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Abstract

The performance of the LSDACU functional—in particular, the quality of the ground-state—is tested via calculations of the electron–hole

excitations of NiO, which are compared with (non-resonant) inelastic X-ray scattering (IXS) and ellipsometry measurements. The dynamical

density-response calculations are performed within the random-phase approximation (RPA), defining an LSDACU/RPA density-response

method. A significant success of this method is the insight it provides into the main loss present in the IXS data above the NiO optical gap, namely,

a peak lying at w7.5 eV. This excitation, which is shown to be collective in nature, and to be induced by eg–eg transitions, provides a direct link

between the correlated eg-states and the IXS data. This finding illustrates the power of IXS, combined with correlated-band-structure theory (here,

LSDACU theory), for the investigation of the electronic structure of strongly correlated materials. At the same time, our results indicate that the

LSDACU/RPA response method does not represent a complete theory.

q 2005 Elsevier Ltd. All rights reserved.
The Hohenberg–Kohn–Sham density-functional theory

(DFT) [1,2] provides the most successful framework available

today for the evaluation of the ground state density—and, thus,

of ‘everything else’ pertaining to the ground state of an

interacting many-electron system—from first-principles. Key

to the enormous impact of DFT on condensed-matter physics is

the remarkable (a posteriori) numerical accuracy of the

simplest, non-trivial, approximation for the exchange-corre-

lation energy functional, namely, the local-density approxi-

mation (LDA) [3].

Now, it is well known that the LDA (or its spin-polarized

version, the LSDA) fails qualitatively in the description of the

electronic and magnetic properties of strongly correlated

materials. The reason for this failure is easy to visualize.

Materials such as transition metal oxides and heavy fermion

systems feature ions with incomplete d or f shells, respectively;

the strong atomic-like correlations, which control the physics
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of the electrons in these shells, are, by definition, not treated

properly by the LSDA functional, as the same models the

correlations in terms of a locally homogeneous electron gas—

which represents the extreme opposite limit vs. the case of

localized electrons in the incomplete shells.

Among several methods which have been tailored for ‘going

beyond’ the LSDA non-perturbatively the self-interaction-

correction (SIC) method [4,5] (typically implemented starting

from LSDA), and the LSDACU method [6–10], stand out.

(We say ‘non-perturbatively’ in the sense that the treatment of

atomic-like correlations recognizes at the outset the strongly

inhomogeneous environment of the partially filled shells.) Here

we confine our attention to the latter method, which has proved

quite popular in recent years [11].

In this paper, after a brief overview of the LSDACU

method, we recall some essentials of the (formally exact)

dynamical density-response method provided by time-depen-

dent density-functional theory (TDDFT) [12,13]. This sketch

of the theory helps visualize the fact that the use of LSDACU

orbitals and eigenvalues amounts to a physically motivated

TDDFT-like incursion into the strong-correlation problem, and

its manifestation via electron–hole excitations on an energy

scale of the key ‘parameter’, i.e., the Hubbard U. Our approach,

which relies on the use of the random-phase approximation for
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the electron dynamics, defining what we refer to as LSDACU/

RPA method, is good enough to provide insight into the most

intriguing feature of the IXS data for energy transfers above the

NiO ‘optical’ gap. At the same time, our results highlight the

limitations of the LSDACU/RPA method.

We stress at the outset that in our comparison of theory with

experiment, we will not be suggesting that we may determine

‘the’ value of U which may be appropriate for the q-dependent

electron–hole excitation process; we will argue that such

procedure (which has been adopted by other authors in related

work [14]) is, in general, ‘risky,’ without a proper inclusion of

the U in the dynamics.
1. Theoretical essentials

The basic physical idea behind the LSDACU method is to

insert Hubbard-like physics on top of the LSDA. In essence, as

in the Anderson model, we start out by separating electrons into

two subsystems: localized d-like or f-like electrons, for which

the interactions are described by a ‘Hubbard U,’ and

delocalized s and p electrons, which can be described by

LSDA.

In order to account for the Coulomb interactions between

the localized electrons we introduce the model Hamiltonian

Ĥ Z
U

2

X
m;m0;s

n̂m;sn̂m0;Ks C
ðUKJÞ

2

X
msm0;s

n̂m;sn̂m0;s: (1)

We take it as a given that appropriate localized orbitals,

characterized by quantum numbers m, s (the latter referring to

the spin projection) can be identified. In Eq. (1) we have

denoted by n̂m;s the operators for the occupation numbers for

these orbitals. The Coulomb energy U and the exchange

interaction J are viewed as adjustable parameters. (The

‘Hubbard U’ can be calculated from first principles within

LSDA using constrained DFT techniques [15]; such ‘first-

principles’ value provides guidance as to ‘reasonable’ values to

be used in the LSDACU method. This point is retaken below.)

The above Hamiltonian is treated via a Hartree–Fock

decoupling, which is a reasonable approximation for the

subspace spanned by the localized electron states, i.e., we set

hĤi Z
U

2

X
m;m0;s

nm;snm0;Ks C
ðUKJÞ

2

X
msm0;s

nm;snm0;s; (2)

where nm;sZ hn̂m;si are orbital-dependent occupation numbers.

The LSDACU energy functional is then written in the form

ELSDACU Z ELSDA C hĤi; (3)

which is further augmented by adding a term (not shown here)

which corrects for double-counting of the correlations already

built into the LSDA; several approximate forms for this term

are available [10]. (Note: Eq. (3) is not quite the full form of

ELSDACU; nonetheless, the above sketch illustrates the main

ideas. For details, the reader is urged to consult Refs. [6–10].)

We emphasize that the main justification for the use of the

LSDACU functional is that we are introducing qualitatively

correct many-body physics—e.g., the suppression of charge
fluctuations due to atomic-like correlations. This is beautifully

illustrated by Fig. 2 of Ref. [16]. At the same time, by

construction, the occupied and empty states within the

subspace of localized orbitals are shifted relative to each

other, which drives the formation of the gap (this is the job

performed by U). Significantly, the full complexity of the

hybridization between d-like states deriving from the cation,

and p-like states derived from the oxygen atoms is treated on

the same footing with the above many-body effect, leading to

an unbiased treatment of the charge-transfer process which sets

the energy scale for the actual gap.

The LSDACU functional has been tested successfully

many times in recent years, by comparing predicted ground-

state observables such as magnetic moments (see, e.g., Refs.

[9,17]) vs. experiment. Such exercise represents an ab initio

test of the LSDACU functional. Frequently, the performance

of the functional, and the quality of the underlying ground

state, is assessed in terms of spectroscopic observables, such

as photoemission line shapes. In this context, it should be

noted that the eigensolutions of the LSDACU functional are

expected, on intuitive grounds, to be closer to physical

quasiparticle states than is the case for Kohn–Sham states.

However, the significance of the LSDACU ‘orbitals’ does

not follow uniquely from a well-defined many-body

approximation for the electron self-energy (an effort has

been made to link the LSDACU picture to the GW

approximation of many-body physics [10]).

In the present work, we use another approach for testing the

LSDACU functional (or any other functional, for that matter),

i.e., by benchmarking its performance via predictions for the

spectrum of electron–hole excitations. What is significant

about this approach is that the quantity we calculate, the

dynamical density-response function, is linked exactly, in the

Born approximation, to experimental cross sections for

inelastic X-ray scattering (IXS) [18], for which we present

new, state-of-the-art measurements. Our approach probes in

detail electronic degrees of freedom which are summed over in,

for example, the magnetic moments. In addition, we have

access to the full richness of the quantum-mechanical phase

space for electron–hole excitations, which in conventional

optical measurements are probed in a much-more restricted

way; in fact, we present new ellipsometry measurements to

drive this point across. Our analysis is here confined to the case

of NiO, a time-honored archetype of a Mott–Hubbard (more

properly, charge-transfer) antiferromagnetic insulator.

Our calculations are framed in the spirit of time-dependent

density-functional theory (TDDFT) [12,13], which constitutes

a formally exact generalization of DFT for the description of an

interacting, many-electron system evolving in the presence of

an external, time-dependent potential vextððx; tÞ. In the linear-

response regime, in TDDFT we introduce the dynamical

density-response function for interacting electrons via the

equation
c½n0�ððxt; ðx 0t 0Þ Z
dn½vext�ððxtÞ

dvextððx
0t 0Þ

vext½n0�
;

�� (4)
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where the functional derivative is evaluated at the ground-state

potential—which is one-to-one with the ground-state density

n0, according to DFT [19]; note that from this observation it

follows that the dynamical c is a functional of n0 (we will in

general omit explicit reference to this functional dependence of

c) [20]. TDDFT allows us to introduce a similar definition for

the density-response function cs[n0] for uncorrelated (Kohn–

Sham) electrons (the functional derivative is now taken with

respect to the potential vsððx; tÞ in which the Kohn–Sham

electrons evolve). Invoking the elegant one-to-one mappings

which are central to the TDDFT method, leads to the rigorous

result (first proved by Petersilka, Gossmann and Gross [21])

that the density-response function obeys the exact integral

equation (which we write down symbolically)

c Z cs Ccsðv C fxcÞc; (5)

where the so-called many-body kernel fxc, which accounts for

all dynamical correlations between electrons and holes, is

defined by the equation

fxc½n0�ððxt; ðx 0t 0Þ Z
dVxc½n�ððxtÞ

dnððx 0t 0Þ
jn0
: (6)

In this paper, we confine ourselves to a random phase

approximation (RPA) description of the dynamics, which

corresponds to ignoring the many-body kernel, i.e., we set fxcZ
0. This approximation, when combined with the use of

LSDACU ground states in the evaluation of cs, turns out to

be quite successful, by comparison with the IXS experiments

reported herein; insight as to why this is so, is provided below;

at the same time, we will present clear indications as to the

limitations of the method. (For recent successful implemen-

tations of this scheme for metals and oxides which do not fall in

the strongly correlated category, see Refs. [22,23,24], where

some details are given as to the construction of cs from the

knowledge of the Kohn–Sham band structure and orbitals,

which we evaluate within the full-potential LAPW method

[25]).

The use of the LSDACU functional raises a conceptual

issue which must be addressed, namely, the Bloch eigensolu-

tions of the LSDACU functional are not Kohn–Sham states.

Thus, strictly, we are not in a position to evaluate a Kohn–

Sham response function cs on the basis of the LSDACU band

structure and ‘orbitals.’ (An implementation of the LSDACU

method via the optimized-potential method of TDDFT [26]

would lead to a strict realization of the above TDDFT response

theory, as the eigensolutions would then be Kohn–Sham states;

this observation suggests a direction for future efforts.) In brief,

the approach adopted here embodies the evaluation of a

physically motivated density-response function obtained via a

TDDFT-like scheme from the knowledge of the LSDACU

ground state, combined with RPA dynamics. We refer to this

scheme as LSDACU/RPA. (Our ‘pragmatic’ approach was

actually hinted at above when we noted [20] that cs[n0] is a

functional of the ground-state density (this is an implicit

functional dependence via the Kohn-Sham orbitals); that

observation, coupled with the fact that the LSDACU

functional provides a good approximation for the ground-
state density (and magnetic moment) of NiO [9,10], underlies

our scheme—which admittedly relies on the assumption that

the orbitals coming out of the LSDACU ground state

calculation are meaningful, in the present context.)

The theoretical framework is completed by recalling that the

differential cross section for a process in which a hard X-ray

undergoes a single scattering event [19], with transfer of

energy Zu and momentum Zðq is given by [18]

d2s

dU du
Z

ds

dU

� �
0

Sððq;uÞ; (7)

ðds=dUÞ0Zr2
0ððei$ðefÞ

2uf =ui being the Thomson cross sec-

tion, where r0 is the ‘classical electron radius’ (r0Ze2/mc2),

and the remaining variables refer to the polarization vector and

frequency of the incident (‘i’) and scattered (‘f’) photons.

In Eq. (7) we have introduced the dynamical structure factor

Sððq;uÞ, which, making use of the fluctuation–dissipation

theorem, can be expressed as

Sððq;uÞ ZK2ZV Im c ðG; ðG ððqK ðGÞ; (8)

in terms of the (Fourier transform of) the density-response

function c. Eqs. (5), (7), and (8) embody a ‘first principles’

approach for testing the interplay between electronic structure

and IXS data. We emphasize that this comparison involves no

ad hoc assumptions, such as conjectures about the nature of the

final state (often introduced in the analysis of, e.g. photoemis-

sion), or arbitrary scale factors.

Having made the previous point, it is important to expand a

little on a related issue, which leads to a meaningful

comparison with the IXS data—namely, this comparison is

done in absolute units. In effect, we note that in Eq. (8) V is the

volume of the macrocrystal on whose sides we apply periodic

(Born–von Karman (BvK)) boundary conditions. Clearly, Sððq
;uÞ is an extensive quantity. In practice, the thermodynamic

limit is realized for sufficiently large BvK volumes; in that

case, any residual (numerical) dependence of Sððq;uÞ on V is

gone, and the only such dependence is via the overall factor of

the BvK volume V; this can be checked [27] via calculations

for denser and denser meshes—which define a new V in each

case. We can then (i.e., for sufficiently dense k-meshes) define

a dynamical structure factor per unit volume, by pulling the

factor V from the above result, i.e.,

sððq;uÞ ZK2Z Im c ðG ; ðG ððqK ðGÞ; (9)

thereby defining a scattering cross section per unit volume,

1

V

d2s

dU du
Z

ds

dU

� �
0

sððq;uÞ: (10)

In the results presented below, it is sððq;uÞ which is

evaluated from the solution of Eq. (5), and also measured via

IXS (as noted shortly)—which amounts to a comparison in

absolute units. This feature of our method sets the stage for an

unbiased identification of physical processes.



0 2 4 6 8 10 12

0.000

0.002

0.004

0.006

s(
q,

ω
) 

(e
V

-1
Å

-3
)

ω (eV)

q// [111]

q=1.0 Å-1

q=1.25 Å-1

q=1.5 Å-1
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Fig. 1. Comparison of the measured sððq;uÞ for NiO for jðqjZ1:0 AK1, with ðq
along [111], with results for the same observable calculated on the basis of

LSDA and LSDACU (for UZ8 eV) ground states. The comparison (as in all

other figures) is in absolute units. See text for details.

A.G. Eguiluz et al. / Journal of Physics and Chemistry of Solids 66 (2005) 2281–22892284
2. Experimental

Non-resonant inelastic X-ray scattering measurements of s

ððq;uÞ were made for momentum transfers perpendicular to !
001O and !111O-oriented NiO single crystals on the

UNICAT ID-33 beamline at the Advanced Photon Source

(APS) at Argonne National Laboratory. The measurements

were made using incident beam energies of 7.59 keV, for

which the 111 Si high heat-load monochromator provided

incident beam powers of w1012 Hz. Together with a

spherically bent Ge !111O analyzer in near backscattering

geometry, the overall energy resolution of the measurements

was w1.1 eV. The quasi-elastic scattering tails near DEZ0

were removed using measurements made with a wide band-gap

insulator. The measurements of sððq;uÞ were reduced to

absolute units (eVK1 ÅK3) using the first-moment, f-sum

rule calibration of the IXS system for Al [28]. As described in

detail in Ref. [28], the scale factor for measurements on NiO is

obtained directly from the scale factor for Al by multiplying by

the ratio of the mass absorption coefficients.

The optical functions of NiO were determined from

ellipsometry measurements using a two-modulator generalized

ellipsometer (2-MGE) [29] from 220 to 840 nm (5.64–

1.476 eV). The surface roughness of the sample was

determined by modeling the near-surface region as a Brugge-

man effective medium [30] with 50% voids and 50%

underlying material, and by modeling the optical functions of

NiO using a Lorentz oscillator [31]. Using the determined

surface roughness thickness (7.2 nm), the entire ellipsometric

spectrum was used to determine the refractive index (n) and

extinction coefficient (k) of NiO as described in [31].

3. Results and discussion

We start with reference to Fig. 1, which contains a key

message, at the outset. The figure shows the measured sððq;uÞ

for a representative wave vector transfer, together with two

calculations of the same quantity (Eq. (9)), obtained starting

from LSDA and LSDACU ground states, respectively, from

which cs was evaluated, and the response c was subsequently

obtained by solving the integral Eq. (5) within RPA [32]; in the

case of LSDACU ground state, this is that we referred above

as the LSDACU/RPA method. The LSDACU-based calcu-

lation here corresponds to the choice UZ8 eV, which is the

value suggested by constrained-DFT calculations

(implemented in LSDA) [15].

Fig. 1 highlights in a striking way the qualitative failure of

the LSDA description of the electronic structure of NiO.

Indeed, the LSDA-based spectrum not only displays the well-

known problem of the size of the optical gap, but the whole

line shape of sððq;uÞ is completely off, containing spurious

peaks. By contrast, the LSDACU-based sððq;uÞ works

remarkably well (other than the exaggerated value of the

calculated electron–hole gap), which argues in favor of the

quality of the underlying LSDACU electronic structure. This

message will be emphasized further in the remainder of this

presentation.
Fig. 2 shows the experimental sððq;uÞ covering a range of

wave vector transfers along the [111] direction. It is apparent

that the dominant feature above the w4 eV optical gap is a loss

lying at w7.5 eV. Interestingly, the spectral weight of this loss

depends rather markedly on wave vector transfer; in fact (not
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shown in Fig. 2), the loss is not observed for small qs, and is

diminished for qs larger than about 2 ÅK1.

The central issue contained in Fig. 3 is that the sððq;uÞ

calculated within LSDACU/RPA for UZ8 eV reproduces the

IXS data faithfully, for all three wave vectors. We will argue,

on the basis of Figs. 4–8, that this agreement is rooted on the

physics of the 7.5 eV excitation, i.e., the agreement is not

‘accidental.’ This will allow us to conclude that

the experimental data of Fig. 2 measure (indirectly) the
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Fig. 4. LSDACU-calculated DOS (left panel) and JDOS (right panel) for the minorit

text, these states provide the crucial electron–hole channels from which the 7.5 eV

electronic structure corresponding to UZ8 eV.
LSDACU electronic structure of Fig. 4 which corresponds to

UZ8 eV. (Consistent with this, it is self-suggestive that the

LSDACU/RPA spectrum obtained in Fig. 3 for UZ5 eV, a

value which we consider in this paper for illustrative/

pedagogical purposes, clearly mis-represents the physics

contained in the data of Fig. 2.)

In Fig. 4, we display what turns out to be the key subset of

the electronic structure of NiO which is at stake in the present

argument. The same refers to minority eg states, for which the

left panel shows the density of states (DOS), and the right panel

shows the joint density of states (JDOS). The fact that the

minority states are favored in this argument in place of the

majority states is traced to the fact that the former provides a

more abundant supply of empty states. Incidentally, note that

this statement illustrates the fact that our investigation probes

the empty states on the same footing with the occupied states,

thus providing a ‘one shot’ investigation of the whole

correlated-band structure in the vicinity of the optical gap.

Fig. 5 shows the dielectric function of NiO for one of the

qs relevant in Fig. 2 (actually, the figure displays the ðGZ0,
ðG
0
Z0 element of the dielectric matrix; the same contains the

main physics, in the present case). The feature, which

dominates the physics contained in Fig. 5 for q along [111]

is the sizeable hump (structured peak) in Im 3. It is important

to notice that the same correlates well with the corresponding

eg–eg feature in the JDOS (Fig. 4) which is obtained for UZ
8 eV. (Note that this is consistent with the statement made in

the previous paragraph about the subset of the electronic

structure shown in Fig. 4 providing the crucial electron–hole

channels.) Now an Im 3 with this lineshape determines, by the

structure of the Kramers–Kronig relation, a Re 3 whose

energy dependence is dominated by the pronounced ‘wiggle’

observed in Fig. 5 —and this wiggle occurs in the energy

interval relevant in Fig. 2.
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Minority spin
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y Ni-derived eg states. Results are presented for UZ8 and 5 eV. As argued in the

loss feature of Fig. 2 originates. The IXS data of Fig. 2 is consistent with the
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A dielectric function with a lineshape as that of Fig. 5 is

known to be a good candidate for bringing about a well-defined

peak in the inverse dielectric function [18]—without the need

for the existence of an actual zero in Re 3. Since the inverse

dielectric function is proportional to Im c, such peak (if it is
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Fig. 6. Dielectric function of NiO calculated on the basis of the LSDACU band

structure (and in RPA) for UZ5 eV. See text for details.
realized) translates into a loss peak in sððq;uÞ, according to Eq.

(9). This is precisely what comes out of the full LSDACU/

RPA calculations (via Eq. (5)), as seen in Fig. 3, in excellent

agreement with the IXS data of Fig. 2. Thus, the contribution

from the eg–eg electron–hole ‘channels’ of Fig. 4 to the
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Fig. 8. Same as Fig. 7; here we record the calculated peak position vs. U

together with the energetic position of the IXS peak (w7.5 eV). The fact that

the peak position calculated for UZ8 eV agrees with experiment, coupled with

the ‘collective’ nature of the loss (see text) and in view of the apparent absence

of strong beyond-RPA features in the data of Fig. 2, leads us to conclude that

the IXS data discriminates in favor of the electronic structure shown in Fig. 4

for UZ8 eV.
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Fig. 9. Comparison between calculated and measured sððq;uÞ for wave vector

transfers directed along [001]. Note that the IXS data does not feature the

7.5 eV loss which dominates the data for [111] (Fig. 2). See text.

Fig. 10. Comparison between the calculated (in RPA) dielectric function of

NiO, in the optical limit, with our ellipsometry data; for completeness, the

reflectivity-derived data of Ref. [36] is also shown. This figure (as Fig. 7, in the

case of IXS data) illustrates the dependence of the LSDACU-based result on

the choice of U. See discussion in text.
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response function induces the formation of a collective mode,

whose energy happens to be w7.5 eV!

Significantly, as is observed in Fig. 6, the dielectric function

which obtains for UZ5 eV has the eg–eg peak in the ‘wrong

energy’, i.e., it lies too low (we are still referring to qs directed

along [111]; we will discuss propagation along [001] below).

This leads to a collective mode in sððq;uÞ lying at w6 eV,

which is clearly in disagreement with experiment (Fig. 3).

Moreover, the additional fine structure in the Im 3 of Fig. 6 is

spurious, as is also concluded from Fig. 3. This fine structure is

traced directly to the enhanced structure in the DOS for the

occupied eg states of Fig. 4 (this enhancement is relative to the

electronic structure for UZ8 eV). Thus, the IXS data of Fig. 2

act as a sensitive arbiter of the quality of the electronic

structure of Fig. 4. The verdict is that the IXS data support the

LSDACU electronic structure which obtains for UZ8 eV.

This message is further illustrated in Figs. 7 and 8. In the

former, we show the sððq;uÞ calculated for several values of U

in the neighborhood of the value suggested by constrained

LSDA calculations, UZ8 eV. It is apparent that the energy

location of the ‘collective’ feature is quite sensitive to the

underlying choice of U and the ensuing electronic structure—

which as our analysis shows, manifests itself ‘cleanly’ via the

sððq;uÞ it generates. This conclusion is further emphasized by

the results of Fig. 8.

It should be borne in mind that the above conclusions were

reached within our RPA description of the electron dynamics.

We submit that the same is expected to be reliable, given the

(apparent) absence of strong many-body (beyond-RPA)

features in the IXS data of Fig. 2 (these effects would include,

e.g., strong modification of the lineshape near the gap, which

could be imputed to the many-body kernel fxc).

Now the success of the LSDACU functional reported thus

far notwithstanding, additional results, contained in Figs. 9

and 10 suggest that the LSDACU/RPA response method does

not represent a complete theory.

Let us consider Fig. 9 first. In it we show IXS data for sððq;uÞ

corresponding to three wave vector transfers directed along the

[001] direction, together with the results of LSDACU/RPA

calculations. It is apparent that the spectra calculated for UZ
8 eV do not do as well as they did in Fig. 3. We interpret this

situation as follows. The reason that UZ8 eV turned out to

work in Fig. 3 is that in that case the loss spectra are controlled

by the collective mode at 7.5 eV, whose physics is in turn

controlled by the “global” energy location of the eg–eg

electron–hole channels displayed in Fig. 4. As discussed

above, the LSDACU functional for UZ8 eV happens to place

these excitation channels in the correct energy location, as

monitored by the IXS data (more conventionally, this would be

argued on the basis of photoemission and inverse-photoemis-

sion measurements [10]). By contrast, the loss spectra for qs

along [001] are controlled by fine structure in the correlated

band structure, and the same is hard to reproduce on the basis of

a one parameter functional.

One may still ask why it is that LSDACU/RPA theory for

UZ8 eV yields a collective mode for qs along [001], while the

same is not present in the IXS data in Fig. 9 (this discrepancy is
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most evident in the spectrum for qZ1.5 ÅK1). We believe that

the answer is as follows. As Fig. 5 makes clear, the matrix

elements which control how the JDOS (which ‘measures’

exclusively the availability of electron–hole channels) ‘propa-

gates’ into Im 3, clearly enhance the actual eg–eg excitation

process, for qs along [111], vs. qs along [001]. This trend is

clearly in agreement with the experiment—it is consistent with

the nature of the IXS data in Figs. 3 and 9. In fact, this

enhancement is behind the success story of RPA dynamics we

have for qs along [111]. (Ultimately, this behavior of the

matrix elements is determined by overlaps between the lobes

for eg electron and hole orbitals.) Unfortunately, the matrix

elements do not suppress completely the ‘remnant,’ weak eg–eg

modulations in Im 3 for qs along [001]; the upshot is that in the

RPA these weak transitions still manage to yield the loss peak

present in the calculated sððq;uÞ of Fig. 9. We stress that actual

calculation shows that the strength of the calculated loss in

Fig. 9 is significantly enhanced by the crystal local fields

(matrix nature of cs); thus, the full analysis is not trivial.

Now, since the underlying electronic structure for UZ8 eV

has already been validated by our previous discussion, we

submit that beyond-RPA effects, which in our TDDFT-like

picture will be introduced by fxc, must be important in the case

of Fig. 9 (presumably, for UZ8 eV); in other words, such

many-body effects should ‘erase’ the impact on the sððq;uÞ of

Fig. 9 of the weak structure in Im 3 for q along [001] (Fig. 6).

This would not be too surprising, as these ‘excitonic’ effects are

known to compete with the crystal local fields[33,34].

Consider, finally, Fig. 10, which refers to the optical limit

[35]. First of all, we note that the dielectric functions obtained

from our ellipsometry measurements deviate rather markedly

from the dielectric functions of Powell and Spicer [36], which

were obtained by Kramers–Kronig analysis of normal-

incidence reflectivity measurements. Discrepancies between

(more accurate) ellipsometry-derived measurements and

reflectivity-derived dielectric function measurements are not

unusual. These discrepancies result from the fact that in

ellipsometry, Re 3 and Im 3 are obtained directly from the

measurement of parameters, while normal-incidence reflectiv-

ity dielectric function measurements involve Kramers–Kronig

integration with extrapolations to zero energy and to infinite

energy to obtain convergence. Going back to the performance

of theory, what stands out in Fig. 10 is how poorly the spectrum

calculated for the ‘ab initio’ value [15] of the on-site

interaction, UZ8 eV, does.

In fact, and for the sake of the present discussion, we note

that the LSDACU/RPA optical spectrum would appear to be

‘optimal’ for UZ6 eV. But, as spelled out at the outset, here we

are not advocating using the results of Fig. 10—and the

previously discussed IXS data as well—to ‘pin down’ a

‘physical’ value of U. On the contrary, the ellipsometry data, in

conjunction with the IXS data, highlight the limitations of a

response framework, the LSDACU/RPA, in which the strong

atomic-like correlations are controlled by a single parameter

(the Hubbard U).

At this point, it may be useful to note that this situation is

similar to the well-known example of the photoemission
spectrum of Ni [37]. In that problem, the simple Hubbard

model is able to account for the existence of the 6 eV satellite

peak—a hallmark of strong hole–hole correlations—and for

the reduction in the exchange splitting (relative to single-

particle theory). However, if the value of the Hubbard U is

chosen in such a way that the theory reproduces the satellite

structure, the description of the splitting worsens—and vice

versa [37].

Moreover, accepting our premise (put forth earlier in this

paper) that it is meaningful (at least qualitatively) to reason à la

TDDFT, it is entirely possible that a numerical exercise such as

the one illustrated in Fig. 8 is not very consequential. Indeed, it

is likely that such comparison is hiding the effects of bona fide

dynamical correlations, due, e.g. to the electron–hole attrac-

tion. A full assessment of the performance of the LSDACU

functional is thus expected to require the inclusion of such

physics, which would introduce the U into a non-trivial fxc.

This is why we do not subscribe to the strategy of papers such

as Ref. [14], which concluded that on the basis of the

reflectivity data of Ref. [36], one could adopt the value UZ
5 eV for optics. Interestingly, such conclusion has been

endorsed in Ref. [38], which sends the message that the same

is sound. By contrast, and to reiterate, from Fig. 10 (and earlier,

from Fig. 9, which covers a larger phase space) we submit that

LSDACU/RPA theory is not a complete theory; the role of U

in the dynamics must be included before we can engage in

general recommendations as to what value of U may work

‘universally’ (i.e., for the whole phase space) for a given

material—and, as noted above, a single parameter theory may

not be enough, for the entire electron–hole phase space.

This conclusion is not contradictory with our conclusion

drawn earlier, on the basis of the IXS data of Fig. 2, namely,

that the IXS data supported the UZ8 eV electronic structure

depicted in Fig. 4. As argued at length on the basis of Figs. 4–8,

the signature of the electronic structure of Fig. 4 built into

Fig. 2 arises via the collective excitation featured in the IXS

data. That physics is not present in, e.g., the optical data.

In summary, the sððq;uÞ predicted on the basis of the

LSDACU/RPA method, for the constrained-LSDA value of U

(UZ8 eV) is in excellent agreement with the IXS data of

Fig. 2. Moreover, because of the collective nature of the

measured loss, and the fact that the same provides a direct

mapping of the electronic structure depicted in Fig. 4 for UZ
8 eV, we conclude that the IXS data of Fig. 2 discriminate in

favor of the corresponding electronic structure. We also stress

that this result illustrates the merit of IXS, in combination with

correlated-band-structure theory, for the investigation of the

electronic structure of strongly correlated materials. A

complete theory would need to go beyond LSDACU/RPA in

several directions; most importantly, we have argued

that beyond-RPA effects are likely to play a significant role

in Figs. 9 and 10.
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