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Abstract

Advanced polychromatic microdiffraction is sensitive to the organization of dislocations and other defects that rotate the lattice planes.

Using ultra-brilliant third-generation synchrotron sources and non-dispersive X-ray focusing optics, it is now possible to analyze individual

dislocation cells and walls at a submicron scale that cannot be probed by traditional methods. The method is applied to an Ir weld sample to

illustrate how microdiffraction can be used to determine the locally active dislocation system.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Polychromatic X-ray microdiffraction offers a funda-

mentally new approach to the study of mesoscale dynamics

in polycrystalline materials [1–3]. As a polychromatic X-ray

beam penetrates a sample, it produces a Laue pattern from

each subgrain that it intercepts (Fig. 1a). The method has

major advantages over traditional monochromatic diffrac-

tion for micron and submicron scale spatial resolution

because no sample rotations are required and the depth at

which the scattering originates can be resolved through

a newly described differential aperture microscopy tech-

nique [2].

In addition to providing precise information on the phase,

grain orientation and morphology of polycrystalline

materials, polychromatic microdiffraction is sensitive to

elastic and plastic strain. As illustrated in previous papers, the

deviatoric or full elastic strain tensor can be recovered from

single and polycrystalline materials with X-ray micro-Laue

methods [2–4]. It has also been shown previously that

quantitative information on the number and kind of unpaired

random dislocations can be recovered from streaking in the

Laue images [5]. A general kinematic treatment of
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polychromatic X-ray scattering by crystals with dislocations

was presented in Ref. [5]. Here we summarize the key

features of the earlier paper and extend the approach to cases

where the dislocations are organized into dislocation walls.

With this formalism, the diffraction from plastically

deformed materials with random unpaired dislocations,

dislocation walls or combinations of unpaired dislocations

and dislocation walls can all be modeled. Welded sample

grains show interesting deformation that depends on the

thermal history of a grain and on the local boundary

conditions. Previous studies of deformation have been

attempted in these materials based on Electron Backscatter

Diffraction (EBSD) methods [6], however, until recently,

non-destructive three-dimensional analysis of plastic defor-

mation with micron resolution was not possible for bulk

materials. Here we illustrate how the 12 most likely

dislocation systems produce distinctive streaking in a

polychromatic microdiffraction image and how the measured

streaking can be used to quantitatively determine the local

deformation tensor of a subgrain volume in an Ir weld.
2. Multiscale dislocation structure

It is known that plastic deformation involves several

structural levels [7]. At the first level, there are individual
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Fig. 1. Experimental set-up for white beam Laue diffraction.

Fig. 2. Models of crystals with different arrangement of unpaired

dislocations: a—randomly distributed individual unpaired dislocations;

b—randomly distributed tilt dislocation walls; c—randomly distributed tilt

dislocation walls with randomly distributed individual unpaired dislo-

cations in inner regions.
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dislocations in the volume with typical size l1:
ffiffiffiffiffiffiffi
nK1

p
O l1Ob

(where n is dislocations density, b is Burgers vector). As a

result of the strong interaction between dislocations, a

random dislocation distribution becomes unstable and forms

a correlated dislocation arrangement with screening radius l2
due to grouping of dislocations into dislocation walls. Some

fraction of the dislocations may remain randomly distributed

and the rest form various correlated dislocation and

disclination arrangements. The size of the second structural

level is defined by equation: Dcell O l2O
ffiffiffiffiffiffiffi
nK1

p
and typically

on the nano-scale. Neighbouring cells are usually separated

by ‘so called’ incidental dislocation boundaries (IDBs). The

typical distance between adjacent IDBs defines the cell size

(Dcellw50–500 nm). The next structural level involves

fragments. Fragments with the size Dfr contain cells with

approximately the same crystallographic orientation DfrO
l3ODcell. Geometrically necessary boundaries (GNBs)

separate two fragments. For crystals with unpaired tilt

dislocation walls (GNBs or IDBs), X-ray diffraction spots are

broadened in proportion to the number of excess dislocations

inside the wall and to the total number of unpaired walls.

The next structural level l4 is related to the typical grain

size Dgr: DgrOl4ODfr. At the macroscopic level l5 with

typical size l5O10Dgr individual defects are ignored and

solids can be treated as continuous media with some elastic–

plastic properties.

Classic X-ray methods usually average over a large

number of grains and give ensemble-average information

related to the 3rd or 4th structure level. With white-beam

microdiffraction it is possible to quantitatively analyze a

sample at all structure levels described above. In particular,

it is now possible to analyze details of structure correspond-

ing to nano- and mesoscopic levels. No other probe can

study such a wide range of length scale.

We wish to model the influence of deformation structure

on X-ray microdiffraction images. We adopt the concept of

cell-block structure first introduced by Mughrabi et al. [8]

and further developed in a number of papers (see for

example Ref. [9]). We restrict ourselves to models where

the unpaired edge dislocations have one of three organiz-

ations: (1) random geometrically necessary (unpaired)

dislocations (GNDs); (2) unpaired geometrically necessary

boundaries (GNBs) formed by thin dislocations walls; (3)

GNB’s separating regions with incidental dislocation

boundaries (IDB) and individual geometrically necessary
dislocations (GNDs). A sketch of these structures is

presented at Fig. 2.

Consider the set of edge dislocations illustrated in Fig. 2.

Dislocations from this set have Burgers vectors, bi, parallel

to the X-axis and dislocations lines, t parallel to the Z-axis.

For an equal number of random ‘Cb’ and ‘Kb’

dislocations, the average deformation tensor is negligible.

Broadening of the diffuse scattering is induced by random

local fluctuations in the unit cell orientations and d spacing

that tend to cancel out over long length scales.

To describe the distribution of dislocations, we introduce

the number ct. It can take two values:

ct Z
1; ðCÞ

0; ðKÞ
:

(

If there is a dislocation in the position t, the corresponding

number ctZ1, and in positions without dislocations ctZ0.

Each edge dislocation creates a displacement field with

displacement uit of the i-th scattering cell in the plane XOY

perpendicular to its line. The projections of the displace-

ment vector in this plane for the simple case of elastically

isotropic crystals, are described by the following equations

[10,11].

ux Z
b

2p
tanK1 y

x
C

xy

2ð1 KmÞðx2 Cy2Þ

� �
(1a)
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uy ZK
b

2p

1 K2m

2ð1 KmÞ
lnðx2 Cy2ÞC

ðx2 Ky2Þ

4ð1 KmÞðx2 Cy2Þ

� �
(1b)

Here m is Poisson’s ratio. The total displacement of the

i-th cell ui is due to superposition of all dislocations and is

defined by the equation [12]

ui Z
X

t

ctuit (2)

The tensor of dislocation density rtn has indices t that

specify the crystallographic direction of the dislocation line,

and the index n that specify the Burgers vector direction. For

a general set of dislocations with dislocation density r0, line

directions parallel to the plane normal lmn, and Burgess

vector l 0m 0n 0 we write the tensor of dislocation density as,

rtn Z

roll0 rolm0 roln0

roml0 romm0 romn0

ronl0 ronm0 ronn0

0
B@

1
CA (3)

For unpaired edge dislocations as shown in Fig. 2a,

tZ(001), nZ(100) mean deformation tensor has only two

non-zero components uxyZKuyxZnCbx. We note that this

distortion field is antisymmetric and represents a pure

rotation about the Z-axis that increases with displacement in

x. Other systems of edge, screw or mixed dislocations can be

similarly treated, but for the following discussion we restrict

ourselves to edge dislocations.

In real crystals individual GNDs tend to group into walls

to reduce the stored energy [8–12]. Consider a structure with

geometrically necessary randomly distributed tilt dislo-

cation boundaries (GNBs) (Fig. 2b). Each wall provides a

rotation between two neighboring mosaic blocks around the

line of the wall. The unit vector u parallel to the rotation

axis of each wall coincides with the unit vector t along the

dislocation lines in the case of a tilt boundary. We consider

pure tilt boundaries formed by equidistant edge GNDs

(so called ‘thin walls’). These boundaries do not produce

long-range elastic strain but generate subgrain rotations.

The remaining stresses in the GNB region are periodic with

a wavelength b*ZbcscQ/2. These stresses are only

appreciable at distances shorter than within b* from the

GNB [10]. If h is the distance between these dislocations in

the wall, one can consider the boundary as a single defect

producing the local rotation field Q. The misorientation

angle Q due to the boundary is defined by the equation

b=hZ2 sin Q=2 where b/hzQ for small angle GNB’s. To

characterize this model quantitatively we define the average

distance D between GNBs and write the number of GNBs

per unit length as 1/D. The total density of GNDs grouped in

the GNBs is denoted by nCZ1=Dh. We define an axis X

perpendicular to the plane of the wall, and an axis Z parallel

to the direction of dislocation lines in the wall. For this

coordinate system, (Fig. 2) two non-zero components of the

mean deformation tensor are equal: uxyZKuyxZQx/D.
This mean deformation tensor again results in pure rotations

about the Z axes. The rotations increase with displacement

in x. The number of GNBs per unit length and the length of

the crystal in the X direction determines the total rotation of

the lattice.

Generally, real crystals contain a hierarchy of dislocation

structures. Some of the GNDs are distributed randomly, and

the rest may form different non-random arrangements: IDBs

and GNBs. It has been found that dislocation boundaries

evolve within a regular pattern of grain subdivision on two

scales [8–12]. The smaller scale is related to cell boundaries

called incidental dislocation boundaries (IDBs). These

boundaries exist within larger scale boundaries called

GNBs (Fig. 2c). IDBs may be paired or unpaired. GNBs

are larger scale typically unpaired or have larger

misorientations.
3. Laue diffraction by nano- and meso-scale dislocations

structure

3.1. Formation of Laue Image

In traditional white-beam Laue diffraction, a continuum

spectrum is diffracted by a single crystal (or single grain)

[13]. The crystal scatters the beam into a characteristic Laue

pattern that depends on the crystal space lattice, its

orientation and the incident-beam energy distribution

(Fig. 1). Each characteristic reflection hkl is scattered

specularly from the crystal planes hkl, which allows the

planar orientations with respect to the incident beam to be

determined directly. The initial spectral distribution can be

described by I0(k) where (kZjk0j). In reciprocal space

the exact positions of regular reflections (hkl) are related to

the orientation, space lattice and of the real-space unit cell

size. The momentum transfer corresponding to a Bragg/

Laue reflection we define as, GhklZkhklKk0, where (jk0jZ
jkhkljZk). Here k0 is the incident wave vector and khkl is the

scattered wave vector that satisfies the Bragg/Laue con-

ditions. The diffuse scattering intensity depends on the

deviation qZQKGhklZkKkhkl between the diffraction

vector QZkKk0, and the momentum transfer Ghkl for a

Laue reflection. For each wavelength, the center of the

Ewald sphere (C) and the origin in reciprocal space (O) are

separated by the distance 1/l. This distance is different for

each reflection hkl and corresponds to different Ewald

spheres; this complicates the analysis for polychromatic

beams. We write the Laue equation in a manner that takes

into account the spectrum of l in the beam. Pixel positions

on the CCD are converted into q space (sample basis) using

the geometrical calibration parameters of the CCD rela-

tively to the incoming beam (distance, center channel, tilts

of detector). Indexing provides the unit cell orientation with

respect to a model basis. A rotation matrix is then used to go

from the sample to the unit cell basis. In non-distorted

crystals each Laue reflection with incident beam k0
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and the diffracted beam khkl determine the direction of

Bragg plane normal Ghkl [4,14,15]. The Bragg plane normal

and 2w angle for each reflection are fixed and compared to

possible pairs of indices for crystal structure. To simplify

the computation for indexing, we project the reciprocal

lattice directions onto the qx, qy plane. This projection, as

opposed to a more standard stereographic projection, is used

for the analysis of experimental results in Figs. 4, 5.
3.2. Streaking of Laue spots due to unpaired dislocations

and dislocation walls

Dislocations change the diffraction conditions and

enlarge the region of high intensity around each Bragg

position. The region of high intensity around each reciprocal

lattice vector Ghkl in Laue geometry IL is a function of a

misorientation vector mZ k̂K k̂hkl. The misorientation

vector m gives the difference between the unit vector

parallel to Bragg reflection (h,k,l) and an arbitrary direction

in its vicinity. Within this approximation, the resulting

intensity distribution by the deformed crystal in the white

microbeam method can be written as:

ILðmÞ Z A
Ð

I0ðkÞIðqÞdk;

q Z jkhkljmt C ðjkhkljmrad CDkG=jkhkljÞ
(4)

Here jkhklj is the radius of the Ewald sphere that passes

through Ghkl, and A is a constant. Eqs. (1a) and (1b) is valid

when Dk
jk0j

/1. In the first approximation, the orientation

vector m is perpendicular to khkl. The intensity distribution

I(q) of X-ray (or neutron) scattering due to defects can be

computed from the expression

IðQÞ Z j
X

i

fi expðiQ$ðR0
i CuiÞÞj

2: (5)

Here fi is the scattering factor from an individual atom i,

with relaxed co-ordinates RiZR0
i Cui due to the presence

of defects. Here ui is the displacement from the equilibrium

positions R0
i corresponding to the crystal before

deformation defined by Eq. (2). The intensity distribution

of a crystal with dislocations may be written as follows

[5,12,16].

IðqÞ Z f 2
X

i;j

eiq$DeKT T Z nS
X

t

1 KeðiQ$ðuitKujtÞÞ (6)

Here f is the average scattering factor; DZR0
i KR0

j is the

distance vector between the lattice cells i, j in the

undistorted virtual crystal; S is the area of one dislocation

in a transverse plane; n is the total dislocation density, and

nS is a dimensionless quantity that indicates the fraction of

lattice sites covered with dislocations. The correlation

function T differs for different dislocation arrangements. In

the most general case it contains both real and imaginary

parts. If all dislocations are paired, the imaginary part is

equal to zero and the correlation function T is real. If there
are unpaired (GND) dislocations the function T contains

both real and imaginary parts.

The correlation function T, can be expanded with respect

to small displacements and has both real and imaginary

parts. The first term T1 is imaginary and is linear with

respect to x and nC. The real part of the correlation function

T2 is the same as for paired dislocations:

T1 ZKiC1

X
l

nC
l ðRi$blÞð½Q � Rij�tlÞ;

T2 Z C2ðQbÞ2 ln L
X

l

nl4l

(7)

Here C1, C2 are the contrast factors, l is the number of

the dislocation slip system, L is the size of the subgrain (or

the cut off radius), fl is the orientation factor for each

dislocation system. From the structure of this equation it

follows that dislocations parallel to the diffraction vector do

not contribute to the function T1 and do not influence the

intensity of scattering (contrast factor C1 for these

dislocations is zero). T1 describes the influence of mean

distortions due to randomly distributed individual GNDs.

For an equal number of random ‘Cb’ and ‘Kb’

dislocations the broadening of the diffuse scattering is

induced by random local fluctuations in the unit cell

orientations and d spacing that tend to cancel out over long

length scales. Due to the character of the displacement field

around edge GNDs, displacements occur only in planes

perpendicular to the direction of dislocation lines t. As a

result, coherence is not changed along the direction t, and

the diffuse intensity in this direction is the same as for

crystals without dislocations. Perpendicular to t, the diffuse

distribution is roughly symmetric with a characteristic full

width at half maximum (FWHM) dependent on the total

dislocation density n: FWHM f
ffiffiffi
n

p
. For GNDs (Fig. 2), the

diffuse scattering distribution relates the distortion tensor,

uij, due to GNDs, nC, to the dislocation density and system

(direction t, and Burgers vector b). For tjjZ and bjj to X

there are only two non-zero components of the mean

deformation tensor: uxyZKuyxZnCbx. We note that this

distortion field is antisymmetric and represents a pure

rotation about the Z axis that increases with displacement in

x. Arbitrary systems of edge or screw dislocation can be

similarly treated, but for the following discussion we restrict

ourselves to edge dislocations.
3.3. Splitting of Laue spots

If the distance between GNBs is sufficiently large, the

reflection becomes discontinuous. To understand this

dependence, we assume that along the penetration depth

L the X-ray beam intersects several fragments with average

size Dfr. Each fragment contributes to the diffraction. The

number of such contributions is equal L/D. Each boundary

produces average misorientation Q. The average distance

between the Laue maximums, formed by two adjacent



Fig. 3. Model (top) and simulated intensity profiles (bottom) for split Laue reflections diffracted from two fragments for two extreme values of the criterion (8):

(a) continuous distribution (K!1), (b) Spot splits into separate spikes (KO1).

Fig. 4. Experimental (a) and simulated (b) Laue patterns from Ir weld in the

heat affected zone.
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fragments is DZ ðQ=k0ÞQ. If this distance exceeds the

average FWHMfr of the Laue image for each fragment along

the x axis, the Laue spots split. If almost all dislocation walls

are unpaired, the following criterion can be used:

K Z
QQ

k0FWHMfr


 �
(8)

If K!1, the intensity distribution of white beam

reflection is continuous, if KO1 the white beam reflection

is split into separate spots. The intensity profile along the

streak consists of several spikes. With higher resolution the

experimental intensity distribution reveals more spikes

(Fig. 3). The results of simulated scattering by general

dislocation structures (when some fraction of dislocations is

grouped into the walls and some of them are randomly

distributed in the inner regions) are illustrated in the next

section.

Unpaired boundary and individual dislocations can have

either similar or distinctive effect on the Laue pattern. Both

of them result in streaking of Laue reflections. The same

orientation of GNDs and GNBs correspond to the same

direction of streaking. However, GNDs cause continuous

and GNBs discontinuous intensity distributions along the

streak. Due to local strains, individual dislocations influence

the length of the streak more than the same number of

dislocations in a boundary. Moreover the FWHM, in the

narrow direction of the streak is most strongly influenced

by individual dislocations and can be used to separate

boundary dislocations from the ones inside the fragment.

For better separation of unpaired boundary and individual
dislocations, the white X-ray microbeam intensity should be

differentiated with respect to jk0j. Scanning the incident X-

ray energy with an incident beam monochromator can do

this. The differentiated results provide a true 3D volume in

reciprocal space as opposed to a 2D projection of line

integrals as with a simple Laue pattern. The results of

simulated scattering by general dislocation structures (when

some part of dislocations is grouped into the walls and some

of them are randomly distributed in the inner regions) are

illustrated in the next section.
3.4. Multi-scale dislocation structure near an Ir weld

The microbeam-Laue technique was applied to a

complicated dislocation structure arising from plastic

deformation in an Ir weld. As shown below (Figs. 4

and 5) welding of polycrystalline Ir can be accompanied by



Fig. 5. (a) Three dimension representation of (013) Laue spot; (b) contour map; (c) three profiles parallel to streak direction x; (d) three profiles perpendicular to

x illustrating bunching of the intensity into several spikes.
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local plastic deformation as well as by residual stress [17].

Microbeam-Laue diffraction reveals pronounced streaking

of Laue images in the heat affected zone. The plastic

response of the material in the heat affected zone can be

described by the formation of geometrically necessary

dislocations (GNDs) that appear in the material to relax the

stress field induced during welding and subsequent cooling.

In FCC crystals, typical edge dislocation lines ‘run’ parallel

to the direction of h112i with Burgers vector parallel to

the direction h110i and with corresponding glide planes

{111} [10].

Laue images were made at different grains in the weld

and in the heat affected zone. In the center of the weld, Laue

spots are sharp indicating that there is no residual plastic or

elastic strain. In the heat-affected zone large grains are

observed with significant deformation. Experimental and

simulated Laue patterns are shown at Fig. 4. The orientation

of the grain surface normal presented at Fig. 4a was almost

parallel to [013]. To understand the shape of experimental

Laue images and to check the sensitivity of the Laue image

to different possible dislocation orientations, we have

chosen four central Laue spots for one of the grains in the

heat-affected zone (Fig. 4). We simulated their Laue images

corresponding to 12 different slip systems of the primary

GNDs. The 12 most likely edge dislocation systems for this

grain in the sample contribute distinct patterns to the beam

spread. The qualitative and quantitative difference between

the different systems allows for identification of the active

dislocation system (Fig. 4b). It has Burgers vector bZ ½01 �1�
dislocation line tZ[211] and slip plane nZ ð �111Þ. The

density of GNDs can be estimated by fitting the experimen-

tal Laue pattern by the simulated ones. A transition from one
dislocation network to another is observed at various

positions in the weld. The intensity profiles of virtually all

Laue spots are discontinuous indicating the presence of

GNBs. The 3D portrait, contourmap and several intensity

profiles along X and Y directions of the streak are shown in

Fig. 5 for a reflection (013). According to the Eq. (8) those

profiles corresponds to a case when the criterion Kw1. At

least some of the GNDs are grouped into dislocation walls

forming geometrically necessary boundaries (GNBs). The

presence of at least two pronounced boundaries separating

three fragments in the irradiated volume is observed.

Misorientation angles between the central and neighboring

fragments are w0.25 and 0.358, for the left and the right

fragment, respectively.
4. Summary

X-ray microdiffraction with broad-bandpass X-ray

beams provides a powerful new tool for the study of plastic

deformation in materials at nano- and mesoscopic levels.

Plastic deformation with a primary set of unpaired (GND)

dislocations results in elongated streaks in the Laue image

that can be used to determine the dislocation density.

Different slip systems cause a distinctly different streaking

of Laue pattern. The intensity profile in different directions

of the streak allows for separation between unpaired random

dislocations, and unpaired dislocation cell walls and GNBs.

The orientation and density of the primary dislocation

systems are determined for a grain near a welded Ir joint.

Misorientation created by each sub-boundary as well as

average size of each fragment was determined at local scale.
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Modeling of local plastic deformation is now needed to

understand the mechanisms driving the observed dislocation

structures.
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