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The determination of residual stress by diffraction depends on the correct

measurement of the strain-free lattice spacing d0
hkl, or alternatively the

enforcement of some assumption about the state of strain or stress within the

body. It often represents the largest uncertainty in residual stress measurements

since there are many ways in which the strain-free lattice spacing can vary in

ways that are unrelated to stress. Since reducing this uncertainty is critical to

improving the reliability of stress measurements, this aspect needs to be

addressed, but it is often inadequately considered by experimenters. Many

different practical strategies for the determining of d0
hkl or dref have been

developed, some well known, others less so. These are brought together here

and are critically reviewed. In practice, the best method will vary depending on

the particular application under consideration. Consequently, situations for

which each method are appropriate are identified with reference to practical

examples.

1. Introduction

Residual stress is the stress that remains in a body that is

stationary when all applied stresses have been removed. It is

important because it can combine with applied stresses to

cause failure at levels below that at which failure would occur

from the applied stresses alone. Because they are self-equili-

brating, unlike applied stresses, residual stress cannot be

calculated from the forces, impulses and couples experienced

by a material, component or assembly. In a polycrystalline

material, residual stresses manifest themselves in the form of

residual elastic strains, which depend on the elastic and plastic

properties of the materials, and which can be, like stresses,

expressed by tensors. Stresses and strains are related to each

other by a constitutive material law. In the elastic regime, this

is the generalized Hooke law, which relates strain to stress

using certain elastic constants (Nye, 1985).

All diffraction-based measurements of elastic strain, "hkl,

and hence residual stress, are based on a comparison of hkl

lattice plane spacings measured in one or more directions for

the region of interest, dhkl, with a reference value, dref (= d0
hkl),

"hkl ¼ ðdhkl � d0
hklÞ=d0

hkl: ð1Þ

The reference can be determined either in a ‘stress-free’

sample of identical material, deduced from other measure-

ments, or by enforcing mechanical equilibrium conditions.

Given that small changes in lattice parameter can give rise to

very large changes in stress, in many cases attention is focused

on the strained state with insufficient time paid, or effort

expended, in obtaining reliable estimates of d0
hkl. Furthermore,

there are many other factors that can have an effect on the

lattice spacing that are unrelated to stress. These factors, such

as local changes in alloy chemistry, can give rise to changes in

lattice parameter far greater than those that arise from resi-

dual stress. If unaccounted for these can seriously undermine

the reliability of the stress measurement, potentially leading to

catastrophic structural integrity assessment. Such effects are

particularly difficult to account for without direct measure-

ments if they cause the strain-free lattice spacing to vary from

point to point throughout the body of interest.

On the other hand, in some cases it may not be necessary to

actually measure a reference d spacing at all. For example, if it

is known that a component of stress is strictly zero, this may be

used to circumvent the need for an accurate d0
hkl value. The

boundary condition that the normal stress component at a free

surface must be zero is used extensively in laboratory-based

X-ray investigations of near-surface stress fields, forming the

basis of the so-called sin2 technique (e.g. Eigenmann &

Macherauch, 1995). If only the deviatoric stress is required,

any reference d spacing can be used. The average of the three

diagonal strain components ("11, "22, "33) measured relative to

this arbitrary reference can then be subtracted from the

diagonal elements of the measured strain tensor to yield the

traceless deviatory strain tensor.



Methods for determining d0
hkl have been around since the

1940s (Durer, 1946; Glocker, 1951), as summarized by Hauk

(1997) for the X-ray method. Despite the fact that a number of

new methods have emerged recently, no further attempts have

been made to review critically the merits and weaknesses of

the different methods and to examine situations when each are

appropriate. That is the purpose of this paper. The methods

reviewed are not exhaustive but represent the most commonly

applied techniques.

2. The ‘strain-free’ lattice parameter

Although the reference lattice spacing is often termed a

‘stress-free’ d spacing, this only corresponds to a ‘strain-free’

spacing in the full triaxially stress-free case when all three

principal values of the macroscopic stress and strain tensors

are zero. There are cases when one component of the stress

tensor may be zero, and therefore ‘stress-free’, but the

corresponding strain component is not ‘strain-free’, as in the

case of the out-of-plane strain component at a free surface

(plane stress). The case of plane strain represents the converse

example, where the out-of-plane lattice spacing is strain- but

not stress-free. The hkl lattice spacing can be determined from

a single diffraction peak, or the ‘average’ lattice constants a, b

and c can be obtained by refinement from multiple peaks,

usually using a Rietveld refinement (Daymond et al., 1997).

2.1. Statistics and uncertainties

The uncertainty in the strain-free lattice parameter will add

to the uncertainty in the determined stresses. Since the value

of the reference d spacing occurs in the calculation of every

component of the strain tensor, it is essential to spend

adequate time on its measurement in order to determine its

value with sufficient accuracy. It has been suggested (Johnson,

2005) that ten times the time used to acquire the other data

points should be allocated to its measurement, so that it has an

uncertainty three times that for the strained lattice spacing

measurements themselves. It should also be remembered that

the uncertainty in the reference d spacing should not be added

in quadrature to that associated with each d-spacing

measurement unless a reference d spacing is measured inde-

pendently for each point, because any error will affect the

strain recorded at each point systematically in the same

manner rather than independently. This should also be

remembered when combining strain measurements from

different directions to calculate stress.

3. Factors that affect the strain-free lattice parameter

In view of the fact that in the uniaxial case an elastic strain of

only 5 � 10�4 represents a stress of 100 MPa in steel, stress-

free changes in lattice spacing need to be anticipated and

properly accounted for. There are many factors that can give

rise to changes of such a magnitude, both on a local and on a

global scale, some of which are listed below.

3.1. Compositional changes

Even slight changes in composition can bring about large

changes in lattice spacing. For example, every 0.1 wt% of

carbon in solution in steel can change the lattice parameter by

�51 � 10�4 in ferrite and +92 � 10�4 in austenite (Bhadeshia

et al., 1991). Changes in solute content can be brought about

by the precipitation or dissolution of second phases during

heat treatment, for example during welding, or by segregation

during casting. These can cause a steep variation in strain-free

lattice spacing with position which can be an important

problem in many practical cases, especially for heat-treatable

alloys (see for example xx4.6.2 and 4.6.3). From an engineering

point of view, aluminium alloys are among the most important

heat-treatable alloys and the effects of solutes on the lattice

spacing of aluminium (Mohr & Priesmeyer, 1995) are shown in

Fig. 1. Solute changes can occur across similar length scales to

the stress fields of interest: for example, in welded structures

where localized heating is responsible for both the residual

stress and the variations in solute content. Unless accounted

for these prevent the accurate derivation of strains from

measures of d spacing and hence stresses. As a result it is

probably prudent to assume that a change in the elastic strain-

free lattice spacing may have occurred whenever a region of

interest has experienced a thermodynamically significant

thermal excursion, unless there is direct evidence to the

contrary.

Local changes in composition are sometimes deliberately

introduced, for example by doping in electronics to modify the

electrical properties, or by carburization (Bourke et al., 1998)

and nitridation in steel.

3.2. Martensitic phase transformations

As discussed in x3.1, phase changes may cause composi-

tional changes in the solute content in the matrix phase which

are non-uniform across a sample owing to element parti-

tioning rendering a global reference d0 spacing inappropriate.

Additionally, martensitic phase transformations can generate

interphase stresses which mean that the d spacing for one
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Figure 1
The variation (expressed in microstrain) of the unstrained lattice
parameter with solute content for different solute elements (Johnson et
al., 1997) in aluminium (Barrett & Massalski, 1966).



phase may not be stress-free even when the sample is

macroscopically free of stress. Martensitic phase transforma-

tions can occur, for example, when a sample has undergone

temperature changes, such as during welding, or under stress

(superelastics) or electric field (ferroelectrics). Indeed,

generally it is not wise to use measurements made on only one

phase to represent the stress in the material as a whole unless

the other phases are in a strong minority. However, from a

practical point of view, it is not always possible to measure

several peaks.

3.3. Changes in temperature

Any variation in temperature will give rise to stress-free

changes in lattice spacing. Typically for metals a change in

temperature of 1 K gives a fractional change in lattice spacing,

or apparent strain, of the order of 10�5. As a result a 10 K

change in fluctuation in temperature when measuring the

sample being investigated and the reference spacing can be

significant. For materials having crystal structures not

belonging to cubic crystal systems, changes in temperature can

also lead to thermally induced intergranular stresses owing to

anisotropic thermal expansion, e.g. zirconium alloys (Gloa-

guen et al., 2004).

3.4. Geometrical effects

When making diffraction measurements in the absence of

an analyser crystal, geometrical effects associated with partial

filling of the gauge volume (the nominal sampling volume

defined by the incident and diffracted beam) can give rise to

anomalous shifts in measured diffraction angles and thus give

spurious stress-free strains (Hutchings et al., 2005). These can

have serious implications when measuring d0 if for example

small stress-free cubes are measured without meticulous

positioning.

3.5. Intergranular strains

Intergranular (type II) strains can occur by crystal-

lographically heterogeneous plastic deformation. As a result

grain hkl families may be stressed even though the sample as a

whole is unstressed. If not avoided or accounted for these

‘pseudo-strains’ may give an unrepresentative measure of the

strain-free reference. They can exist and vary on a length scale

similar to the grain size and so can remain even in the rela-

tively small blocks of material used as ‘stress-free’ samples

(see x4.3). Before choosing a measurement method it is thus

important to decide whether the absolute or the macro-

scopically strain-free lattice spacing is required as the best

reference. If the macrostress is of interest, in regions

containing plastically or thermally generated intergranular

stresses the latter can be more appropriate. This is because the

difference between the lattice spacing before excision, and the

reference spacing measured for the same region of interest

after excision, is proportional to the macrostress, in that the

type II stress is not relieved by excision.

4. Methods for determining a representative strain-free
reference

In the guidelines agreed for residual stress measurement by

neutron diffraction (Webster, 2001) the following methods

were recommended:

(i) measurement at a position (e.g. a far-field region) or time

known to contain negligible stress;

(ii) measurement on a stress-free powder or filings that are

representative of the material being examined;

(iii) cutting stress-free reference cubes or combs from the

sample;

(iv) application of force/moment balance.

Alternatively, it may be possible to infer the strain-free

reference by imposing a zero stress condition perpendicular to

a free surface, from the anisotropic behaviour of the various

reflections or from the distortion of the diffraction cones. All
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Table 1
Summary of the various methods for obtaining an estimate of a0.

Method
Local or
global

Determined
or implied Validity

Reference standard Global Determined Absolute lattice spacings are not generally sufficiently well determined on strain mapping instruments
Filings/powders Global Determined Often applicable for ceramics; only valid for metals if filings are representative of the alloy condition in the

component
Cubes Local Determined May retain intergranular stresses; vulnerable to geometrical effects if poorly positioned
Multiple measurements Local Determined Absolute lattice spacings are generally well determined; measurements are relatively time-consuming
Triaxial X-ray Local Determined Technically difficult to measure d0

hkl absolutely; must ensure identical sample–source distance for all
measurements

Extrapolation using
anisotropic reflections

Local Implied Only effective if crystal is reasonably elastically anisotropic and two stress states can be imposed (one could be
as-received); is liable to errors when plasticity can occur between the two stress states

Far field Global Determined Only valid if there is no spatial variation in d0
hkl and the variation for hkl is representative of the macrostress,

and if chosen locations are actually stress-free
sin2 Local Implied Only valid for truly plane stress (nevertheless, there are many cases when this holds, e.g. near surface, in thin

plates/slices); sensitive to intergranular and interphase stresses which may not be zero over the sampling
volume, even when macrostress is zero

Stress balance Global Implied Only valid if there is no spatial variation in d0
hkl and the complete area normal to the stress is mapped; variation

for ahkl must be representative of the macrostress; best held in reserve as a confirmation that a0 has been
correctly estimated



these methods are summarized in Table 1 and discussed in the

following sections. Note that global methods only apply in

cases where the application of a single global value of dref is

valid.

4.1. Reference standard

While in principle it would be possible to measure the

lattice spacing absolutely after calibrating the diffractometer

with a standard sample, insufficient absolute accuracy of strain

measurement instruments makes this a poor way to determine

the strain-free lattice parameter. Besides, the available book

values of stress-free lattice spacings are not usually reliable to

sufficient accuracy (�10�5 strain) and, except in very few

cases, the level of process control and repeatability is not good

enough to eliminate compositional effects and other factors

affecting the strain-free reference. As a consequence, this

method is not considered a serious option for strain

measurements.

4.2. Option 1: powders, filings, cubes and combs

By their very nature, fine powders and filings (Fig. 2a)

cannot sustain a long-range macrostress and so provide ideal

macrostress-free reference materials. The powder approach is

attractive in the sense that powders are easy to handle in

suitable containers. However, they should be measured at the

same temperature (Ceretti et al., 1998) (see x3.3) and should

completely fill the instrumental gauge volume, or be very

accurately centred at the instrument reference point, in order

to avoid any geometrical shift in measured diffraction angle

(x3.4). Additionally, any absorption in the powder may move

the effective centroid of the gauge volume away from the

reference point (Withers et al., 2000).

Powder methods are particularly well suited to ceramics in

that the constituent powder or particulate from which the

component of interest was originally formed may be available.

For metallic alloys, metal filings may be appropriate in certain

cases, but they will almost certainly contain different inter-

granular strains (x3.5) from the component, which may mean

that a given hkl reflection is neither completely stress-free nor

representative of the intergranular residual stresses in the

component.

By excision, either from the sample under investigation or a

duplicate, a region can be freed from the constraint of the

surrounding macroscopic stress field to provide a measure of

dref. Several methods of obtaining such samples can be used,

including the cutting of small reference cubes, matchsticks or

‘combs’ (Fig. 2b), either taken from an identical component to

that being measured or taken destructively from the same

sample once the macrostressed lattice parameter has been

mapped. Clearly a basic assumption of this method is that the

stress field of interest is totally relaxed by the cutting proce-

dure. The shorter the range of the stress field the finer the

sample must be sectioned to relieve the stress.

Generally cubes are used, the smaller the better as long

as the grain size is sufficiently small that powder average

conditions are maintained. However, compared with the

powder approach, small cubes are difficult to handle and to

position accurately at the instrument reference point. If there

is a variation in composition in the sample, the reference

strain-free lattice spacings, d0, must be measured at exactly the

locations of the strain data points themselves. This calls for an

extensive process of extracting small reference cubes, for

example across a weld region, and subsequently measuring

them individually. A practical example of this cumbersome

method is given by Krawitz & Winholtz (1994), who showed

that in their case it was necessary to obtain individual refer-

ence values for each location in question.

Typically, type I stresses (macrostresses) are relieved by

excising small cubes or matchsticks (if the stress is expected to

vary slowly in the extended direction), but type II (grain-scale

intergranular) and type III (atomic scale) stresses are retained

by the cutting procedure. In some respects this can be an

advantage of the technique in that the difference between

dhkl(x, y, z) and the measured dref(x, y, z) is directly propor-

tional only to the macrostress because the type II stresses have

remained unchanged. A good example of the evaluation of d0
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Figure 2
Powders, ‘cubes’ and combs for the determination of strain-free reference
values. (a) Powder along with a powder sample can; stress-free cubes and
a typical tensile specimen. (b) A ‘comb’ and its ‘negative’ cut at mid-plate
thickness with the teeth parallel to the welding direction of an Al friction
stir weldment, and a disc-like structure cut from a steel automotive crank
shaft from which a series of small stress-free reference cubes are being cut
at different radial distances (Hutchings et al., 2005).



with position is given by the excision of matchstick reference

samples (2 � 2 � 16 mm with the long axis along the weld)

from a mock-up double ‘V’ weldment joining two �780 mm-

diameter 16 mm-thick type 316 stainless-steel tubes (Fig. 3a).

This procedure was necessary because, depending on their

proximity to the weld, different regions experienced different

localized heat treatments and an estimate of the triaxial stress

near the weld line was required (Hutchings et al., 2000). The

matchsticks were cut from the weldment by a ‘stress-free’

electro-discharge machine technique at various positions local

to the weld (Fig. 3) including a set at different axial distances

(z) each located 2 mm from the outer surface. The diffraction

peaks for various hkl planes oriented at 45� to the radial-axial

directions of the cylinder were measured for each matchstick

on the ENGIN instrument (Johnson et al., 1997) at ISIS,

Rutherford Appleton Laboratories, UK. Both a full Rietveld

analysis using all the diffraction peaks, and separate analyses

of four individual diffraction peaks (111, 200, 022 and 311),

were carried out for each matchstick. Lattice ‘strains’ in the

matchstick samples were determined with reference to

measurements of dref made at a far-field point 48 mm from the

weld centre line, taken to be at zero strain: that is, strains at

this location were assumed to be unaffected by local compo-

sitional variations or by plastic strain-induced residual

microstresses. The results of a hardness survey confirmed that

no significant plastic strain had been induced this far from

the weld.

The measured strains for the matchsticks are shown in

Fig. 3(b). Except in the weld itself (z < 12 mm), where

compositionally induced changes in d0 are evident, the

‘strains’ determined from the Rietveld analysis are negligible.

This is consistent with the notion that the Rietveld lattice

parameter is representative of the macrostress in relatively

untextured material because it averages the response over

many reflections (Daymond et al., 1997). However, in the heat-

affected zone (12 mm > z > 30 mm), considerable inter-

granular strains are evident as a function of hkl. These are

most probably due to plastic intergranular strains. Consistent

with in situ tensile test observations these deviations are most

marked for the 200 reflection and least for the 111 reflection

(Hutchings et al., 2005). This is characteristic of plastic

anisotropy in stainless steel, with 200 exhibiting the largest

intergranular strains and 220 smaller strains in the opposite

sense (Clausen et al., 1999). It is seen that the variations in

strain from these peaks bound the Rietveld curve in both the

weld and the heat-affected zone. In the proposed stress

measurement standard for neutron strain measurement

(Webster, 2001) use of 111, 311 or 422 is recommended when

making macrostrain measurements in plastically strained (fcc)

stainless steel, whereas 200 is advised against because of its

sensitivity to intergranular strain.

It is clear from these results that if single diffraction peak

measurements of d0 from small cut reference samples are used

as the ‘zero strain’ reference they will incorporate a contri-

bution from residual intergranular strains, if plasticity has

occurred. Provided the extent of plasticity is exactly the same

as that in the original sample they will have essentially the

same intergranular strain. As a result, the use of d0 measured

in the same locations will give the correct macrostress-related

elastic lattice strains, since the intergranular strains, as well as

any compositional variations in sample and reference, will

cancel out. However if a far-field zero strain reference d0 is

used, the possibility for intergranular strains in the measure-

ments on the sample must be allowed for in the analysis.

An elegant alternative approach, suitable in appropriate

circumstances, is to manufacture so-called reference ‘combs’

from a notionally identical reference sample, examples of

which are shown in Fig. 2(b). The comb should be cut in an

orientation appropriate for the expected stress state. The

‘comb’ design is effective when it is anticipated that no steep

variation in d0 is expected in the direction chosen to be the

‘long’ axis of the ‘teeth’, for example parallel to the welding

direction for a weldment. In such cases, because the stress

changes only over relatively long distances, the long axis of the

tooth does not inhibit stress relaxation. The teeth are thus

rendered almost free from the constraint of the surroundings,

but left in registry through a small mechanical connection to

the base material. Such structures circumvent the problems

associated with handling small reference cubes and at the

same time retain the positional relationship between each

‘tooth’. In Fig. 2(b) the teeth are more closely spaced in the

near weld region for better spatial resolution.
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Figure 3
(a) A double ‘V’ butt weld joining two 16 mm-thick AISI Type 316L
austenitic steel pipes. Squares denote positions at which 2 � 2 � 16 mm
‘matchstick’ samples were taken. (b) ‘Pseudo-strains’ measured in the
‘matchstick’ samples taken from positions [crossed squares in (a)] away
from the weld along a line 2 mm below the outer surface (Hutchings et al.,
2000).



4.3. Option 2: using multiple measurements

One way to determine a representative strain-free lattice

parameter is by averaging multiple measurements from a

reference sample. Small coupons from the original material or

the stressed sample itself are used for this method. The net

intergranular strain averaged over all grain orientations in the

coupon must be zero and any macroscopic stress must have

been relieved by cutting a small coupon. If lattice spacings of

various reflections are measured along as many sample

directions as possible, then their corresponding lattice para-

meters dhkl are likely to average out to give a strain-free a0.

The reliability of this method is demonstrated through

measurements on Al7050 (Pang et al., 1998). A tensile sample

was prepared from an Al7050 rolled plate. The sample was

strained to 2% plastic deformation by uniaxial tension. The

generation of the intergranular strains for various hkl reflec-

tions was measured by neutron diffraction. The strain-free

lattice parameter a0 was determined from a small coupon of

�5 � 5 � 10 mm removed from the original rolled plate as a

reference sample. A second coupon was cut out from the

deformed sample after the tensile test. The same scheme of

measurements was made on both samples. In principle, the

global stress-free lattice parameter obtained from both the

reference and the deformed samples should agree within

experimental errors. All the neutron diffraction measurements

were carried out on the spectrometer E3 at the NRU reactor

in Canada.

The entire sample volume was irradiated in the measure-

ments to ensure zero macrostress and because intergranular

strain is an intensive quantity which for uniform straining is

independent of spatial position. The intergranular strain is a

function of grain orientations with respect to the sample

coordinates, however, and different strain responses are

expected among grains with different normal vectors along a

given sample direction. Lattice spacings for the 222, 200, 220

and 311 reflections were measured at 15� intervals over a

quadrant of a hemisphere. The spherical coordinate system (�,

�) was used to describe the angular position, where � is the

angle between the transverse axis (x) of the sample and the

projection of the angular position of interest (POI) on the

transverse plane, and � is the angle between the vertical

sample axis (z) and the POI. The strain-free lattice parameter

a0 of the plate was determined by averaging measurements of

all the measured reflections and sample orientations.

Plots of the lattice parameter for the reference sample and

the deformed sample for the different reflections are shown in

Figs. 4 and 5, respectively. The deformed sample shows a

larger distribution of lattice parameters, particularly for the

reflection 200. This is not surprising as the 200 reflection is

known for its relatively large intergranular strains (Webster,

2001). Nevertheless, the two samples show the same average

lattice parameter to within the experimental error, a0 =

4.0508 (1) Å, consistent with the assumption that a reliable

estimate of the strain-free lattice parameter can be obtained

by averaging measurements for multiple reflections and

sample directions.

It should be noted that this method provides an estimate of

the absolutely strain-free lattice parameter a0. The difference

between this value and one of the macroscopically, but not

microscopically, strain-free measurements d0
hkl (�, �) in Fig. 4

or Fig. 5 represents the intergranular strain in the coupon in

that direction for hkl. If only the macrostress is of interest d0
hkl

(�, �) may be more appropriate.
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Figure 4
Variation of lattice parameters of the reference sample for reflections 222,
200, 220 and 311 plotted as a function of � and �. The dotted line is the
value of the stress-free lattice parameter.

Figure 5
Variation of lattice parameters for a plastically deformed sample for
reflections 222, 200, 220 and 311 plotted as a function of � and �. The
dotted line is the value of the stress-free lattice parameter.



4.4. Option 3: extrapolation using anisotropic reflections

This method for the calculation of a stress-free lattice

parameter from the analysis of diffraction data from stressed

material utilizes the elastic anisotropy of the material to infer

d0 and was developed by Daymond & Johnson (2001). The

method relies on the fact that the lines describing the variation

in lattice parameter with stress corresponding to two reflec-

tions h1k1l1 and h2k2l2 defined by the points {�1, ah1k1l1
}, { �2,

ah1k1l1
} and {�1, ah2k2l2

}, { �2, ah2k2l2
} intersect at a value of ‘a’

that is independent of the values of �1 and �2 (Fig. 6a).

Consequently, an ignorance of the actual stress values (�1, �2)

is no bar to determining the value of a0 at which the stress is

zero. The only requirement is that the lattice parameters for

the two reflections h1k1l1 and h2k2l2 are recorded at the same

(arbitrary) stress values. The value of a0 is then given by

a0 ¼ ðah1k1l1
ah2k2l2

� ah2k2l2
ah1k1l1

Þ

� ðah1k1l1
þ ah2k2 l2

� ah2k2l2
� ah1k1l1

Þ: ð2Þ

The technique is demonstrated in Fig. 6(a) using data obtained

during a uniaxial tension test on untextured austenitic (face-

centred cubic) steel using the 111 and 200 reflections

(Daymond & Johnson, 2001). Clearly, the uncertainty in the

value of a0 thus determined depends on the difference in

gradients of the two lines (i.e. the larger the difference in

diffraction elastic constants between the two reflections the

better) and the difference between the two stress levels. The

uncertainties in the calculated lattice parameter for various

choices of number of diffraction peaks and different number

of stress levels available for the calculation are shown in

Fig. 6(b). This indicates that, when all the data are within the

elastic regime, an accurate evaluation of the reference lattice

parameter can be made. When some data are in the plastic

regime, a more limited evaluation is possible. In other words,

the results suggest that, for cubic materials at least, the

measurement of lattice parameters from a minimum of two

different diffraction peaks at a minimum of two arbitrary

stress values allows a stress-free lattice parameter (a0) to be

calculated. This is possible even if the stress values and the

individual diffraction elastic constants for the two diffraction

planes are unknown. A more general analysis is possible using

many diffraction peaks and multiple stress levels, providing

improved accuracy.

4.5. Option 4: measurement in a region known to be free of
macrostress

A common approach is to use a far-field value of d spacing

as a reference. This reference must be measured in a region of

the sample that is considered to be unlikely to be affected by

the process from which the residual stress field in question

originated. Note that this method of globally fixing d0 is not

appropriate in cases where there may be localized heating,

such as near a weld, because of the possible local composi-

tional changes discussed in x3. An illustrative example of

where this technique might be applied is the strain field

around a rivet holding together two plates. Because the stress

field is mechanically induced and would be expected to fall off

rapidly with distance from the rivet, a representative far-field

dref can be obtained as far away from the rivet as possible

(assuming there is no other source of residual stress), and the

reference level is established by averaging the d spacing

measured through thickness (e.g. to ensure any quenching

stresses are accounted for) or by averaging over a number of

orientations. An example is shown in Fig. 7, which shows the

strains measured with radial location from a 2124 Al rivet

holding together two 7010 Al plates. Strictly, stress balance

should be applied to check that the far-field region is indeed in

a state of low stress. That this is the case here is evident from

the good agreement with the finite element model, which

necessarily obeys stress balance.

4.6. Option 5: exploitation of plane stress or plane strain
conditions

There are many methods that rely on some assumptions

about the state of stress, or strain, to infer the strain-free

lattice spacing or in-plane stress. Of these, the sin2 method is

the most commonly applied, being a very powerful and

versatile technique which has found widespread application in
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Figure 6
(a) The determination of the stress-free lattice parameter inferred from
the spacings for 111 and 200 at 50 and 175 MPa for austenitic steel. (b)
The corresponding variation in uncertainty in a0 according to first (�1)
and second (�2) stress levels at which the lattice spacings for 111 and 200
are determined (Daymond & Johnson, 2001).



laboratory X-ray-based stress measurement. It is based on the

general stress–strain relationship for an elastically isotropic

material (e.g. Noyan & Cohen, 1987):

"’ ¼
d’ � d0

d0

¼
1þ �

E
�11 cos2 ’þ �12 sin 2’þ �22 sin2 ’� �33

� �
sin2  

þ
1

E
�33 � ��11 � ��22ð Þ

þ
1þ �

E
�13 cos ’þ �23 sin ’ð Þ sin 2 ; ð3Þ

where  is the polar angle from the surface normal and ’ the

azimuthal angle to the in-plane 1-axis; E and � are the Young

modulus and Poisson ratio, respectively. In the presence of

shear stresses �13 or �23 this gives rise to  splitting (different

values for��). For a biaxial stress field (�33 = �23 = �13 = 0), it

allows residual stress analysis by plotting "’ versus sin2 ; for

example, by tilting about the 2-axis (’ = 0) the in-plane stress

�11 can be calculated from the slope of the curve:

" ¼
d � d0

d0
¼

1þ �

E
�11 sin2  �

�

E
�11 þ �22ð Þ: ð4Þ

The strength of this relation lies in the fact that it does not

require a knowledge of the strain-free lattice spacing, since d0

can be replaced in the denominator by d =0 without significant

error because elastic strains are typically less than 1%, so that

d0
’ d =0. Of course, in reality, the grains in a polycrystal are

not intrinsically elastically isotropic. As a result, equations (3)

and (4) are not strictly valid and must be modified. There is

not space here to embark on a detailed discussion of the

effects of intrinsic and macroscopic elastic anisotropy on

lattice strains, but it is covered in detail elsewhere (Welzel et

al., 2005). In essence, in the case of a macroscopically isotropic

polycrystal, equation (4) can be modified by replacing E and �
by their diffraction specific variants Ehkl and �hkl or equiva-

lently S1 (= ��hkl/Ehkl) and S2/2 [= (1+ �hkl)/Ehkl)]. For a

macroscopically elastically anisotropic polycrystalline sample

diffraction X-ray stress factors must be applied (Welzel et al.,

2005).

Recently, the penetrative power of neutrons and synchro-

tron X-ray radiation have extended the traditional range of its

application from the surface to the bulk, provided that the

condition of biaxiality is maintained (Hutchings et al., 2005;

Fitzpatrick & Lodini, 2003). The sin2 method can appear in a

number of guizes, e.g. whereby the unit-cell extrapolation is

achieved using the minimum of inclinations or in a uniaxial

equivalent. They are discussed in the following sections.

4.6.1. sin2w stress measurement methods. For the

conventional sin2 technique (e.g. Noyan & Cohen, 1987) the

biaxial stress assumption means that it is not necessary to

calculate or measure the actual strain-free lattice spacing at

all. For X-rays, because of the poor penetration, the method is

used in back-scattered reflection geometry and the  angles

available usually extend from 0 to around 55�. In the X-ray

case, depth profiling requires careful layer removal; it can also

be applied nondestructively using neutron diffraction.

A good example is provided by carburizing, which is often

used to surface harden steels; case depths vary depending

upon application, but 0.4 mm is typical. The process involves

the diffusion of carbon into the steel from a carbon-rich

environment, by gas carburizing using a gas rich in CO, or

pack carburizing using charcoal or coke with alkali carbonates

bound together by oil or tar. Because the lattice parameter of

steel is particularly sensitive to changes in C concentration

(x3.1), use of a global strain-free lattice parameter would lead

to very misleading conclusions about the state of stress near

the surface. Carburizing can also introduce type II strains and

stresses (Stickels & Mack, 1986). Great care therefore needs

to be exercised in analysing measured strain data from

carburized layers.

The application of the sin2 method together with the

assumption of zero out-of-plane stress circumvents the need to

find the strain-free lattice parameter of the steel as a function

of depth through the carburized layer. Measurements have

been made in this way using both neutrons and X-rays

(Bourke et al., 1998). Fig. 8(a) shows the residual stress profiles

thus determined. The X-ray profile was obtained by electro-

polishing the surface and subsequently correcting for layer

removal. In view of the very shallow penetration depth char-

acteristic of X-rays, the biaxial assumption is certainly valid for

the latter and appears to be a good approximation for the

former too. In the region very close to the surface (0–50 mm)

the X-ray measurements have a unique advantage, but at

greater depths the neutron results are more informative as

well as being nondestructive.

The high penetrations available with high-energy synchro-

tron X-ray diffraction open up the possibility of using the

sin2 method over a wider range of � angles than is available

for laboratory X-rays. In fact, the low scattering angles (2�)

characteristic of high-energy X-rays mean that low  angles
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Figure 7
The axial, radial and hoop strains (solid symbols) measured 3 mm below
the surface by neutron diffraction at positions (open diamonds) radially
from the axis of a 3 mm radius 2124 Al rivet joining two 7010 Al plates
(see inset). The rivet spacing was 30 mm and the strain-free d0 value was
measured laterally towards the edge of the plate, far from the line of
rivets. The continuous lines represent the predictions from a finite
element model smeared to match the spatial resolution of the sampling
gauge. The good agreement with the data validates the use of the far-field
measurement of d0.



cannot be accessed in reflection because of the high path

lengths associated with the glancing angles. Of course, in such

a case the method still relies on the fact that the out-of-plane

stress must be zero through the thickness of the plate, or if the

sampling gauge spans the entire thickness it assumes that the

local through thickness stresses average to zero (which is

usually true for plates). A good example is provided by the

mapping of the axial stress across a friction stir weld butt joint

between non-age-hardenable AA5083 and age-hardenable

AA6082 alloys supplied as 3 mm-thick plates 150 mm long and

60 mm wide (Fig. 8b). In this case, the sin2 method was used

(with � = 4.8� and  varied from 45 to 90� using five  tilts) to

account for variations in a0 across the welded plate (Steuwer et

al., 2006). These changes were extensive because of the

different alloy chemistry of the two alloys being joined.

4.6.2. d0 inferred from sin2w measurements near surface.

Equilibrium requirements mean that the stress normal to an

unrestrained surface must always be zero. At the low surface

penetrations characteristic of laboratory X-rays (tens of

micrometres or less), an in-plane biaxial stress field (�33 = 0)

can normally be assumed.

A method proposed by Hauk et al. (1982) uses the fact that

for a bi-axial stress state, at some angle  *, the d spacing will

be equal to d0. Inserting this into equation (3) allows the

determination of  *:

sin2  � ¼
�=E

ð1þ �Þ=E

 
1þ

�22

�11

!
¼

�

ð1þ �Þ

 
1þ

m2

m1

!
; ð5Þ

where m1 and m2 are the gradients of d versus sin2 plots at

’ = 0 and 90�. d0 is then simply the value of d recorded at  *

for ’ = 0 (see Figs. 9a and 9b). This method has been used in

Fig. 9(c) to measure the change in strain-free lattice parameter

over the carburized depth discussed in the previous section

(Bourke et al., 1998) and for which the corresponding stress

profile is shown in Fig. 8(a).

A related approach is to determine d0 from the relation

(Barrett & Massalski, 1966)
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Figure 8
Measurement of stress using the bi-axial stress assumption. (a) Variation
of the in-plane component of residual stress through a carburized layer on
a 5120 steel disc as measured by neutron diffraction non-destructively
and by X-ray diffraction (XRD) with layer removal using the sin2 
method (Bourke et al., 1998). (b) Variation in the longitudinal residual
stress as a function of distance from the weld line in a dissimilar AA5083/
AA6082 aluminium alloy weld with AA5083 on the advancing side
(positive y). The data were obtained using synchrotron X-rays at
beamline ID32 at the ESRF (Steuwer et al., 2006).

Figure 9
The strain-free lattice points d0

100 for (a) uniaxial and (b) biaxial stress
states calculated for the d100 iron peak using equation (5) (Hauk &
Kruger, 2000). (c) The strain-free lattice parameter d0

211 variation with
depth calculated in this manner for the carburized layer on 5120 steel for
which the corresponding stress profile is shown in Fig. 8(a) (Bourke et al.,
1998).



d0
¼

�

1þ �

� �
d’ þ d’0 � 2d?

sin2  
þ d?; ð6Þ

where d’ and d’0 are the d spacings measured at a polar

angle  from the surface normal and at azimuthal angles ’ and

’0 = ’ + 90� to the in-plane x axis, and d? denotes the value of

the d spacing in the direction normal to the surface. Note that

both equations use the fact that the trace of the biaxial stress

tensor is invariant under rotation of axes so that (�’ + �’0) =

(�11 + �22) is independent of the actual azimuthal ’ angle

chosen and knowledge of the principal in-plane stress direc-

tions is not required (Barrett & Gensamer, 1936; Barrett &

Massalski, 1966). To improve accuracy, measurements can be

made at a number of  angles to obtain, by analogy to the

traditional sin2 method, a more representative value. At first

glance, it would appear that Poisson’s ratio � is generally not

known with sufficient accuracy to apply equation (6) for the

precise measurement of d0; however, the first term is a small

addition to the second, and so the method can normally give a

value of d0 that is accurate enough to be used to determine the

strain.

Fig. 10 shows the variation in the strain-free lattice para-

meter against axial distance from the weld line obtained from

the biaxial sin2 measurement for a joint formed by inertia

welding two 8 mm-wall-thickness tubes of RR1000 Ni base

superalloy. It is also clear that in the near weld zone sharp

gradients in � 0 precipitate microstructure occur. These are

associated with the dissolution of � 0 during welding and the

partial reprecipitation. In view of this it is not surprising that

the strain-free lattice parameter varies considerably over the

first 2–3 mm from the weld line. Note how the lattice para-

meter variation is largely independent of the radial position,

varying only as a function of axial distance.

4.6.3. d0 inferred from measurements on thin slices. A thin

slice cut from a sample will tend to be in a condition of plane

stress with the normal component averaging to zero through

thickness (�33 = 0). As a result the sin2 technique can be

applied using either neutron transmission (Santisteban et al.,

2002) or synchrotron X-ray diffraction techniques (Steuwer et

al., 2007) to map d0. Following equation (6) a series of

measurements are made at different  tilts, at each of two

angles ’ and ’+90. This method is particularly well suited to the

examination of thin slices using a pixellated time-of-flight

neutron transmission detector. The experimental setup on the

ENGIN instrument at ISIS is shown in Fig. 11, where the

angles ’ and  are indicated (Santisteban et al., 2002). Instead

of using the Bragg reflections, the Bragg edges are used. These

correspond to drops in the transmitted signal where intensity

is diffracted out of the transmission beam. These sharp edges

in the straight through beam are recorded at each angle and

can be fitted individually, or using a Rietveld-like multiple

peak fit, enabling the corresponding d0 or a0 values to be
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Figure 11
Schematic showing the setup for a two-dimensional full-field measure-
ment of d0 on a weld sample by transmission using the sin2 method on
the ENGIN instrument at ISIS. Two orthogonal axes must be used for the
sin2 tilts as shown by rotating 90� about n̂n, but since it is not necessary
for these to have special relationship to the in-plane principal axes it is
possible to map d0 with no prior knowledge, even when the in-plane stress
field is complex (Santisteban et al., 2002).

Figure 10
The variation in strain-free lattice parameter with distance from the weld
centre line (z = 0) for two RR1000 Ni superalloy tubes (wall thickness
8 mm) joined by inertia friction welding (Preuss et al., 2002) near the
inner (circles), centre (squares) and outer (triangles) radii. Also shown
inset is the tube geometry and scanning electron images of the
microstructure 0, 0.5, 2 and 9 mm from the weld line.



determined using in equation (5). Since the transmission

spectrum obtained by each pixel corresponds to a different

location, an image of the lattice parameter can be obtained.

An example of the method is provided by the mapping of a0

across a slice taken from a ferritic weldment, used as a round

robin sample in the VAMAS TWA20 programme. A number

of samples were cut from a weld laid down by TWI, UK, in a

6 mm-wide 8.5 mm-deep U-groove machined in the middle of

a BS 4360 50D ferritic steel plate 1000 � 150 � 12.5 mm in

size. The groove was filled by a 12-pass mechanized tungsten

inert gas weld. A 3 mm-thick 40 mm-long slice was electro-

discharge machined from the 12.5 mm-thick plate and weld-

ment for transmission measurements. This slice was placed in

front of a two-dimensional pixellated detector comprising a

10 � 10 array of 2 � 2 mm scintillation detectors on a 2.5 mm

pitch (Santisteban et al., 2002) and tilted around the transverse

(TD) and short transverse (STD) directions of the original

plate, as shown in Fig. 12(a).  angles of 0, 18.4, 24.4 and 28.4�

were used for the definition of the slopes of the a versus sin2 
graph. Relatively low angles were chosen in order to minimize

excessive distortion of the mapped area. In this manner a map

of a0 has been obtained (Fig. 12a). The map resembles the

shape of the weld but is asymmetric relative to the weld centre

line, presumably as a result of the asymmetric welding

sequence. The extent of the lattice parameter variation found

was equivalent to 600 � 10�6. Neglecting this difference and

assuming a single global value for a0 would introduce an error

of 130 MPa in the residual stress, which is of the same order of

magnitude as typical stresses found in practice.

The sin2 analysis can also be carried out quickly and

effectively on excised cross-sectional slices using high-energy

synchrotron X-ray diffraction using low scattering angles in

transmission. A good example is provided by the accurate

measurement of the local variation in lattice parameter across

a friction stir weld (FSW) of a 13 mm-thick Al 7010 (5.7–6.7%

Zn, 2.1–2.6% Mg, 1.5–2.0% Cu, 0–0.12% Si, 0–0.15% Fe, 0–

0.10% Mg, 0–0.05% Cr, 0.10–0.16% Zr) plate (Steuwer et al.,

2007). This was undertaken using a rotational speed of

270 r.p.m., traverse speed 81 mm min�1, with a vertical

(downward) force of approximately 36 kN. The tool had a

18 mm-diameter shoulder and an M5 threaded pin 5 mm wide

and 0.8 mm pitch. Since the unstrained lattice parameter of

aluminium varies markedly with the solution of other

elements (as shown in Fig. 1) it is essential that the variation in

strain-free lattice parameter is accounted for in stress

measurements. A 1 mm-thick cross-sectional slice was cut

midway along the FSW in order to use the transmission sin2 
method, and the variation in d0 is mapped across the weld in

Fig. 12(b). It is evident that the changes in strain-free lattice

parameter are significant. Note that the variation in lattice

parameter has the same shape as the Vickers hardness

(Steuwer et al., 2007). Age hardening alloys are particularly

prone to changes in solute content with precipitation; if a

single global value of d0 were used as reference in this case it

would give a spurious strain of up to 2000 � 10�6, corre-

sponding to an error in stress of up to 140 MPa. It is clear that

were the variation in stress-free lattice parameter not taken

into account the tensile strains near the weld centre line would

be significantly underestimated.

4.6.4. Analysis of complete Debye–Scherrer cones. It is

now possible to collect complete diffraction rings at the low

diffracting angles characteristic of high-energy synchrotron

X-ray beamlines using CCD cameras. Strain results in the

distortion of the ideal circular Debye–Scherrer cone into an

ellipse. This fact suggests the idea of using the complete ring

pattern as the data set to be fit with an ellipse described by the

three parameters: the major and minor semi-axes, and the

orientation angle (Korsunsky et al., 1998). Unfortunately, in

early work distortion associated with the CCD detector was

found to be too large to allow efficient correction for the

present purposes, when reliable strain values need to be

extracted with the accuracy of less than 100� 10�6. Wanner &

Dunand (2000) used an iron reference powder attached

physically to the sample to correct for any change in the

camera length or distortion of the CCD camera. In studying

uni-axial deformation of Cu–Mo composites they used the fact

that the major and semi-major axes are parallel and perpen-

dicular to the applied stress to plot a sin2’ plot by analogy to
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Figure 12
(a) Interpolated map of the unstressed lattice parameter a0 measured on a
thin (2 mm) slice for a ferritic weld. The change in a0 is expressed in terms
of a spurious strain relative to the value far away from the weld, in the
parent material (Santisteban et al., 2002). (b) The variation of the
unstrained lattice parameter calculated from the measured 311 lattice
plane spacings measured by synchrotron X-rays using equation (1) for a
thin cross-sectional slice of an AA7010 friction stir weld (Steuwer et al.,
2007).



conventional sin2 plots from which they were able to extract

the change in the axial and transverse phase stresses (Fig. 13).

Because biaxial in-plane stress would give an isotropic

increase/decrease in the ring radius indistinguishable from a

larger/smaller strain-free lattice spacing it is only possible to

determine the relative changes in strain without sampling an

out-of-plane component of lattice spacing. This could be

achieved by using the fact that diffraction rings sample

successively larger values of  , but has not been exploited

to date.

4.7. Option 6: imposing stress and moment balance

An approach to the determination of reference d spacings,

which precludes the need for their measurement, is to adopt

the fundamental continuum mechanics-based requirements

that force and moment must balance across selected cross

sections of the sample. The approach is to measure the

required field of d spacings, or diffraction angles, in the sample

and, using a nominal dref, to calculate the strain and stress in

the sample. Subsequently the reference value is varied itera-

tively in order to infer the true reference value, that is the

value that renders a stress field in which force and moment

balance occurs. In adopting this approach great care must be

taken in selecting appropriate cross sections over which to

require the forces and moments to balance. It must be ensured

that the experimental data set covers the entire cross section

and not just a part of it, and also that a single global value of

dref is appropriate.

In practice, this method is probably best held in reserve to

check the validity of the d0 value obtained from one of the

other methods listed above. Indeed when applicable, its use as

a check of the validity of a measured stress field is recom-

mended. A good example is provided by an analysis of the

inertia welded tube described in x4.6.2. In view of the fact that

the weld microstructure was very similar from the inside to the

outside of the tube (varying only with distance from the weld

z) it is possible to apply stress balance across the wall thick-

ness of the tube and thereby to infer the lattice parameter as a

function of axial distance (z). The results of this analysis are

shown in Fig. 14(a). As can be seen, excellent agreement for

the as-welded sample was obtained between both a0 correc-

tion methods. Note also that after post-weld heat treatment

(PWHT; Fig. 14b) the gradients in solute concentration

responsible for the lattice parameter changes disappear owing

to reprecipitation, such that a single global value of the strain-

free lattice parameter is sufficient.

5. Composite materials

It can be difficult to obtain a reliable measure of the respective

stress-free lattice spacings when considering multiphase

materials and composites. In such cases it is unlikely that any

phase in the composite will be stress-free. With regard to

making useful measurements on such materials, one needs to

consider whether the macrostress variation or the individual

average phase stresses are important. Except in the elastic

case, or when the secondary phases are very dilute, no single

phase alone can provide a picture of the macroscopic residual

stress, since the (continuum) macrostress is given by the sum

of the individual phase stresses. If one is interested in the

macrostress the corresponding strain-free lattice parameters

are needed for all significant phases to determine average

stress in each phase �i of fraction fi, giving

�macro
¼ f1�1 þ f2�2 þ � � � : ð7Þ

In some cases a successful strategy is to obtain the strain-free

lattice spacing representative of a phase in a composite, e.g. by

chemically isolating the fibres in a composite (Preuss et al.,

2003) or by etching the ferrite matrix to reveal the austenite

phase in a duplex steel (Johansson et al., 1999), but the second

phase may be more difficult. In such circumstances it may be

possible to infer the appropriate strain-free lattice parameter

in the second phase by using the overall stress balance

criterion of equation (7). In cases where the temperature is
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Figure 13
Plots of d versus sin2’ of Mo 111 and reference Fe 110 diffraction rings
recorded for a Cu–Mo composite loaded in situ to 236 MPa tensile stress.
The dashed lines in the latter diagrams are best linear fits to the
corresponding data from the unloaded specimen.

Figure 14
The fractional change in lattice parameter relative to the parent value
with distance from the weld centre line of the inertia weld shown in Fig. 8
using the X-ray method (full symbols) of x4.6.2 and deduced by applying
stress balance across the wall thickness (open symbols) (a) after welding
and (b) subsequent to heat treatment.



varied the strain-free lattice spacing must be either measured

as a function of temperature (Withers et al., 1987) or predicted

on the basis of that at room temperature and the relevant

expansion coefficient. In many cases, absolute stress levels are

not reported but rather changes that take place, for example

during deformation (Wanner & Dunand, 2000). In such cases

it should be remembered that thermal residual stresses or

other pre-existing residual stresses may mean that the abso-

lute stresses are significantly different from those reported.

This is well illustrated by the fragmentation of a single SiC

fibre in a Ti matrix (Bennett et al., 2005) (Fig. 15). Here the

locations at which fibre breakage had occurred were subse-

quently taken to be strain-free. On this basis, it can be seen

that elastic fibre strain in the undeformed sample is

compressive along the whole of the gauge length. The residual

compressive strain varies along the gauge length and is highest

between z = 3 and z = 5 mm, reaching a maximum of around

�3200 � 10�6 (around �1.3 GPa). This residual strain arises

as a consequence of the thermal expansion misfit between the

fibres and matrix generated as a result of the processing

temperature (1173 K), the opportunity for stress relaxation

during cooling and the volume fractions of each phase. If the

difference in coefficient of thermal expansion between the

phases is around 6 � 10�6 K then the residual strain is

equivalent to a temperature drop of around 803 K. This is

essentially the increment in temperature �Tesf required to

make the composite effectively stress-free. The variability of

residual stress along the length of the fibre is almost certainly

due to the fabrication process. Failure to take account of the

compressive thermal residual fibre stresses would suggest a

fibre fracture strain that is some 2000–3000 � 10�6 (>1 GPa)

more tensile than is the case.

6. Conclusions

In this paper some well established, as well as some relatively

new options for obtaining a best estimate for the appropriate

strain-free reference lattice spacing have been reviewed and

examples of their application given. On the whole, great care

and judgement needs to be exercised when choosing an

appropriate and cost-efficient method. The following obser-

vations can be made.

(i) If there is any suspicion that the strain-free lattice

parameter may vary from place to place, then local methods

must be used, if only to demonstrate that the application

of a global measure of the strain-free lattice spacing is

appropriate.

(ii) The uncertainty in a0 affects all measurements of elastic

strain; too often, too little time and effort is spent determining

a0 given that any error propagates through all the calculations

of elastic strain and stress. It is recommended that ten times

the measurement time is allocated to the measurement of a0 if

a global value is being used. Alternatively, repeat measure-

ments of a0 can be used to give better statistics.

(iii) If a global value of d0 is adopted, the corresponding

measurement uncertainty should not be combined in quad-

rature with that associated with each point in turn since it

affects all points similarly.

(iv) The experimenter must decide whether the macrostress

component only is required, or the average stress in the phase

or grain family, and the strategy for measurement chosen

accordingly.

(v) Imprecise positioning of reference samples can lead to

geometrical effects which affect measurement accuracy, or

lead to measurements that are not representative of the strain

measurement locations.

(vi) Too often basic assumptions about the state of stress, or

the effects of previous processing on the region of interest, are

not justified, leading to inappropriate deduction of the refer-

ence spacing.

(vii) If at all possible the overall balance of stress and

moment should be reserved to test the integrity and validity of

the measurements, once the stresses have been mapped, using

other methods to obtain the strain-free lattice parameter.

(viii) The effects of phase transformations, thermal effects,

texture and plasticity can all affect the representativeness of

strain-free measurements.

(ix) Mixed strategies whereby deep measurements of lattice

spacing in engineering components are made using neutrons

or high-energy synchrotron X-rays supplemented by strain-

free measurements of the reference lattice spacing using

laboratory-based analysis of slices or cubes can be a cost-

effective solution.

(x) It is recommended that for cubes the whole sample is

bathed in the beam in case there are stresses within them, but

this requires meticulous positioning to avoid geometrical

surface effects that can drown out other lattice parameter

changes.

(xi) Multiple measurements at different locations through

thickness or with position are advisable if using the far-field
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Figure 15
Variation of axial elastic fibre strain, "f , measured along a 140 mm-
diameter SCS6 SiC fibre embedded in a Ti–6Al–4V matrix, prior to and
after fibre fragmentation at room temperature (RT) using 75 keV
synchrotron X-rays with 10 � 200 mm slits (along x normal to the fibre).
The squares show the residual strains recorded before loading and the
triangles were recorded at a load of 710 MPa (Bennett et al., 2005).



method to ensure that the locations chosen are really

macrostress-free.
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