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The dislocation density tensor has been an important variable in the theoretical
characterization of dislocations in deformed crystals since its introduction
over 5 decades ago. However, the non-destructive, three-dimensional (3D)
measurements of lattice rotations and elastic strain needed to determine
dislocation density tensors with micron spatial resolution over mesoscopic
length scales have until now not been available. We have used 3D X-ray
microscopy with sub-micron point-to-point spatial resolution to demonstrate 3D,
spatially resolved measurements of the dislocation density tensor in elastically and
plastically deformed silicon single crystal plates. Measurements were made of the
dislocation density tensor along a line in a �35mm thick silicon plate that was
bent (elastically) to a 5.42mm radius of curvature at room temperature, and in
a similar sample deformed plastically by annealing to 700�C under bending stress.
We discuss the theoretical background for the dislocation density tensor with
respect to lattice rotation and elastic strain, we describe the X-ray microscopy
technique used to make non-destructive measurement of local rotations and
elastic strains with sub-micron resolution in 3D, and we discuss the analysis
procedures for extracting dislocation tensors on mesoscopic length scales.

1. Introduction

The present communication presents the theoretical basis for the use of X-ray
microscopy to conduct spatially resolved measurements of the dislocation density
tensor in plastically deformed crystals and reports recent progress in applying the
overall approach to deformed single crystal silicon. Crystal plasticity proceeds by the
motion and interaction of dislocations under the influence of the applied stress.
During deformation, the dislocation density increases and dislocations are organized
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into heterogeneous structures that determine the response of the crystal to the
applied load [1, 2]. An important aspect of the heterogeneity of the dislocation
density in deforming crystals is that the geometric measure of the dislocation density
in the crystal becomes nontrivial; this gives rise to lattice curvature and, in turn, the
lattice orientation changes from one point to the next, which is a well-studied aspect
of plastic deformation of single crystals [3–5]. The relationship between the geometric
measure of the dislocation density in distorted crystals and its curvature has
been studied for over 50 years [6]. In the early work, what is now called the
Nye dislocation density tensor a was introduced. Ignoring the elastic strain
in deformed crystals (e.g. in ductile materials) and considering the deformation
to be infinitesimal, Nye’s tensor is connected with the lattice curvature tensor i by:

a ¼ jT � ðtr jÞI with inverse j ¼ aT �
1

2
ðtr aÞI, ð1Þ

where iT and tri are, respectively, the transpose and trace of the tensor i, with
similar meaning for a, and I is the identity tensor. Considering infinitesimal crystal
distortion, Kröner [7] later developed a continuum theory of dislocations in which
the equivalence between the elastic and plastic measures of the dislocation density
tensor is demonstrated. This theory incorporates the contribution of the infinitesimal
elastic strain tensor e to the curvature, yielding the following modification
of equation (1):

a ¼ jT � ðtrjÞI� r � e with inverse j ¼ aT �
1

2
ðtr aÞI� e�r, ð2Þ

with eijk being the permutation symbol, ðr � eÞij ¼ eikl@k"lj and ðe�rÞij ¼ �ejkl@k"li.
The curvature tensor gives the incremental change dh in the lattice orientation along
a material element dx by the formula: dh¼dx�i. Equations (1) and (2) give the direct
relationship between the dislocation density tensor and lattice misorientation arising
during the plastic distortion of crystals. Under many experimental situations, the
lattice misorientation and, in turn, the dislocation density tensor are highly
heterogeneous. This heterogeneity is the basis for grain refinement in metals and
alloys during thermo-mechanical processing, which underlines the technological
importance of understanding the evolution of the dislocation density tensor
in deformed crystals.

The concepts of differential geometry were also used to describe the dislocations in
crystals [8–10], where a dislocation density measure was defined in the form of a third
rank tensor that is equivalently represented by its axial second rank tensor. Since then,
many publications defining the dislocation density tensor have appeared that give
different measures of the dislocation density tensor at finite deformation. These
studies have been critically reviewed in a recent publication by Cermelli and Gurtin
[11] who introduced an invariant definition of the dislocation density tensor in the case
of finite deformation and offered a consistent physical interpretation of the dislocation
tensor in the deformed and reference crystal configurations. These authors also
derived evolution equations for the dislocation density tensor and introduced a
canonical decomposition that provides a basis for interpreting its components.

The dislocation density tensor has gained further attention lately, being currently
used in gradient theories to provide a measure of intrinsic length scale and to capture
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the correct hardening behaviour of crystals [12, 13]. In the theory of small
deformation, it has been demonstrated that the dislocation density tensor can be
used to solve the internal stress boundary value problem associated with dislocations
and to capture the long-range stress field of dislocations. The earliest study in that
direction has been in the celebrated incompatibility theory of Kröner [7], which was
later followed by the Green’s function representation of the stress field of continuum
density of dislocations by other authors [14, 15]. The long-range stress field of
dislocation structures captures the elastic interactions between dislocations, which is
known to be a key factor in the kinetics of plastic deformation.

The versatility of the dislocation density tensor in characterizing plastic
distortion effects in crystals, as well as its use as a field and constitutive variable
in the modern theory of crystal plasticity, makes it important to be able to measure
the dislocation tensor experimentally. Electron microscopy has long been used
to infer information on dislocation tensors on microscopic length scales [1, 5].
Sub-micron resolution three-dimensional X-ray microscopy only now provides non-
destructive, spatially-resolved measurements of local lattice orientations and strain
tensors on the critical mesoscopic length scales of the microstructure of materials (i.e.
hundreds of nanometres to hundreds of microns) [16–18]. Detailed microstructure
and evolution information of this nature provides a quantitative – and previously
missing – link between mesoscale deformation in real materials and the results
of computer simulations and multi-scale modelling.

The present paper summarizes recent developments in the use of X-ray
microscopy to conduct 3D, spatially resolved measurements of the lattice
orientation, elastic strain and the dislocation density tensor in plastically deformed
crystals. The theoretical basis for measuring the dislocation density tensor
is presented in section 2, starting with a summary of the kinematic relationships
leading to a definition of the dislocation density tensor and its relationship with the
lattice orientation. The equivalence of the elastic and plastic measures of the
dislocation density tensor, as given by Cermelli and Gurtin [11], is emphasized for
the case of finite deformation. In section 3, recently developed 3D X-ray microscopy
techniques capable of investigating the local orientation, phase, microstructure and
elastic/plastic strain in deformed materials are discussed. Three-dimensional spatially
resolved measurements of the dislocation density tensor are presented for the cases
of elastic and plastic bending of thin, single-crystal silicon plates. The paper
concludes with comments on the use of dislocation density tensor measurements for
direct and quantitative comparisons between X-ray microscopy measurements and
computer simulations of deformation processes at the mesoscale.

2. Theoretical foundation

2.1. Deformation kinematics and definition of the dislocation density tensor

The deformation of a crystal from a reference configuration Bo to a deformed state
Bt is described by the time-parameterized mapping, where x ¼ v ðX, tÞ where x 2 Bt

and X 2 Bo are the set of all points in the deformed and reference configurations of
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the crystal, respectively. The deformation gradient is defined by F¼ @s(X,t)/@X,
which, according to Kröner [19] and Lee [20], can be expressed by the multiplicative

decomposition:

F ¼ FeFp: ð3Þ

This decomposition implies that there is an intermediate configuration of the crystal

reached from the initial state Bo through pure plastic distortion Fp, and from which

the deformed (current) configurationBt is reached through pure elastic distortion Fe.

This deformation scenario is schematically shown in figure 1, which, along with

definition (3), implies that a length element dX in the reference configuration

is mapped onto element dL in the intermediate configuration, also called the

microstructure or lattice configuration, by dL¼FpdX. Similarly, element dL in the

intermediate configuration is mapped onto dX in the deformed configuration

by dX¼FedL. The discussion here is confined to cases in which Fp represents pure

crystallographic slip by dislocation glide with no change in lattice orientation. The

polar decomposition theorem allows us to express Fe and Fp in the form:

Fe ¼ ReUe ¼ VeRe and Fp ¼ RpUp ¼ VpRp, ð4Þ

where Re and Rp are, respectively, the elastic and plastic rotations, Ue and Up

the elastic and plastic right-stretch tensors, and Ve and Vp the elastic and plastic

left-stretch tensors. In the case of dislocation glide, the plastic distortion tensor

is given by:

Fp ¼ Iþ
XA
�¼1

��s� �m� ð5Þ

Fp Fe

F=FeFp

Reference
configuration

Deformed
configuration 

Microstructure configuration 

Figure 1. Schematic illustration of multiplicative decomposition of the deformation
gradient.
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in which �� is the shear strain on the �th slip system, which has slip direction and slip
plane normal defined by s

� and m
�, respectively; A is the number of slip systems.

The time rate of change of Fp is given by:

_F
p
¼ LpFp with Lp ¼

XA
�¼1

_��s� �m�, ð6Þ

where �� is the shear strain rate on the �th slip system. In the case of dislocation glide
trace (Lp)¼ 0 and Jp¼ det (Fp)¼ 1, implying that the plastic distortion is isochoric.

Following Cermelli and Gurtin [11], there is an invariant measure of the
dislocation density tensor defined in the intermediate configuration of the crystal by:

aL ¼ Jp�1Fp CURL Fp ¼ JeFe�1curlFe�1, ð7Þ

in which Je¼ det(Fe), and CURL and curl are the curl operators in the reference and
deformed configurations, respectively. Equation (7) asserts the equivalence between
the elastic and plastic measures of the dislocation density tensor in deforming
crystals. Standard pullback and push forward operations of the dislocation density
tensor in the lattice configuration give their counterparts in the reference and
deformed crystal configurations, respectively, by:

aR ¼ JpFp�1aLF
p�T ¼ ðCURL FpÞFP�T and a ¼ Je�1FeaLF

eT ¼ ðcurl Fe�1ÞFeT:

ð8Þ

These two dislocation density measures are connected by aR¼ JF�1aF�T, with F�1

being the inverse of F, F�1 the transpose of F�1, and J¼det (F)¼ det (Fe).

2.2. Theoretical basis of dislocation density tensor measurements

The above definition of the dislocation density tensor will now be used to outline the
theoretical basis for the X-ray technique presented in section 3 for measuring the
dislocation density tensor. As this task proceeds, it is useful to keep the following
general considerations in mind: (1) the dislocation density tensor has two equivalent
definitions, one in terms of the plastic distortion field and another in terms of the
elastic distortion field; (2) the process of crystal deformation leaves behind three
signatures – lattice curvature (in the sense of changes in the lattice orientation over
differential length elements), lattice elastic strain (in the sense of distorted Bravais
unit cells of the crystal relative to its stress free state), and lattice dislocations
(defects) with variable densities in the crystal; (3) it is not possible to use these
three signatures to reconstruct the plastic distortion field in the crystal because
a dislocation density tensor field does not give rise to a unique plastic distortion field,
although the opposite is true; (4) the lattice curvatures, strains and dislocation
densities can only be measured in the deformed (i.e. physical or current) crystal
configuration; and, finally, (5) the information on lattice rotation and stretching
within the crystal resides in the elastic rotation and stretch tensors.

The X-ray microscopy technique presented in section 3 is based on the above
considerations in the sense that X-ray microscopy provides a measure of the
dislocation density tensor via spatially resolved measurement of local lattice
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orientation and elastic strain, both components of the elastic distortion field Fe in the

crystal. The theoretical basis of the technique, thus, starts out with the definition of

the dislocation density tensor in terms of elastic distortion. Associated with this

definition are two relationships: a¼ (curlFe�1)FeT, see equation (8), and

Fe
¼ReUe

¼VeRe, see equation (4). We note here that any lattice vector, such as

the lattice translation vectors, remains invariant following the plastic distortion step.

It is during the elastic distortion that these vectors are stretched and/or rotated.

In other words, Fe, or alternatively its components Re and Ue (or Ve), quantify the

transformation of the lattice vectors from the intermediate crystal configuration

to its final (deformed) configuration. These considerations are important in the

interpretation of X-ray microscopy data and lead to the four special cases discussed

below: finite elastic distortion, finite rotation with infinitesimal elastic strain,

infinitesimal elastic distortion and infinitesimal distortion.

2.2.1. Finite elastic distortion. Let the lattice rotation be expressed in terms of the
vector h¼ �w consisting of a rotation angle � about some orientation defined by the

unit vector w. Associated with this rotation is a skew second order tensor

W¼ (h�)¼ �(w�) with the vector h being its axial (or dual) vector. In component

form, W and �w are related by Wij¼ eijk�wk. The rotation tensor Re is defined by the

exponential of the tensor W¼ (h�):

Re ¼ expðWÞ ¼
X1
k¼0

1

k!
Wk ¼ cos � Iþ sin � ðw�Þ þ ð1� cos �Þ w� w, ð9Þ

where w� w is the tensor product of w with itself. Component-wise, the above

relationship is written in the form:

Re
ij ¼ cos ��ij � sin �eijkwk þ ð1� cos �Þwiwj, ð10Þ

with �ij being the Kronecker delta. On the other hand, the right-hand stretch tensor

Ue is defined in terms of the finite, symmetric lattice strain tensor E by the

relationship:

Ue ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iþ 2E

p
, ð11Þ

where the positive definite square root is considered. Experimental measurement

of the dislocation density tensor then proceeds as follows: spatially resolved

measurements of the vector h¼ �w and the strain tensor E are performed, from

which the spatially resolved values of the rotation and the right-stretch tensors are

constructed. This leads to a point-to-point construction of the elastic distortion

tensor. The definition a¼ (curlFe�1)FeT is then used to construct the dislocation

density tensor in the deformed crystal configuration. The pullback operations

aR¼ JF�1aF�T can be applied to recover the dislocation density tensor in the

reference configuration.
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2.2.2. Finite rotation with infinitesimal elastic strain. In this case, the right-stretch
tensor is approximately equal to the identity tensor and the elastic distortion tensor
is approximated by the elastic rotation tensor. That is:

Ue � I and Fe � Re: ð12Þ

This approximation is known as the elastically rigid plastic approximation, where the
inhomogeneous plastic distortion of the lattice is fully accommodated by the elastic
lattice rotation alone. The expression of the dislocation density tensor is rewritten
in the form:

a ¼ ðcurlReTÞReT; ð13Þ

where use has been made of the fact that Re�1
¼R

eT, a property of the orthogonal
tensor Re. Measurement of the dislocation density tensor when elastic strain
is negligible is straightforward: it is only necessary to perform spatially resolved
measurements of the vector h¼ �w, from which the spatially resolved rotation tensor
is constructed directly. This leads to a point-to-point construction of dislocation
density tensor according to equation (13). Again, this gives the dislocation density
tensor in the deformed configuration, which can be pulled back to the reference
configuration as given previously.

2.2.3. Infinitesimal elastic distortion. In the case of infinitesimal elastic distortion,
it is easy to show that the following equations hold:

Ue � Iþ Eþ � � �

Re � IþWþ � � �

Fe � Iþ ðWþ EÞ þ � � �

Fe�1 � I� ðWþ EÞ þ � � �

9>>>>=
>>>>;

with higher order terms omitted ð14Þ

The notation of Kröner [7] can now be established by defining the elastic part of the
displacement gradient be in the infinitesimal elastic distortion case by be¼WþE, so
that Fe�1

� I�be, which gives:

a � ½curl ðI� beÞ�ðI� beÞ � �curl be: ð15Þ

Again, higher order terms have been omitted in reaching the final expression. To
arrive at the results in (14), the summation in equation (9) has been truncated beyond
the first order. The skew tensor W is called the infinitesimal rotation tensor; it is the
skew (anti-symmetric) part of be. Also, the strain tensor E in this case reduces to the
infinitesimal elastic strain tensor e, which is the symmetric part of be. Equation (15) is
consistent with Kröner’s development of the theory of internal stresses starting from
the assumption of additive decomposition of the displacement gradient in terms of
the infinitesimal elastic and plastic distortions [7]. However, we emphasize here that
this result is valid regardless of the magnitude of the plastic distortion. In other
words, although it has been assumed that the elastic distortion is infinitesimal, this
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result does not mean that the distinction between the reference and deformed
configurations of the crystal is completely discarded because the plastic distortion
can still be finite.

The procedure for measuring the dislocation density tensor in the deformed
crystal configuration is as follows: conduct spatially resolved measurements of the
infinitesimal rotation vector h¼ �w, from which the spatially resolved infinitesimal
rotation tensor W is constructed. This, along with the infinitesimal elastic strain
tensor, leads to a point-to-point construction of the dislocation density tensor
according to equation (15). Again, this gives the dislocation density tensor in the
deformed configuration.

2.2.4. Infinitesimal deformation. The expression of the dislocation density tensor in
section 2.2.3 and the procedure for measurement of the dislocation density tensor
remain essentially valid in the case of infinitesimal deformation, with one further
consideration: the dislocation densities in the deformed crystal configuration, the
lattice configuration and the reference configuration are the same.

3. Characterization of the dislocation density tensor

As emphasized above, the dislocation tensor defined in equations (1) and (2) in terms
of lattice curvature and strain gradients is an inherently local quantity requiring
3D spatially resolved crystallographic orientation and elastic strain measurements
for its specification. The penetrating power of hard X-rays (45 keV) provides
nondestructive diffraction measurements in the interior of materials inherently; until
recently though, the needed spatial resolution in 3D has been missing. However, with
the development of high-brilliance, third generation synchrotron X-ray sources, the
availability of precision, hard X-ray, focusing mirrors and the development of
submicron resolution depth profiling techniques, the 3D spatially-resolved capabil-
ities needed to extract local crystallographic orientations, orientation gradients and
strain have now become a reality. Below, we discuss the submicron resolution 3D
X-ray microscopy technique briefly, indicate the method for performing 3D
measurements of lattice curvature and strain tensors, and provide direct measure-
ments of the dislocation tensors for the cases of elastically and plastically bend-
deformed silicon.

3.1. Three-dimensional X-ray microscopy

Submicron diameter beams of polychromatic X-rays produced by high-precision,
elliptically figured X-ray focusing mirrors have been available for some time for
performing 2D X-ray structural microscopy [21–23]. Figure 2 depicts schematically
the depth profiling extension of 2D X-ray microscopy that enables submicron
resolution X-ray microscopy measurements in three-dimensions. The ability to
choose polychromatic or monochromatic incident X-ray beams and the focusing of
the beam by crossed Kirkpatrick–Baez X-ray mirrors is shown. With the sample
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placed at the focal point of the mirrors, polychromatic or monochromatic diffraction
patterns are collected on a charge-coupled device (CCD) area detector. The critical
aspect for 3D microscopy is the inclusion of a 50 mm differential aperture (i.e. knife-
edge) platinum wire that functions as a knife-edge depth profiler.

As discussed in detail elsewhere [16, 17, 24] submicron-resolution depth-resolved
X-ray diffraction patterns are extracted from the measurements by collecting
polychromatic (white) beam diffraction patterns on the CCD as the profiling wire is
step-scanned through the diffracted beams, sequentially occluding scattering from
each depth and scattering angle. Computer collation and geometrical triangulation
analysis (performed on differences between images taken before and after successive
profiler steps) generates the source position along the microbeam of all diffracted
intensities on the CCD. Noting that the profiling wire is much closer (typically
5200 mm) to the sample than to the 24 mm square CCD pixels (located �40mm from
the sample), less than �0.1mm parallax is generated by the finite pixel sizes.
This makes the depth resolution largely a function of the wire step size. Calibration
and alignment of the X-ray microscopy system is performed by measurements on a
thin 4 mm thick, single-crystal Si plate [25].

The origin along the microbeam of the intensity in individual pixels in the CCD is
determined by triangulating from the pixel position to the wire position and then
extrapolating to the position along the microbeam. Repeating this process for each
pixel and each step of the profiler wire makes it possible to reconstruct
computationally, full diffraction patterns from submicron increments along the
microbeam penetration direction. The extraction of full Laue diffraction patterns
from submicron voxels is the fundamental basis of this X-ray microscopy technique –
full diffraction patterns imply the potential for obtaining full diffraction information
from each voxel on a point-to-point basis along the microbeam.

Each scan of the wire across the diffracted beams provides depth-resolved
measurements along the line of the microbeam in the sample; therefore, by rastering
the microbeam over a two-dimensional array in a stepwise fashion and performing
depth resolved measurements at each point of the rastered 2D array, 3D arrays
of diffraction patterns can be generated. As discussed by Yang et al. [25], depth

Figure 2. Schematic drawing of the 3D X-ray microscope facility on the XOR/UNI Sector
34 beamline at the Advanced Photon Source. The incident polychromatic undulator X-ray
beam, the insertable double crystal monochromator and Kirpatrick–Baez focusing mirrors are
all shown. The sample diffracts white (polychromatic) X-rays into the CCD area detector from
along the microbeam. The 50mm diameter Pt wire (knife-edge) profiler provides submicron
depth resolution along the microbeam.
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profiling scans requires 300–400 profiler steps (20–30min) to transit the entire CCD
for each point of the 2D area scan. Although scanning techniques are intrinsically
slow compared to full-field measurements, at present it is the only technique
providing the submicron, point-to-point spatial resolution needed for dislocation
tensor measurements. It provides nondestructive measurements of crystal structure,
crystal orientation, and elastic strain tensor measurements along the microbeam,
thus making it possible to determine the local structure, orientation, and both plastic
and elastic strain tensors with micron or submicron spatial resolution over 3D
arrays. It should be mentioned that a much faster, high-energy, monochromatic
beam 3D X-ray microscope technique exists, which employs sample rotations
to probe individual grain orientations or deformed regions in crystalline materials.
So far, resolution of only a few microns has been demonstrated [26],
so, unfortunately, the power and speed of this technique is not applicable for the
work discussed in this paper.

An example of the ability to use local orientation measurements to resolve grain
boundaries and subgrain microstructure in polycrystalline materials [25] is shown
in figure 3. This figure shows a colour-coded 3D image of the local crystallographic
orientation, where crystal grains, boundaries and sub-boundaries can be identified
with the micron resolution of the measurements. The relevance to deformation
investigations is that analogous quantitative, non-destructive microstructural
measurements performed on deformed samples make it possible to characterize
local lattice microstructure orientations and orientation gradients. 3D arrays of local
orientations and orientation gradients, in turn, provide the capability for a direct and
absolute comparison of experimental results with computational modelling and with
fundamental elasticity/plasticity theory.

Performing local orientation measurements on deformed materials is more
difficult than in un-deformed materials, of course. This is due to the quasi-
continuous nature of lattice rotations from micron-to-micron within deformation
microstructure as compared to abrupt orientation changes (often with little or no
rotational deformation) at polycrystal grain boundaries. Nevertheless, elastic strain
measurements in cylindrically bent Si plates, which have continuous curvature, were
the first submicron resolution 3D strain tensor measurements to be reported [16].
The ability to measure local crystal rotations within the plastic deformation zone
under nanoindentations in single crystal Cu [27] has been demonstrated as well.

Figure 3. False-colour, 3D X-ray microscopy image of polycrystalline grain structure in
aluminium, where the 1 mm cubed voxel sizes illustrate the spatial resolution.
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As discussed below in connection with measurements on both plastically and
elastically bent Si, continuous rotations are reflected in terms of streaked diffraction
peaks rather than sharp, round diffraction spots. Therefore, as will be evidenced
below, continuous distortions impact the precision with which local orientations and
elastic strains can be determined, depending on the spatial resolution of the
measurement, but they do not preclude such measurements in general.

3.2. Measurement of lattice orientations and strain in deformed crystals

The two limiting cases of fully elastic distortion (FP
¼ I) and elastically rigid plastic

distortion (no lattice strain) correspond to equations (11) and (12), respectively.
The first case is readily achievable in brittle materials such as Si at room temperature,
even for relatively large strains. The second case of stress-free plastic distortions is
not fully achievable even in ductile materials, but such conditions are approximated
in ductile materials at low deformation levels. To demonstrate mesoscale dislocation
tensor measurement and analysis techniques using X-ray microscopy in this paper,
we utilize both elastic and plastic deformation in cylindrically bent Si. This serves as
a test of the ability of 3D X-ray microscopy to measure dislocation tensors on
mesoscopic length scales in connection with equations (1) and (2).

Since Si is brittle at room temperature, but begins to deform plastically above
�625�C, it is possible to cylindrically deform Si completely elastically at room
temperature and it is possible to deform it (at least partially) plastically by heating
it above 625�C under bending strain and cooling to room temperature for lattice
curvature and strain measurements. These two conditions are used here to provide
access to widely differing (elastic versus plastic) strain states on which dislocation
tensor measurements can be performed.

Measurements were performed on �2-mm wide Si strips scribed and cleaved
from commercially available �35-mm thick h100i surface normal Si wafers. Several
such Si strips were bent (elastically) into the shape of arches at room temperature and
maintained in this configuration by constraining their ends within a 12.5-mm wide
slot in a quartz microscope slide, as shown in figure 4a. For the �13–14-mm long
strips used, this resulted in �5–6-mm radii of curvature at the apex of the arches,
where the radius of curvature was determined directly by microbeam measurements
performed in the geometry depicted in figure 4a. The use of a quartz holder made
it possible to heat the elastically bent samples to 700�C. This procedure introduced
dislocations in a semi-controlled manner as shown in figure 4b, where the elastic
stresses lead to an approximately cylindrical plastic deformation, which can be seen
to be concentrated most heavily at the apex of the arch. The presence of plastic
deformation induced by annealing under a bending stress is additionally evidenced
by the optical microscope observations of slip traces on the sample surface in
figure 4c, as well as directly by the microbeam measurements discussed below.
The y-axis direction is vertical in figure 4c and perpendicular to the slip-traces.

Figures 4d–f show the Si (00L) Laue diffraction spots as measured on the CCD
camera for three cases. Figure 4d is a uniformly streaked (in both direction and
intensity) diffraction spot measured on elastically bent Si at a �45� angle
perpendicular to the bend axis at the arch apex. Figure 4e is a single streak but
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with non-uniform intensity measured on a 700�C annealed sample. Figure 4f is
a nonuniform streak (in both direction and intensity) in a particular region found
to depart markedly from cylindrical plastic deformation. The uniform diffraction
intensity as a function of elongation in the streak for elastically bent Si is an indicator
of uniform bending (around the x-axis) with depth, while the non-uniform Laue
spots (as in figures 4e and f) are indicators of heterogeneous plastic deformation
rotations. In the next section, we present 3D X-ray microscopy measurements of the
lattice curvature, elastic and plastic strain gradients, and dislocation tensors under
the three conditions of elastic deformation, light plastic deformation, and heavier
plastic deformation.

3.3. Dislocation density tensor measurement

Figure 5a shows micron resolution local lattice orientation measurements in terms
of three orthogonal rotation vectors obtained by 3D X-ray microscopy as a function
of distance along the X-ray microbeam as it penetrates through the sample; the beam
was incident at 45� at the centre of the cylindrically bent (elastically) Si strip
(see figure 4a). The rotation angles are (arbitrarily) referenced to the middle of the
sample and the angular range of the diffracted X-rays on the CCD corresponds to
the Laue spot in figure 4d. The linear change in �x along the microbeam corresponds
to a constant curvature with a bend radius of R¼ 5.42mm. Figure 5b is a plot of the

(a)

100mm  

(b)

(c) (d) (e) (f)

R

5 mm 

•

x

y

z

R

5 mm 

Figure 4. (a) Photograph of a Si plate elastically bent into an arch in a quartz slot before
anneal; the microbeam, the bend radius R and the x–y–z axes of the sample are indicated.
(b) Photograph of (a) following a 700�C anneal showing plastic bending. (c) Slip traces
(perpendicular to the y-direction) on the Si surface after a 700�C anneal under the bending
stress in (a). (d) (00L) diffraction streak corresponding to bending around the x-axis in
elastically bent Si plate. (e) and (f) (00L) diffraction streaks corresponding to plastic bending
(nominally around the x-axis) after a 700�C anneal.
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normal lattice strains as a function of depth along the microbeam. As was done
previously [16], these total strain (deviatoricþ dilatational) tensor values were

obtained from deviatoric strain measurements using the fact that the strain in the

x-direction (along the axis of the bend) vanishes by symmetry, because anticlastic
bending is suppressed by the cylindrical geometry. If the cylindrical bending

is elastic, the radial gradient of the strain along the curved surface (i.e. y-direction)
will be given by the inverse of R. Since the thick red line in figure 5b, which

corresponds to a slope of cos(�/4)/(5.42mm), represents a good fit to the measured

slope of "yy (cylindrical bending strains are illustrated schematically in the inset), we
conclude that equation (2) is satisfied with the dislocation tensor a¼ 0, in which case:

rh� tr rhð Þ I� r � e ¼ 0: ð16Þ

Referring to figure 4, the above equation is satisfied by one nontrivial rotation about

the out-of-plane axis whose gradient along the sample is equal to the curvature (1/R)
in that direction and one strain component "yy with gradient in the radial direction

that is also equal to the sample curvature 1/R – here R is the radius of curvature

of the sample. We note here that j ¼ ðrhÞT. This is, of course, in agreement
with the well-known result that at room temperature Si is brittle and bends
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Figure 5. (a) Rotations about the x, y and z directions (see figure 4a) measured along the
X-ray microbeam in cylindrically bent Si. (b) Diagonal strain tensor components as a function
of depth along the microbeam. The solid red (dark grey) line shows the slope of the slope of "yy
expected for completely elastic bending. The inset depicts schematically the bending induced
tension at the top surface, the neutral plane and the compression at the lower surface. For full
colour, see on-line.
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completely elastically. The small deviations of the strain as a function of depth with
respect to the slope of the curvature are estimated to be within the (�1–2� 10�4)
uncertainties of the strain measurements for Si without dislocations.

Figures 6a and 7a show analogous local rotation and deviatoric strain
measurements made at two positions near the apex of the arch after annealing at
700�C in air for 30min and slowly cooling (under the bending constraint within the
slot). The data in figure 6a correspond to the Laue spot in figure 4e. We note that
�x in figure 6a, unlike figure 5a, is neither linear nor is it completely monotonic;
although it varies relatively smoothly as a function of depth, the slope becomes
significantly steeper at �35 mm and the rotations have increased �y and �z
components beyond 40 mm.

As illustrated by the thick dashed line in figure 6a, the overall rotation of 0.4� is
similar in magnitude to that measured for the elastically bent case. On the other
hand, the deviatoric strain tensor measurements are of a very different form from
those observed for elastically bent Si in figure 5b. All three (diagonal) deviatoric
strain components in figure 6b are small and they are essentially flat as a function of
depth. This suggests that the elastic bending strains are significantly relaxed by the
generation of dislocations during the 700�C anneal; the dashed line in figure 6b
indicates the slope of "yy for elastic bending.
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Figure 6. (a) Rotations about the x, y and z directions measured on cylindrically bent Si
after a 700�C anneal under bending stress. The dashed line shows the x-axis rotation measured
before annealing. (b) Diagonal deviatoric strain components measured after the anneal with
the dashed line indicating the strain gradient measured before annealing.

1340 B. C. Larson et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
O
a
k
 
R
i
d
g
e
 
N
a
t
i
o
n
a
l
 
L
a
b
o
r
a
t
o
r
y
]
 
A
t
:
 
2
0
:
5
2
 
4
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



Figure 7a shows the measured angular rotations as a function of depth associated
with the fragmented and streaked Laue diffraction pattern in figure 4f at the second
position in the 700�C annealed sample. This position was closer to the apex of the
arch and selected owing to its (atypical) fragmented Laue diffraction pattern and
its larger curvature than at the figure 4e position. As indicated by �x, �y, and �z in
figure 7a, both positive and negative rotations are present at this position. This is
consistent with the directional arrows in figure 4f denoting the diffraction pattern
progression as a function of depth along the microbeam; the discontinuous intensity
distribution in figure 4f is a result of the sharp rotational jumps in lattice orientation
observed in figure 7a. Note that the angular rotations in figure 7a are plotted on a
scale five times larger than in figures 5a and 6a, and that the deviatoric strains in
figures 6b and 7b have been median-smoothed to reduce the impact of measurement
fluctuations on the strain gradients in figures 8 and 9. Compared to the dashed line
denoting the slope for elastically bent Si in figure 5b, the slope of the diagonal
deviatoric strains are again small compared to that for elastic bending observed in
figure 5b, signifying dislocation induced relaxation. It should be noted that figures 6b
and 7b are deviatoric strain tensor components denoted by the ‘prime’, whereas
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Figure 7. (a) Rotations about the x, y and z directions measured at a second position (as
for figure 6a, but at a position with larger and more complex rotations) after a 700�C anneal
under bending stress. (b) Diagonal deviatoric strain components measured at the second
position after the anneal. The dashed line indicates the strain gradient measured before
annealing.
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figure 5b represents full strain tensor (deviatoricþ dilatational) components for
the elastic bending case. Although the dilatational strain was not measured for the

annealed case, dilatation is assumed to be small considering the flatness of the
deviatoric strain tensor with depth compared to the elastic case.

To make the extraction of the dislocation tensor from the measured curvature
and strain tensors using equation (2) clear, we write �ij¼ �ji� �ij�kk� eikl@k"lj
explicitly as

�ij ¼

�11 �21 �31

�12 �22 �32

�13 �23 �33

0
B@

1
CA� ð�11 þ �22 þ �33Þ

1 0 0

0 1 0

0 0 1

0
B@

1
CA

�

"31,2 � "21,3 "32,2 � "22,3 "33,2 � "23,3

"11,3 � "31,1 "12,3 � "32,1 "13,3 � "33,1

"21,1 � "11,2 "22,1 � "12,2 "23,1 � "13,2

0
B@

1
CA: ð17Þ

where we understand 1, 2, and 3 in the subscripts to correspond to x, y and z in the
sample coordinate system. The first and second terms on the right-hand side
represent rotational gradients generating dislocation densities while the third term

accounts for elastic strain gradients without the generation of dislocations.
Equation (17) emphasizes the need to measure each of the lattice rotation

gradients and strain gradients to determine the dislocation density tensor. It further
indicates that concluding a¼ 0 for the elastic bending case in figure 5b corresponded
to the experimental demonstration that �yx¼ "yy,z¼ 1/R, since they represent the only
non-zero components on the right side of equation (17) for cylindrical elastic bending

geometry.
Such simple arguments cannot be made for plastic distortions, so each of the

components must be determined separately from the measured curvatures and strain
tensor values. Since the results in figures 6 and 7 represent measurements along a
single line in the sample, they do not provide orientation and strain gradient
information perpendicular to the beam direction. Therefore, they do not by
themselves provide sufficient 3D information to determine the full curvature and

strain gradient tensors. Accordingly, the local rotation and strain measurements were
repeated with the sample translated 1 mm in the x-direction and also with the sample
translated 1.414 mm in the y-direction. Combining measurements at all three
positions in the numerical differentiation process provides the curvature and elastic

strain gradient information needed to determine all nine components of a with
micron spatial resolution in the x–y–z coordinate system of the sample as defined in
figure 4a.

The solid lines in figures 8 and 9 are line plots of the nine components of the
curvature part of a given by �i,j� �ij�k,k (measured as a function of position along the
beam) and the dotted lines represent the elastic strain part �r � e. The open circles
in figures 8 and 9 denote the full i tensor. We comment first of all that full-scale of

1.2mrad/mm in figure 8 corresponds to a rotation of less than 0.06�, so relatively high
precision measurements are required and measurement uncertainties and statistical
fluctuations can be expected to have an impact. Note the factor of 10 increase in the
scale for figure 9 compared to figure 8. Keeping these facts in mind, we focus first on
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�xy and �xz in figure 8, which are related to gradients of �x. Within the measurement
fluctuations for this sample, these are the only components with non-zero values over
significant distances. Since the curvature (solid lines) and the elastic strains gradients
(dotted lines) do not cancel for these �ij components, significant dislocation densities
are apparently indicated between depths of 25 and 35 mm by �xy and throughout
much of the depth by �xz. Although it is not clear at this point if the non-zero
features present at depths of 30–35 mm and near 20 mm in the other components are
truly significant, the fact that curvature contributions (solid lines) and elastic strain
gradient contributions (dotted lines) are of similar magnitude, in general, indicates
that plastic relaxation is not complete in this region and we characterize the elastic
and plastic deformation state as mixed. In this connection, it is useful to consider
the results in figure 9, where significantly larger curvatures exist as indicated by the
curvature measurements in figure 7a.

We note that the magnitude of the i components in figure 9 are at least a factor
of 10 larger than in figure 8; moreover, we note that the solid lines and the open
circles are approximately equal over most of the range (i.e. �ij� �ji� �ij�kk).
The significance of this result is that at this particular sample position (chosen
because of the larger rotations and the more complex Laue pattern in figure 4f),
the rotational deformation tends to dominate the elastic strain gradients in
most places along the measuring line. Considering the difference in scales between
figures 8 and 9, the �xv and �xz components are stronger in figure 9 than in figure 8.
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Figure 8. The 3� 3 matrix of the dislocation tensors measured along the microbeam for the
position in figure 6. Open circles represent the dislocation tensor measurements for micron
steps along the beam, the solid line represents the curvature part of the dislocation tensor and
the dotted line represents the elastic strain gradient component of the dislocation tensor. Both
elastic strain gradient (dashed) and plastic deformation curvature (solid line) effects are
presented.
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However, even larger rotational contributions appear in the �yy and �zz components
in figure 9. The structure along the beam for �yy and �zz is very similar because the
large peaks present in these two components originate from �xx, but appear in �yy
and �zz by the subtraction of the trace of i in �ij� �ji� �ij�kk. This is a manifestation
of the generation of dislocations in the y–z plane by twisting along the x-axis. It also
illustrates directly that at this particular measuring position, fluctuations in the
dislocation microstructure deviate significantly from cylindrical symmetry along the
bend axis.

4. Discussion

The cylindrically bent Si cases considered in figures 5–7 above have been shown
to represent three rather different conditions: elastic deformation only in figure 5,
both elastic and plastic deformation in figure 6 and largely plastic deformation
in figure 7. The elastic deformation case in figure 5 corresponds to the conditions
of infinitesimal elastic distortion in section 2.2.3, governed by equation (15), where
the rotational, W, and strain, e, terms are essentially equal and opposite, such that
a¼ 0. Figure 6 corresponds to infinitesimal elastic distortion case as well, but in this
case, the curvature and elastic strain gradients are not equal in magnitude, so a
in figure 8 has non-zero components, �xy and �xz. Figure 7, on the other hand,
represents more closely the case of finite rotation with infinitesimal elastic strain
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Figure 9. Same as figure 8, but for the second position measured in figure 7 after annealing;
the symbols and lines are the same as for figure 8. The elastic strain gradient component
(dashed) of the dislocation tensor is negligible compared to the plastic deformation induced
curvature (solid line).
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discussed in section 2.2.2, where a¼ (curl Ret)Ret and can be determined to a good
approximation from the curvature �ij� �ij�kk term alone, without measuring the
elastic strain. This situation is demonstrated in figure 9, where the strain gradient
parts of a (dotted) are negligible compared to the curvature contribution (solid line)
parts of a. Presently, due to the difficult to quantify uncertainties incurred
in measuring elastic strains and strain gradients in the presence of lattice curvature
distortions of Laue diffraction peaks, the places in figure 9 in which the strain
gradient part of a is large compared to the curvature part may not be significant.
To investigate and resolve this issue, the development of methods for deconvoluting
rather than simply averaging over distorted Laue diffraction peaks is planned.
While this aspect requires further investigation, it is not completely surprising that
some experimental and analytical issues remain to be resolved, considering that
this is the first time that all nine curvature tensor components and six strain gradient
components have been extracted for individual voxels in a plastically deformed
material with micron resolution in three dimensions.

With the above caveat, the measured rotations and strain tensors in figures 5–7
and the lattice curvature, strain gradient and dislocation density tensors in figures 8
and 9 illustrate the capability to perform quantitative, three-dimensional, lattice
deformation measurements with micron resolution over mesoscopic length scales
using 3D X-ray microscopy. Of course, the results presented here provide dislocation
tensor components along the microbeam penetration line only, which would not be
sufficient for deformation investigations in general. Repeating such measurements
over an area (x–y array) would be required for full lattice curvature tensors
over entire volumes. However, measurements along single lines suffice for proof-
of-principle demonstration purposes of this paper and single lines also made
it feasible to show plots of the curvature tensor and deviatoric strain tensor
components of a as well as each of the nine components of the dislocation density
tensors.

The mrad/mm units on the dislocation density tensor plots emphasize that the
individual components represent ‘net rotational gradients’ generated by the effect
of all of the dislocations present in the sample. The nine components of a 3� 3 tensor
cannot, of course, specify dislocation densities in terms of their slip systems with
specific Burgers vectors and dislocation types. For face-centred cubic lattices,
for instance, there would be a minimum of 12 edge systems and six screw systems.
Rather, the dislocation density tensor quantifies the lattice curvature and elastic
strain gradients (with respect to the sample coordinate axes) in terms of the ‘effective’
dislocation densities required, geometrically, to characterize the crystal incompat-
ibilities within the sample. For comparative purposes, however, we comment that
a curvature of 1�/mm corresponds to a geometrically necessary dislocation density
of �1014m�2.

The importance of the dislocation density tensor measurements for fundamental
investigations of materials deformation processes is two-fold: they contain detailed,
absolute characterizations of the local deformation microstructure (rotational and
elastic) within crystalline materials, which can now be measured nondestructively
in three dimensions over mesoscopic length scales, and, secondly, this information
provides a direct and absolute point of contact between 3D measurements and
large-scale computer modelling that either are, or are becoming, capable of detailed

Dislocation density tensors in deformed crystals 1345

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
O
a
k
 
R
i
d
g
e
 
N
a
t
i
o
n
a
l
 
L
a
b
o
r
a
t
o
r
y
]
 
A
t
:
 
2
0
:
5
2
 
4
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



deformation computations on mesoscopic length scales. By convoluting computer
simulations with the micron or submicron 3D special resolution of X-ray microscopy
measurements it is possible to compare computer simulations of dislocation density
tensor components with X-ray microscopy measurements directly on an absolute
scale.

Electron backscattering diffraction (EBSD) also provides capabilities to measure
rotational deformation and gradients over mesoscopic length scales, and the ability
to make elastic strain measurements is becoming possible as well [28–31]. The ease of
use and accessibility of EBSD compared to X-ray microscopy is a factor; however,
EBSD measurements are inherently 2D, which precludes measurements within bulk
samples. For example, the comparison of EBSD and finite element modelling in the
investigation of plane strain deformation in a thick, columnar Al tri-crystal [24, 30]
was limited to surface deformation measurements even though the computations
were performed throughout the sample. This will be an increasingly important issue
on the mesoscale, as well as the macroscale, as the capabilities and sophistication of
computer simulations and multi-scale modelling continue to increase and poly-
crystal, as well as single-crystal materials, are considered in detail. Although 3D
measurements with remarkable precision can be performed with EBSD through
(destructive) serial-sectioning [31], surface strains and dislocation characteristics may
not be fully representative of the bulk before sectioning. Also, angular resolution for
EBSD is generally in the order of a few tenths of a degree compared with a few
hundredths of a degree for the X-ray measurements discussed here. In general,
though, X-ray microscopy and EBSD techniques are complementary and together
provide a wide range of capabilities for measuring deformation microstructure, and
dislocation density tensors in particular. Moreover, significant advances in spatial
resolution, measurement capabilities and availability can be anticipated for the
polychromatic techniques discussed here [16, 27] and for monochromatic X-ray
techniques [26], as well as for electron scattering techniques.

5. Summary

We have discussed the theoretical basis for the determination of dislocation density
tensors on mesoscopic length scales in deformed crystals with references to local
lattice curvatures and elastic deformation in the context of 3D X-ray microscopy.
Absolute dislocation density tensor measurements have been presented for the case
of thin Si plates deformed plastically under cylindrical bending stress at high
temperature. Emphasis has been placed on demonstrating measurement techniques
and the development of non-destructive methods for determining dislocation density
tensors with three-dimensional micron or submicron resolution over mesoscopic
length scales in deformed crystalline materials.
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