].
nby by b,
pij=n"| n,bx 7by 7b, | (4)  IV. LAUE DIFFRACTION BY CRYSTALS WITH

by b, T, GEOMETRICALLY NECESSARY DISLOCATIONS

) ) ) o A. Intensity distribution of Laue diffraction as a
For eXample, W|th edge d|S|00at|0nS, as ShOWn n F(g),Z misorientation distribution function

7=(001), n=(100), and there is only one nonzero compo- . ) ) . .
nent,p,,=n"b. From Eqs.(3) and(4) it follows that there Dislocations change the diffraction conditions and en-

are only two nonzero components of the mean deformatio}f?‘rge the region of high intensity around each Bragg position.
tensorw..= — w..=n"bx. We note that this distortion field 1Ne intensity distribution of a crystal with dislocations may
‘yy yX .

is antisymmetric and represents a pure rotation abouzthe 2€ Written as follows: 2
axis that increases with displacementinOther systems of _ .
edge, screw, or mixed dislocations can be similarly treated, |(Q):f2i2 elRie T, T:”SZJ 1—ell @i tl,
but for the following discussion we restrict ourselves to edge ! (5)
dislocations. ) . 0 =0

In real crystals individual GNDs tend to group into walls Here.f is the average scattering factdt;; =R/ —R;j is the
to reduce the stored enery'® Consider the structure with d'lstance vector.between the lattice .ce,llysln_the_ undistorted
geometrically necessary randomly distributed tilt dislocationVi'tua! crystal;Sis the area of one dislocation in a transverse
boundariesGNBS) [Fig. 2(b)]. Each wall provides a rotation plane;n is the total dislocation density; antS is a dimen-

between two neighboring mosaic blocks around the line ofionless quantity that indicates the fraction of lattice sites
the wall. Unit vectore parallel to the rotation axis of each covered with dislocations. Correlation functidndiffers for

wall coincides with unit vectorr along the dislocation lines different dislocation arrangements. In the most general case
in the case of a tilt boundary. We consider pure tilt bound-It contains both real and imaginary parts. The intensity dis-
aries formed by equidistant edge GNDso-called “thin tribution I (g) of x-ray (or neutron scattering due to defects
walls”). These boundaries do not produce long-range elastiéan be computed from the expression

strain but generate subgrain rotations. The remaining stresses 2

in the GNB region are periodic with a wavelengh¥ Q)= X fiexdiQ-(RY+u)]| . (6)

=b cscO/2. These stresses are only appreciable at distances '

shorter than withirb* from the GNB® If h is the distance Here, f; is the scattering factor from an individual atom
between these dislocations in the wall, one can consider th&ith relaxed coordinateR; =R+ u; due to the presence of
boundary as a single defect producing the local rotation fieldlefects. Herey; is the displacement from the equilibrium
0. The misorientation angl® due to the boundary is de- positionsR? corresponding to the undeformed crystal. We
fined by the equatiorb/h=2 sin®/2, where b/h~® for calculateu; using continuum elastic theory. In Laue diffrac-
small angle GNBs. To characterize this model quantitativelftion, the incident beam and scattered beam directions define
we define the average distanDebetween GNBs and write @ line in reciprocal space. The position along this line is
the number of GNBs per unit length adD1/The total den- determined by the wavelength of the scattered radiation. For
sity of GNDs grouped in the GNBs is denoted oy example, reciprocal lattice points (00 (00zh), (003),
=1/Dh. We define an axi¥X perpendicular to the plane of etc., are scattered towards the same pixel on a charge-
the wall, and an axig parallel to the direction of dislocation coupled device but lie at different positions radially in recip-
lines in the wall. For this coordinate systeffig. 2), two  rocal space. To analyze the white-beam intensity distribution
nonzero components of the mean deformation tensor arsom a deformed grain, we introduagnit vectors in each
equal: wyy=— wy,=0x/D. This mean deformation tensor direction of scatterink=k/|k|. We define a special misori-
again results in pure rotations about thexes. The rotations entation vectom near a Bragg reflectiom=k —ky,,,;. Mis-
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orientation vectorm gives the difference between the unit
vector parallel to Bragg reflectionnkl) and an arbitrary
direction in its vicinity[Fig. 1(b)]. Note that this is a crucial

Barabash, Ice, and Walker

dent of whether dislocations are paired or unpaired. Part
is imaginary and withT;<T, it may be neglected. With
substitution of Egs(1a), (1b), (2) and(8) into (9a) and(9b),

difference between the general intensity distribution in thewe find that for unpaired dislocation densities in systeof
reciprocal space and intensity distribution of a scattered Laus,,

beam. i
The region of high intensity around each veckgy, in
Laue geometryt, (m) is a function of a misorientation vec-
tor. Within this approximation, the resulting intensity distri-
bution by the deformed crystal in the white microbeam

method can be written as follows:

|L(m)EAf Lo(K)1(a)dk,

7
a=Knilm, + ([Kn|Mpagt AKG/ [kpy).- @

Here, |kpy| is the radius of the Ewald sphere that passes,

throughGy,,, A is a constant, anth,,q andm, are compo-
nents of misorientation vectan along and perpendicular to
the direction of the scattered bedq,. Misorientation vec-
tor m characterizes Laue intensity(m) assuming the wave-

T1=—icl§ ny (Ri-b)([Q*R;; 17,

(10
T,=C,(Qb)2In L; Ny @y .

Here,C;, C, are the contrast factory,is the number of the
dislocation slip system, is the size of the subgraifor the
cutoff radiug, and ¢, is the orientation factor for each dis-
location system. From the structure of Efj0) it follows that
dislocations parallel to the diffraction vector do not contrib-
te to functionT, and do not influence the intensity of scat-
tering (contrast factorC, for these dislocations is zerorl,
describes the influence of mean distortions due to randomly
distributed individual GNDs.

For an equal number of random+b” and “ —b” dislo-

length varies smoothly near the Bragg energy. Information.aions the broadening of the diffuse scattering is induced by
about the radial diffuse scattering distribution is lost unlessandom local fluctuations in the unit cell orientations ahd

the Laue pattern is differentiated in wavelenthergy scan-
ning incident beam The second equation in E) is valid
whenAk/|ko|<1. In the first approximation, orientation vec-
tor m is perpendicular tdy,, [Fig. 1(b)].

In our experimental setup the microfocusing optics intro-
duce a small<1l mrad convergence to the incident beam.

spacing that tend to cancel out over long length scales. Due
to the character of the displacement field around edge GNDs,
displacements occur only in planes perpendicular to the di-
rection of dislocation lines. As a result, coherence is not
changed along directiom, and the diffuse intensity in this
direction is the same as for crystals without dislocations.

This convergence angle has a negligible effect along a streaferpendicular tor, the diffuse distribution is roughly sym-

but can change the intensity distribution in the narrow direc
tion of the streakl (m) should, therefore, be convoluted
with the experimental angular resolution function.

B. Correlation function and full width at half maximum
for Laue intensity distribution

metric with a characteristic full width at half maximum
(FWHM) dependent on the total dislocation density
n:FWHMa \/n. For GNDs[Fig. 2a)], the diffuse scattering
distribution relates distortion tensas; , due to GNDsn™,

to the dislocation density and systdudirection 7, and Bur-
gers vectob).

Following the approach described in the Refs. 18 and 19,
the difference between displacements of two scattering late. Natural axes of the Laue spot

tice cellsi andj can be written as
Ui — Uje = (R V) Ui+ 3(R;; V)?uy,  where V=Vg.
(8
Correlation functionT [Eq. (5)] can be expanded with re-
spect to small displacements. In general, an arbitrary distr

bution of paired and unpaired dislocations has both real and

imaginary partsT=T;+T,+Tj:

T1=i; Ci(Ri; V) (Gpyuir),

T,=—2 ci{l1—cog (R V)(Gpuin) 1}, (93

i
T3:§ IEt ci co§ (R;; V) (GhigUi) 1(Ri; V) *(Gpyir) -

(9b)

The first termT, is imaginary, linear with respect to the
density of unpaired dislocations” and goes to zero when
n*=0. The real part of correlation functioh, is indepen-

Near a Laue spot, we define two natural a¥esnd v:¢
=7Xg/|rXg|, and v=£Xg/|éXg| perpendicular to the unit
vector in the direction of momentum transfgr We have
previously modeled lattice rotations and diffuse scattering
i[or a single Laue spotassociated with geometrically neces-

ary (unpaired individual dislocations. Such a structure is
shown at Fig. £a). As in Ref. 5 with this coordinate system,
the diffuse scattering is strongly elongated in ¢hdirection.
The full width at half maximum in the direction FWHM;
depends on the average distance between GNBs, their mutual
orientation with momentum transf&,,,, the type of GNB
(tilt or twist), and the incident x-ray beam direction. In the
second transverse direction FWHM, depends on the total
number of boundaries per unit lengttyD and usually
FWHM, <FWHM_, . Significantly, if multiple systems are si-
multaneously active, the width of the Laue spot perpendicu-
lar to the major axis of streaking can be large. We emphasize
that in white-beam diffraction the FWHM is a function of
misorientation vectom between unit vectorgather than the
reciprocal space momentum transfer vegtor
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numbers of fragment§-ig. 4). To simplify the interpretation
of the patterns, the total number of excess dislocations was
kept constant. A total dislocation density of =102cm ™2
was chosen. This value is typical of highly deformed crys-
tals. In the first simulation, all dislocations are randomly dis-
tributed. The deformation fields around each dislocation are
superimposed and the intensity was calculated from(Bqg.
The corresponding intensity profile broadens predominantly
B along the¢ axis with a typical “flattop” shapdFig. 4@)]. As
FIG. 3. Splitting of Laue reflections into sharp peaks for two extreme valuedislocations are removed from the fragments and added to
of Eq. (11): (a) continuous distribution K<1); and (b) spot splits into  the dislocation walls, aorrelated misorientation develops
separate peaks(>1). between the neighboring parts of the crystal. When the dis-
location walls are well developed, so that the distance be-
o . S tween dislocations within walh is much shorter than the
D. Splitting of the Laue intensity distribution distance between the walB(h<D) (corresponding to the
If the angular misorientation between GNBs is suffi-case when 75% of all dislocations are grouped within the
ciently large, the reflection becomes discontinuous. To unwalls), the intensity distribution becomes discontinugbi.
derstand this dependence, we assume that along penetrati#(¢)]. Such walls produce sharp rotations of the crystal frag-
depth L the x-ray beam intersects several fragments withments with an abrupt rotational phase variation. In real crys-
average sizéD¢, . Each fragment contributes to the diffrac- tals with dislocation walls there is a transition layer provid-
tion. The number of such contributionsli¢D. Each bound- ing a smooth rotation from one fragment to anotiefor
ary produces an average misorientat®nThe average dis- sharp “thin” walls the volume fraction of the transition layer
tance between the Laue maximums, formed by two adjacens small. For constam™ the number of sharp “thin’ dislo-
fragments isA = (Q/ky) ®. If this distance exceeds the aver- cation walls does not alter the total misorientation. However,
age FWHM, of the Laue image for each fragment along thewhen the walls are not well developed, as in the case of
¢ axis, the Laue spots spliFig. 3. If almost all dislocation 25%-5% of the total number of dislocations grouping within
walls are unpaired, the following criterion can be used: the walls[Figs. 4a) and 4b)], the opposite condition is true,
( 00 ) h=D. Here, each fragment still contains many randomly
K= .

——— (11)  distributed dislocations and has a large FWHMhis results
Ko FWHMy in overlapping of the spikes and the total FWidkte large.
If K<1, the intensity distribution of the white-beam reflec- For a relatively large number of walls, the scattering from
tion is continuous. IK>1, the white-beam reflection is split each fragment blends together. For higher resolution mea-
into separate spots. The intensity profile along the streak corsurements, a larger number of separate spots can be detected
sists of several spikes. within a streak, as observed experimentally. This simulation
illustrates that observed splitting of a white-beam reflection
E. Comparison of Laue patterns from grains with (hkl) into spots erenQS on.th(.e following para‘f“et?r& d.en-
random dislocations to Laue patterns from grains sity of excess dlsilocatlo'ns inside the wall, mlsorlentauop
with boundary dislocations angle created by dislocation subboundary, number of walls in

the irradiated volume, size of a fragment, size of scattering

Unpaired boundary and individual dislocations can have,q;;me and the experimental resolution function. With

either similar or distinctive effects on the Laue pattern. BOthhigher resolution the experimental intensity distribution re-

organizations of dislocations result in streaking of Laue res o015 more spikes. The results of simulated scattering by

flections. The same orlentfanon of GNDS and GNBs corre eneral dislocation structurésa’/hen some fraction of dislo-

sponds to Fhe same direction .Of strgakmg. .Howelver, .GI\.‘Dgations is grouped into the walls and some of them are ran-

cause continuous and GNBs dlscontlnuc_)us Intensity dlsF”budomly distributed in the inner regionsare illustrated in the

tloqs alqng the streak. Due to local strains, individual dlslo-next section.

cations mflugnce the Iepgth of the streak more than the same Based on the analysis above we can make the following

number of dislocations in a boundary. Moreover, the FWHM A

: N . . generalizations:

in the narrow direction of the streak is most strongly influ-

enced by individual dislocations and can be used to separate * If n*L>0.1Jnl, the intensity of scattering with white

boundary dislocations from the ones inside the fragment. Fomicrobeam diffraction is mainly influenced by the unpaired

better separation of unpaired boundary and individual disloGND and GNB (related to correlated deformations of the

cations, the white x-ray microbeam intensity should be dif-lattice). For example, this condition is valid f=1 um, n

ferentiated with respect tik|. It can be done by scanning =10"cm 2, andn®=n. In this case, FWHN&>FWHM,

the incident x-ray energy with an incident beam monochro-and the inherent energy weighted integral is representative of

mator. the key features of(q). It is also possible to analyze the
To understand the main features of white-beam scattemain features of the unpaired dislocation structure of the

ing from crystals with various dislocation arrangements, wematerial.

simulated the intensity of scattering by crystals with different < In the opposite case, FWHM FWHM, and the inten-
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FIG. 4. Simulated intensity profiles along the Laue streaks with various groupings of the dislocations into walls separating the fi@yrbenist all
dislocations group into the wallgb) 25% of all dislocations group into the walls; ae) 75% of all dislocations group into the walls. The numbers of
fragments are indicated on the left side of the figure.

sity distribution is almost isotropic. Here, the intensity of solidification is resisted by colder surrounding metal, result-
scattering measured in a white microbeam experiment is signg in the appearance of stres$8ghese stresses may par-
nificantly influenced by the total dislocation density in bothtially relax by plastic deformation. As shown in the Laue
directions. In this case, a detailed knowledge of intensitypatterns(Figs. 5—7, welding of polycrystalline Ir is accom-
distribution in three-dimentioned3D) reciprocal space is panied by local plastic deformation as well as by residual
necessary to adequately understand the dislocation structuigress. Microbeam-Laue diffraction reveals pronounced
For this case the white x-ray microbeam intensity should beireaking of the Laue images from grains in the heat-affected
differentiated with respect tiko|. o zone. The plastic response of the material in the heat-affected
* When the observable intensity variations are measur;one can be described by the formation of geometrically nec-
able along the streaki(>1), the dislocation structure must osqn 1y gisiocations that appear in the material to relax the
be predomlnantly restricted by u+npa|red Qilslocatlon Wa”Sstress field induced during welding and subsequent cooling.
I\?vrerglr?%hir’:les with some number™ of unpaired GND be- In face-centered-cubic crystals, typical edge dislocation lines
' “run” parallel to the direction 0f(112) with Burgers vectors

 For the same number of dislocations the FWHsAn parallel to the directioq110» and with corresponding glide
differ b to~50%d di the hi hical -
merby up to o depending on the hierarchical arrange planes{111}.1%1" There are 12 such systems for each crystal

ment ofn™. )
grain.

Laue images were made of different grains in the weld
and in the heat affected zone and the orientation matrix for

The microbeam-Laue technique was applied to a comeach grain was determined. In the center of the weld, Laue
plicated dislocation structure arising from plastic deforma-spots are sharp indicating that there is no residual plastic
tion in an Ir weld. Contraction of molten weld metal during strain. In the heat-affected zone, large grains are observed

V. PLASTIC DEFORMATION NEAR AN IRIDIUM WELD
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(13,9 ©,1.3) 013 | ' FIG. 5. Experimental(@ and simu-
1,3,7) ¢13.9) 370 13.9) lated (b) Laue patterns from Ir weld in

= . B the heat-affected zone.
gi.35) a Experiment 113.5) b Simulation

with significant deformation. Experimental and simulatedleast some of the GNDs are grouped into dislocation walls
Laue patterns are shown in Fig. 5. The orientation of thdforming geometrically necessary boundaries. The presence
grain surface normal presented in Figa)5was almost par- of at least two pronounced GNBs separating three fragments
allel to[013]. In order to determine the orientation matrix of in the irradiated volume is observed. Based on the analysis of
the grain more precisely, we chose three sets of three diffeexperimental Laue spots we determined the misorientation
ent reflections and determined the orientation matrix for eaclangles between scattering fragments. These angles were then
set. The final orientation matrix was obtained by averagingused as input parameters for the simulation. The best fit was
over those several sets. To understand the shape of the esbtained with simulations using three scattering fragments.
perimental Laue images and to check the sensitivity of théThe density of GNDs can be estimated by fitting the whole
Laue image to different possible orientations of dislocationsexperimental Laue pattern as well as separate Laue spots by
we have chosen four reflections closest to the center of thethe simulated oneéFig. 7). The contour map and intensity
Laue pattern(1,3,9, (1,3,9, (0,1,3, and (—1,3,9 for this  profiles along the and v directions of the streak are shown
grain in the heat-affected zofiEig. 5@ ]. We simulated their in Fig. 7(a) for reflection(135. Assuming same dislocation
Laue images corresponding to 12 different slip systems ofiensity and orientation of the activated slip system in each
the primary GNDs(Fig. 6). The 12 most likely edge dislo- scattering fragment, we have simulated the whole 3D inten-
cation systems for this grain in the sample contribute distinctity portrait of several Laue spots and compared the simu-
patterns to the beam spread. Analysis of those images indiated intensity profiles along and perpendicular to the streak
cates that only three of the slip systems give images that afgith the experimental ones. After that, the best-fitting param-
close to the experimental one. Further analysis is performegters for dislocation density, orientation of the slip system,
by simulation of the whole Laue pattern and separate Laugxact positions, and misorientation angles through GNBs be-
spots for the above three possible slip systems. The qualitaween scattering fragments were determined. Those misori-
tive and quantitative difference between the different diS|O-entation ang|es between the central and neighboring frag_
cation systems allows identification of the active dislocationments are equal to 0.25° and 0.35°, respectively. With the
system[Fig. 5b)]. It has Burgers vectab=[011], disloca- same set of parameters, we have recalculated both the whole
tion line 7=[211], and slip planen=(111). We note that the Laue pattern[Fig. 5b)], contour map for(135 reflection
intensity profiles of virtually all Laue spots are discontinu-[Fig. 7(b)], and fitted the narrow and long slides along this
ous, indicating the presence of GNBs. According to the EglLaue spofFigs. 71c) and 7d)]. As a result, we have obtained
(12), such a profile corresponds to the criterifm-1. At  a good fit to the experimental data. A transition from one
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\ \ spots near the central part of the Laue
\ ‘ / ‘ pattern for the 12 most likely slip sys-
e 01T \ o tems defined by the Burgers vector
\ ’ [9’1_’1] / oo, / b=[01] a | b0l and dislocation liner. One Laue im-
7=[2,1]] T=[211] T=[21]] ‘ 7=[2,L1] age labeled with spot identification.
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in materials. Plastic deformation, which results in a primary
set of unpaired dislocations and dislocation walls produces
elongated streaks in the Laue image that can be used to de-
termine the dislocation density. The shapes of the intensity
profiles along and perpendicular to the streak of the Laue
spot allow for separation between unpaired random disloca-
tions and unpaired dislocation boundaries. The predominant
slip systems of the 12 most likely can be identified because
of their distinctly different streaking of the Laue patterns.
Misorientations of a heat-affected grain near a welded Ir
joint were analyzed in terms of the dislocation and disloca-
tion wall distribution and the operating slip systems.
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