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ABSTRACT In the present study, the plastic behavior of the annealed HASTELLOY® 
C-22HSTM nickel-based superalloy is examined by the in-situ neutron-diffraction 
experiment at room temperature.  Monotonic-tensile and low-cycle-fatigue experiments 
are conducted to observe the plasticity behavior of tension and cyclic loading of the alloy, 
respectively.  The effects of the deformation are studied as a function of the stress, 
lattice-strains, and dislocation-density evolution.     
 
INTRODUCTION: The subject of plasticity is considered important in designing for 
materials because the consideration of plasticity is vital. Since plasticity deals with the 
materials behaviors that are beyond Hooke’s law, more information of the materials, such 
as the lattice imperfections and crystal structures, needs to be considered to describe the 
plastic deformation.  In metals, such line imperfections as dislocations are responsible for 
most of the plastic deformation.  To further understand the structure and the internal 
stresses contributed by the dislocations, Mughrabi [Mughrabi 1983] quantitatively 
studied the long-range internal stress in deformed metal crystals with the dislocation 
microstructures by the transmission-electron microscopy (TEM).  The TEM work has 
demonstrated the powerful capability to study the dislocations in solids.   However, since 
only a relatively small amount of materials is observed with thin specimens for one TEM 
experiment, the statistics of the experimental designs and the sample preparations need to 
be considered carefully.  The X-ray experiments are applied to compromise the 
disadvantages of the TEM experiments for studying dislocation structures.  For more 
details of diffraction-profile studies, Stephens [Stephens 1999], Barabash and Klimanek 
[Barabash 1999] have related it to anisotropic strain distributions caused by distinct 
dislocation arrangements and strain gradients in different grains.  Recently, Jakobsen et 
al. [Jakobsen 2006] showed the inhomogeneous nature of the plastic deformation using 
the in-situ X-ray techniques to compare the dislocation substructures with the TEM 
results.  These studies use models of different arrangements to determine the dislocation 
density from the X-ray peak-profile analysis and exhibit the important features of the 
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diffraction techniques to learn the dislocation properties during the plastic deformation.  
To utilize the advantage of the diffraction experiments on studying dislocations during 
the plastic deformation, the current study reports the in-situ neutron-diffraction 
measurements to investigate the plasticity mechanism during the in-situ neutron 
measurements of the plastic deformation. These measurements have several advantages 
for the study of the dislocations during the plastic deformation: (1) the high penetration of 
neutrons is used to reveal the bulk properties with larger gauge volumes, and, hence, 
better statistics.  (2) S
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pectrometer for Materials Research at Temperature and Stress 
(SMARTS) can conduct in-situ measurements to observe the behaviors of the 
deformation from a single specimen to eliminate the possible confounding ex-situ 
observations. 
 
PROCEDURES, RESULTS AND DISCUSSION:  The testing material is a 
HASTELLOY® C-22HSTM nickel-based superalloy (Ni-21Cr-17Mo in weight 
percentage).  After a hot-rolling process, the alloy was mill annealed at 1,080oC that 
allows for most precipitates and alloying elements to dissolve to form a faced-center 
cubic (FCC) single phase alloy according to a TEM study. There is no strong texture in 
the alloy, which is good to study the dislocation behaviors by eliminating texture and 
second-phase effects.  The average grain-size of this alloy is about 90 μm.  The gauge 
volume of the in-situ neutron measurements is 120 mm3.  These experiments were carried 
out with the SMARTS at room temperature.  The specimens were aligned 45o to the 
incident neutron beam with two detectors fixed at 2θ = ± 90o.   
  

Fig. 1 The intensity evolution for the (111) diffraction peaks in axial (black) and transverse (red) 
directions for (a) tensile and (b) low-cycle-fatigue experiments. 
 

Hence, one detector collected the diffraction data along the loading direction (axial data), 
and the other gathered the diffraction data normal to the loading direction (transverse 
data).  For the tension experiment, the strain rate is 0.001 per second.  The low-cycle-
fatigue experiments were conducted at the maximum strain (εmax.) of 1% and R-ratio of -
1.  The frequency of the loading cycle was 0.5 Hz.  The diffraction data were collected at 
different cycles during the fatigue experiment.  The measurements at the engineering 
strain of 1% with different fatigue cycles are examined. The in-situ neutron results are 
refined by the general structure analysis software (GSAS). The intensity evolutions of (a) 
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tensile and (b) low-cycle-fatigue are shown in Fig. 1.  The pseudo-Voigt function is 
applied to distinguish Gaussian and Lorentzian components of the peak widths. The peak 
widths evolutions with the true stress are shown in Fig. 2. The peak widths start to 
broaden as the plastic deformations proceeds. The dislocation density is considered in 
connection with plasticity models for tensile and cyclic deformations. The dislocation 
density is calculated as in the reference [Sun 2007] and compared with the bulk 
properties, and, hence, the neutron diffraction profiles are used to characterize the 
dislocations. 
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Fig. 2 The peak width evolution for the diffraction peaks 111, 200, 220, and 311 in axial 
directions for (a) tensile and (b) low-cycle-fatigue experiments. 
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