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Abstract 

 
The grouping of point defects into clusters, microscopic pores, coherent precipitates, 
dislocation loops and other organized structures, changes the character of the local strain 
field and results in a redistribution of diffuse scattering intensity. 
The diffuse scattering depends on both the local and the average lattice distortions. The 
average distortion is described by the static Debye-Waller factor exponent 2W. For point 
defects typically 2W<<1. Grouping of point defects increases this value and eventually 
results in conditions where 2W>>1. Diffuse scattering distributions for different ranges 
of static Debye-Waller factor are considered.  
 

Introduction 
 

A qualitative classification of defects with respect to their influence on reciprocal space 
has been developed by Krivoglaz [1]. This classification is based on an analysis of the 
static Debye-Waller Factor (DWF) exponent, We 2− . Defects can be described as 
belonging to one of two kinds: 
 
Defects of the 1st kind: In crystals with defects of the 1st kind, the intensity from the 
Bragg peaks is redistributed into broad diffuse intensity. In addition, the Bragg peaks 
remain sharp like those of perfect crystals, but become weaker and can be displaced from 
their reciprocal space location without defects. For this reason, both the Bragg and 
Diffuse scattering can be simultaneously observed in the diffraction pattern. Usually, the 
intensity of the diffuse component DI  increases and the intensity of the Bragg component 

0I  decreases with defect concentration c. 
 
Defects of the 2nd type: In crystals with defects of the second kind, long-range spatial 
correlations of atomic sites are lost and the Bragg term becomes meaningless. Sharp 
Bragg reflections of perfect crystals are replaced by Broad peaks which can be 
anisotropic in reciprocal space. Typically broadening increases with defect concentration. 



Whether a defect is of the 1st or 2nd kind depends on the behaviour of the DWF at large 
distances ( ∞⇒ρ ). It should be noted that DWF has a complicated dependence on the 
details of the distortion fields near a defect. As a first approximation, 
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Here ∞T  is the correlation function for defects at large distances ( ∞⇒ρ ), c is the 
concentration of defects, F is the structure factor of the average crystal, Q  is the 
momentum transfer for certain (hkl) reflection, tssu '  is the difference between 
displacements  in two scattering cells  s and s’  caused by the defect located in the 
position t, and stϕ  and ts 'ϕ  describe structure amplitude changes of scattering cells  s and 
s’ caused by the defect located in the position t. We note that for dislocations, changes in 
structure amplitudes are small and the behavior of the 2W depends mainly of the 
asymptotic behavior of the displacement field created by the dislocation. With defects 
there are two possibilities: 2W is either finite at large distances or 2W tends to infinity at 
the large distances. It was shown [1, 2] that if the displacements fall off faster then 

2/31 r , then the value 2W is finite, and the defects belong to the 1st kind. If the 
displacements decrease lower then 2/31 r , then the value ∞⇒W2 , and these defects are 
of the 2nd kind. 
 
In this study we report the diffuse scattering analysis of coherent precipitates which are 
defects of the 1st kind (Fig. 1). As described above, these defects cause diffuse scattering, 

)(QDI , that exists together with regular (strong) Bragg reflections, )(QBraggI  [1, 2].  
 

 
Figure1. Model of the concentration distribution around a precipitate with a sharp 
boundary (a), and strain filed (b) in the vicinity of the precipitate. 
 



The Bragg positions are displaced relative to the ideal positions of the matrix without 
precipitates. The analysis of the diffuse scattering differs for the case of small values 

12 ≤W  (weak distortions) and large values 12 >>W  (strongly distorted solids). Many 
examples of the diffuse scattering analysis for crystals with defects of the 1st kind are 
described in the literature [1 - 20]. When 12 ≤W  it is often possible to use a single defect 
approximation in the isotropic matrix [4-8]. In many cases when 12 >>W  and even 

1~2W the overlapping strain fields interact and single defect approximation cannot be 
used any more. We will follow the approach [1, 2] which gives the possibility to handle 
the overlapped strain fields in the matrix. 
The intensity distribution I (q) of x-ray (or neutron) scattering due to defects can be 
computed from the expression: 
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Here fi is the scattering factor from an individual atom i, with relaxed co-ordinates 
Ri= ii uR +0  due to the presence of defects. Here ui is the displacement from the 
equilibrium positions 0

iR  corresponding to the undeformed crystal. We calculate the ui 
using continuum elastic theory. 12 kkQ −=  is the diffraction vector with 1k and 2k  being 
wave vectors of the incident and scattered x-rays. 
 

Experimental Details 
 
Diffuse scattering measurements were made using bending magnet radiation at beamline 
33-BM-C of the Advanced Photon Source. 22 keV x-rays were selected using a sagitally 
focusing double crystal Si (111) monochromator. A pair of Rh-coated mirrors was used 
to eliminate harmonics and to focus the beam meridionally. The focal spot was ~0.6 mm 
in diameter. 
Thermal diffuse scatter was suppressed by cooling the samples to ~6 K using a closed-
cycle He refrigerator. Compton scattering and x-ray fluorescence were resolved from 
elastic scattering using an energy-dispersive Vortex™ Si drift detector. Incident x-ray 
flux was monitored using an air-filled ion chamber. Slits were used to define the 
instrumental resolution. Resolution varies with scattering angle and slit dimensions; at 
low angles the resolution was 0.0012 Å-1 in the radial and 0.0024 Å-1 in the transverse 
direction; far from the Bragg reflections, the slits were widened to increase signal. 
Reciprocal space units are λθπ /sin4=Q  where Q is the momentum transfer, θ  is the 
Bragg angle, and λ  is the wavelength. Ti filters were used to reduce the beam intensity 
near Bragg reflections so the detector was not saturated.  
The samples were needle shaped (10mm × 0.5mm diameter) ternary Ni-Al-Si alloys with 
a 11.9 %Al and 2.1%Si corresponding to the boundary region between the γ solid 
solution and ordered Ni3Al-based γ’ phase with L12 structure. The sample was quenched 
and stress annealed. The direction of the stress was along [100] direction and coincided 
with the needle axes.  

 



Results and Discussion 
 
Shape function of the precipitate 
 
Scattering by inhomogeneous solid solutions with precipitates is described by Eq. (2). We 
consider the following simple model: 
Ordered precipitates with long- range order parameter η  and with sharp (but coherent ) 
boundaries formed in the disordered matrix (Fig. 1). We assume an average precipitates 
size D0. The shapes of the precipitates are assumed to be the same. We use the shape 
function which was first introduced by Ewald [1]. 
 
Let us describe the shape of the precipitates (P) with shape function  
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The diffuse scattering intensity in weakly distorted crystals can be then re written: 
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Here )(QDa  is the amplitude of scattering. )(QDa  can be calculated by means of 
approximation the sum by an integral over the whole space: 
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Here the summation over s in the last expression for )(r∞Y  is performed over the lattice 
sites of the infinite ideal lattice with δ -functions in each lattice site Rs. This means that 

)(r∞Y  is a periodic function. In the integral for )(QDa  this function )(r∞Y  is multiplied 
by shape function s(r) equal 1 inside the crystal and 0 outside it. This allows integration 
over the whole sample volume. The amplitude of scattering )(QDa is written as a Fourier 
transform of the product )(r∞Y and s(r). We take into account that the Fourier integral of 
the product of two functions is determined as a convolution of Fourier integrals of those 
two components: 
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Here s(q) is Fourier integral of the shape function: 
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integration over dk as well as over dr is performed over the whole space. 
 

 
Scattering by weakly distorted matrix with precipitates 
 
In weakly distorted solids the DWF exponent 1~2W . Consider a simple model of 
similar randomly distributed precipitates, with a minimal size of 0R , straining the cubic 
matrix due to the size misfit. In the immediate vicinity of the reciprocal lattice point when 
the condition 

0

1
Rq << is valid, the strain induced distortions in the cubic matrix, 

follows a 2/1 r  dependence, 
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Here C is the force constant of the precipitate and r is the distance from the precipitate. 
Precipitate induced strain, changes the intensity of scattering. Moreover the structure 
factor pF  of a precipitate differs from the structure factor of the matrix. If precipitate and 
matrix have the same structure and are coherent (the difference of structure factor can be 
defined as pFFF −=∆ . Strain induced changes of the scattered intensity are typically 
coupled with the structure factor induced changes. This is the case of FCC Ni-based 
alloys with L12 Ni3Al- based precipitates. 
In the vicinity of the matrix reciprocal lattice points the diffuse scattering intensity can be 
written as: 
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Here v  is a unit cell volume; Np is the number of precipitates in the probed volume, qA  
depends on the Fourier transform of the precipitate induced strain in the matrix. For cubic 
precipitates in the cubic matrix  
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Here ijLδ is a self deformation tensor of the precipitate; D is a function of matrix 
anisotropy parameter,ξ , elastic moduli tensor components, 441211 ,, CCC  and direction in 
the reciprocal space q/qn = . Other qA  components can be similarly written. 
In the following discussion, three different cases will be distinguished: (a) strain induced 
scattering; (b) structure factor induced scattering; (b) coupled strain and structure factor 
induced scattering. 
At larger distances from the ideal reciprocal lattice point 

0

1
Rq >>  and diffuse 

scattering intensity drops off faster, for instance for spherical precipitates, as 4
1

q . We 



use the change of this q dependence of intensity to estimate the size of the coherent 
precipitate. 
 
Diffuse scattering by solids with coherent precipitates near the superlattice peak 

 
If precipitates have significantly larger elastic moduli then their matrix (as in the case of 
ordered L12 type Ni3Al based γ’ precipitates) then they usually create strong distortion 
fields in the surrounding matrix, while in the precipitates themselves the strain level is 
low. In this case and assuming no correlation between the precipitates, the diffuse 
scattering intensity around the superlattice peaks can be written as 
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Figure 2. Logarithmic map of intensity around the superlattice (010) reflection. 
Normalized intensity profiles along and transverse to the diffraction vector are shown on 
both sides of the map. 



where αpN  is a number of α type precipitates in the probed volume, AlNiF
3

 is a structure 

factor of the superlattice reflection. In this case, ( )QDI  has a maximum at Q=G’ , (Q is 
the diffraction vector and G’ is a reciprocal lattice vector of the superlattice site ) and 
depends only on the shape function of the precursors of the regions with long range 
correlation ( ) 2qαs . Eq. (10) for ( )QDI  describes an intensity distribution around the 
superlattice peak with FWHM 0/2 Dπ≈ . 
 
An experimental diffuse intensity contourmaps around the (010) superlattice reflection 
together with intensity profiles in qX and qY directions are shown in Fig. 2. Assuming that 
there is no correlation between precipitates we estimated the precipitates size from the 
analysis of superlattice reflections with small (100) type Miller indices. Intensity profiles 
were measured for four orders of similar reflections (100, 300, 500, 700) (<100> type 
reflections for both [100] and [010] directions and used to determine the size of coherent 
precipitates in two orthogonal directions. Fig. 3a shows the dependence of the FWHM of 
the <100> and <010> type superlattice reflections on the order of the reflection. The 
broadening of the superstructure reflections is insensitive to H  and is due to the small 
size of precipitates.  In the analyzed sample the precipitates size was ~92A along and 
~77A perpendicular to the stress annealing direction.  
 

 
 

Figure 3. FWHM dependence on H: (a) the <100> type (open squares) and <010> type 
(open triangles) superstructure reflections; (b) fundamental <020> type reflections (filled 
squares).  

 
 

Diffuse scattering near the fundamental reflections 
 
When the matrix is relatively weakly distorted, the DWF related to distortion fields 
around precipitates is of the order of unity: 1~)2( WExp − . The presence of coherent 
precipitates causes local lattice distortions due to the lattice mismatch between the matrix 
and the precipitate 2/~)( rCru  (with C being the strength constant of the precipitate). 
In contrast to the superstructure reflections the FWHM of the fundamental reflections 
increases with H (Fig. 3b) which is typical for precipitation induced strain broadening. 
The structure factor F also changes in the region occupied by the precipitate. Distortions 



of the lattice together with the changes of the structure factor in the volume occupied by 
the precipitate cause asymmetry of the diffuse scattering distribution around the regular  

 
Figure 4. Radial scan of intensity through (080) fundamental reflection. 

 
 

 Figure 5. The diffuse intensity for positive (open squares) and negative (open triangles) q 
values along the radial direction: (a) (200); (b) (080) reflections. 
 
 
Bragg peak positions. The intensity profile along the diffraction vector of the 
fundamental (800) reflection is shown in Fig. 4. The intensity profile is only slightly 
asymmetric. 
To emphasize the q dependence of the intensity, the diffuse intensity is scaled by q4. The 
product 4)( qqI D ×  is shown in Fig.4 for different q values in reciprocal space for (020) 
and (080) reflections. We observe that the intensity distributions for positive and negative 
q are symmetric except for the narrow central region occupied by the regular Bragg 
component (this is in contrast to the case of diffuse scattering behavior due to vacancy or 
interstitial clusters observed in [4-6]). At higher q values oscillations of the diffuse 



scattering intensity are observed. These oscillations are in line with the theoretical model 
proposed by Trinkaus [8]. It is possible to show that such oscillations should be most 
distinct for reflections with smaller H and are washed out at higher H values as is 
observed in our results (compare open squares for (200) and (800) reflections in Fig. 4). 
The size and shape of the precipitates determined from the analysis of the superstructure 
reflections were used as a input parameters for simulations of diffuse scattering 
contourmaps around fundamental reflections. Experimental and simulated maps of the 
intensity around the (800) reflection are shown in the Fig. 6. Simulations were performed 
for the model of strain fields caused by coherent precipitates in the disordered Ni-based 
matrix without correlation between different precipitates. 

 
 

 

 
 

Fig.6 Simulated (left) and experimental (right) diffuse scattering map around the 
fundamental (800) reflection. 
 

Summary 
 
Diffuse scattering around both fundamental and superstructure reflections was considered 
for solids with coherent ordered precipitated. Shape function of the coherent precipitates 
was discussed. Diffuse scattering reveals precipitation induced strain in the matrix. The 
shape of the coherent precipitates is almost isotropic with an ~ 15% elongation along the 
stress annealing direction. 
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