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A new formulation of the elastic boundary value problem of dislocations in
bounded crystals is developed. This formulation is based on the ansatz that
the stress field of dislocations in bounded domains can be constructed as the sum
of a contribution corresponding to the classical infinite-domain solution plus a
correction that is determined here from a mathematically well posed problem.
The formulation of the elastic boundary value problem given here ensures that the
equilibrium of the overall stress field is rigorously satisfied, specifically when
dislocations intersect the boundary. The implications of this new formalism for
dislocation dynamics simulation are discussed for the cases of bounded crystals
and crystal volumes representative of uniformly loaded infinite crystals. An
approximate computational solution of the elastic boundary value problem is
presented based on the concept of virtual dislocations and the use of a non-
singular form of the infinite-domain solution of the dislocation stress field. This
computational solution addresses the issues of singularity and global equilibrium
of the boundary traction associated with the corrective field. Sample results are
presented for the internal stress in bounded crystals containing 3D dislocation
configurations produced using the dislocation dynamics simulation method.
The results illustrate the statistical character of the internal elastic field.

Keywords: defects in solids; deformation mechanisms; dislocation dynamics;
dislocation mechanics; dislocation theory

1. Introduction

Complex dislocation structures emerge during plastic deformation of crystals.
The evolution of such structures is strongly influenced by various aspects of the physical
behavior of dislocations, one of which is their long-range elastic interactions. These
interactions are governed by the internal crystal stress generated by the dislocations
themselves, which is obtained by solving the elastic boundary value problem of the crystal
domain containing the dislocation configuration under consideration. The solution of this
problem is an important part of the method of dislocation dynamics simulation [1–4].
Indeed, the majority of the computational effort in this method is associated with the
solution of the elastic boundary value problem of dislocations and the computation of
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their mutual long-range interactions [1–6]. In setting up this boundary value problem, two

situations have been commonly treated in the literature. The first is that of a bounded

crystal, and the second is one in which the crystal volume containing the dislocation

system under consideration is a representative volume element (RVE) whose average

response is the same as that of a large, infinitely extended crystal. The boundary conditions

for these two problems have been developed previously by one of the authors [7] who also

performed a limited numerical implementation for the stress field of dislocation loops

contained in a rectangular 3D crystal region [8].
The formulation presented in [7] for the elastic boundary value problem of dislocations

in the two situations mentioned above is based on the postulate that the stress p of an

arbitrary dislocation configuration contained in a finite crystal volume � representing

an RVE or in a bounded crystal is expressed as the sum of two contributions. The first is

the infinite-domain stress of the dislocation configuration contained in �, which is denoted

here by p1, and the second is a corrective field ~r; that is

rðxÞ ¼ r1ðxÞ þ ~rðxÞ, ð1Þ

where x denotes the position vector in �. The stress ~r satisfies the traction boundary

condition

~rðxÞnðxÞ ¼ ~tðxÞ ¼ �r1ðxÞnðxÞ, ð2Þ

in which n is the outward unit normal to the boundary @�. Equation (2) implies the well-

known result that the overall dislocation stress field p satisfies a traction-free boundary

condition. We remark here that while the decomposition (1) of the stress field (and actually

all elastic fields) is valid when � is an RVE or a bounded crystal, the field ~r and the

associated displacement and strain fields can be called image fields only in the case of

bounded crystals. In the case of a RVE, however, such a contribution represents the stress

induced inside � by dislocations in the rest of the extended crystal. In [7] an argument

about statistical homogeneity of elastic fields in the infinite crystal has been followed

to show that the ~r is equal to the image stress of dislocations if the RVE is viewed as

a bounded crystal. A recent implementation in the ParaDiS dislocation dynamics

simulation model [3] satisfies the requirement of statistical homogeneity of fields in an

infinite crystal by applying periodic boundary conditions to the RVE. In this case the ~r

field is computed by summing up the contributions due to periodic replicas of the

dislocation configuration.
The formulation and solution of the elastic boundary value problem of dislocations has

been pursued by a number of authors in the case of bounded crystals. Van der Giessen and

Needleman [5] set up a formalism of this problem based on the principle of superposition

in linear elasticity, which was implemented later for 3D problems by Weygand et al. [6]

who addressed two issues. The first has to do with the fact that when dislocations end on

the boundary @�, the residual boundary traction ~t (computed using the classical line-

integral form for dislocation stress) is not self-balanced because the line-integral form of

stress field does not satisfy equilibrium in this case. In other words, the global equilibrium

conditions, Z
@�

~tðxÞdA ¼ 0 and

Z
@�

~tðxÞ � ðx� x�ÞdA ¼ 0; ð3Þ
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are violated (dA is a differential surface element of the boundary @� and x� is some point
in �). When the dislocation network is closed, and none of the dislocations is ending on
the surface, the above integrals are identically zero and the residual traction ~t defines
a well-posed elastic boundary value problem for the image stress ~r. The issue of self-
balance of the image traction has been dealt with by keeping the dislocation network
closed using virtual dislocation segments outside � and using the field of these virtual
segments in computing the residual traction of dislocations on the boundary. The second
issue addressed in [6] is that the classical linear elasticity solution of dislocation fields
is singular along the dislocation lines. This posed a numerical difficulty in treating the
residual traction on the boundary in a finite-element formulation of the image field
problem, which was dealt with by using higher quadrature order.

Tang et al. [9] presented a boundary value problem formulation for the image field, in
which the singular part of the traction of the image field is analytically considered, while
the rest of the image field is computed by applying a non-singular traction term using the
finite element method (FEM). The famous Yoffe solution [10] for the elastic fields of
straight dislocations in a half space, see also [11], was used by Tang et al. to find the
solution corresponding to the singular part of the residual traction. In Tang’s work,
however, the global equilibrium requirement for the residual traction, an essential
condition of well posedness of the boundary value problem, was not checked. Other
attempts to solve this problem have been made. For example, a boundary element method
(BEM) was developed recently by El-Awady et al. [12] to compute the image stress field of
dislocations for use in dislocation dynamics simulation of micropillar deformation.
Khraishi et al. [13] used surface distributions of prismatic dislocation loops to satisfy the
traction free boundary condition on the surfaces of a rectangular dislocation dynamics
simulation volume. Weinberger and Cai [14] developed semi-analytical solutions for the
image field in cylindrical micropillars.

In all of these works, the stress field of dislocations in bounded domains was
constructed as the sum of the classical line-integral form for stress, which is given later in
this paper, plus an image correction. In formulating the boundary value problem for
the image field, however, authors focused only on the fact that the overall stress field is
traction free, which defines the traction boundary condition for the image field. When
dislocations end on the surface, the line-integral form does not yield a divergence-free
stress field. This fact, which has been overlooked so far, makes it necessary to include
a distributed body force in the image-field boundary value problem to ensure that the
overall stress field is divergence free.

Lemarchand et al. [15,16] approached the problem of finding the stress field in a crystal
with a dynamic dislocation configuration by using the FEM method to solve a crystal
plasticity problem in which the plastic strain is found from the dislocation motion. In this
method, stress equilibrium is handled properly, but the localization of plastic strain on slip
planes posed some numerical issues that were resolved by defining an appropriate volume
averaging scheme for the induced plastic strain. The approach of Lemarchand et al. is
equivalent to the eigenstrain formalism of plastic deformation [17]. Finally, an
approximation of the boundary problem of dislocations by Schwarz [18] should be
mentioned. In this approximation, an image construction is used in which part of the
dislocation intersecting the boundary is reflected across the boundary and the effect of the
image is included in evolving of the interior near-boundary segments in dislocation
dynamics simulation.
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The present paper has three objectives. The first objective is to use the eigenstrain
formalism of the boundary value problem of dislocations in bounded crystals to provide
a theoretical justification for constructing the solution in terms of the infinite-domain
solution plus image correction. For this purpose, we follow the formulation by Kinoshita
and Mura [19] of the eigenstrain problem in finite elastic body. The second objective is to
provide the correct statement of the image-field boundary value problem for an arbitrary
dislocation configuration in bounded crystals and to discuss the implications of this
statement in the context of the dislocations dynamics simulation. In particular, we suggest
a formulation of dislocation dynamics with a scheme for long-range stress calculation that
is both simple and accurate. The third objective of this paper is to present an approximate
solution of the image stress problem in the spirit of the virtual dislocation technique given
by Weygand et al. [6]. The motivation for pursuing this approximate solution is to test the
effectiveness of using the non-singular infinite domain expression of the dislocation stress
field developed by Cai et al. [20] in solving the image field problem using the FEMmethod.
As shown later, the use of this non-singular stress expression makes it a straightforward
task to solve the problem. The results show that the stress field in a crystal with high
dislocation density exhibits strong spatial fluctuations. Such fluctuations are relevant to
sub-micrometer resolution 3D X-ray microscopy measurements of elastic fields in
deformed crystals [21,22].

2. Eigenstrain formalism of the boundary value problem

The eigenstrain theory offers a powerful approach to solving the class of problems of
internal elastic fields of defects in materials [17]. In this theory, material defects are
modeled using equivalent incompatible stress-free strain distributions called the
eigenstrains. The eigenstrain problem is stated as follows: find the displacement, elastic
strain and stress fields in a domain �, due to an arbitrary eigenstrain distribution e*(x).
In the absence of body forces, the equations governing the eigenstrain problem are

stress equilibrium: div r ¼ 0,

stress-strain law: r ¼ c : ee ¼ c : ðe� e�Þ,

strain-displacement relationship: e ¼ Symgrad u:

ð4Þ

In these equations, p is the internal stress, c the elasticity tensor of the medium, ee the
elastic strain, e the total strain, u the displacement field, and Sym grad u denotes
the symmetric part of the displacement gradient. The boundary conditions depend on the
specific situation. In the case of an infinite domain, the eigenstrain distribution must
vanish faster than jxj�1 as jxj!1 for the problem to admit a solution. In the case of
dislocations, the eigenstrain is prescribed by the symmetric part of the plastic distortion
tensor resulting from the introduction of dislocations in the crystal. Here, we consider a set
of dislocation lines each of which bounds a slipped area on a particular crystallographic
slip plane. In this case, the total plastic distortion tensor bp is given by

bp ¼ �
X
�

dðS�Þ � b�, ð5Þ

in which b� is the Burgers (slip) vector corresponding to the �th slip area S�, d(S�) is the
(vector) dirac-delta distribution defined over S�, and d(S�)� b� denotes the tensor product
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of the two vectors. It is assumed here that each of the slip areas S� is bounded by
a dislocation line L�. In the case of an infinite domain, the set of dislocation lines can be in
the form of isolated loops, a closed network, or a mix of both. According to Mura [17] and
de Wit [23], the solution of this problem for a single dislocation loop is expressed
analytically in the form of a line integral along the loop with a kernel involving the infinite-
domain elastic Green function G(x� x0). Generalizing the results to a set of loops, the
corresponding displacement field u, the elastic part of the displacement gradient be

mn,
which is known as the elastic distortion, and the stress field can be written in the form

umðxÞ ¼
X
�

Z
S�
cijklGjm,iðx� x0Þb�l m

�
kðx
0ÞdA0,

be
mnðxÞ ¼ um,nðxÞ � bp

mnðxÞ ¼
X
�

I
L�
�pmkcijklGjn,iðx� x0Þb�l �

�
p ðx
0Þd‘0,

�ijðxÞ ¼ cijmn"
e
mn ¼ cijmn�

e
mn ¼

X
�

I
L�
�pmkcijmncijklGjn,iðx� x0Þb�l �

�
p ðx
0Þd‘0,

ð6Þ

where �pmk denotes the permutation tensor, m the unit tangent along the dislocation line,
m� the unit normal to S�, and ee¼ Symbe. We note that the equality c : "e¼ c :�e follows
from the symmetry property cijmn¼ cijnm of the elasticity tensor c.

In the case of a bounded crystal, the formulation of the eigenstrain problem must also
include the specification of the traction and/or the displacement boundary condition on
@�. Here, we consider an eigenstrain problem with a traction-free boundary condition.
We note, however, that it is possible to superpose solutions corresponding to a prescribed
traction and/or displacement condition on @�, once the eigenstrain part of the problem is
solved. In the case of a bounded domain, the eigenstrain problem is again described by
Equations (4), but it is now subject to the boundary condition p(x)n(x)¼ 0 on @�, which
can be handled numerically, such as by FEM, as was done by Lemarchand et al. [15,16], or
analytically. Analytical solutions of this type of problem usually involve volume integrals
of some kernel times the plastic distortion bp. Indeed, the integral representation of the
solution of the eigenstrain problem in bounded domains involves the so-called Neumann
tensor as a kernel [19]. This tensor is the bounded-domain counterpart of the infinite-
domain elastic Green function G(x�x0).

Kinoshita and Mura [19] and Mura [24] developed an integral representation of
the solution of the eigenstrain problem for dislocation loops. Mura’s results [24] for
the displacement, elastic distortion and stress fields were expressed in terms of the
corresponding plastic distortion as follows:

ujðxÞ ¼

Z
�

clmpqNjl,m0 ðx,x
0Þ�ppqðx

0Þd�0,

�ejkðxÞ ¼

Z
�

clmpqNjl,m0kðx, x
0Þ�ppqðx

0Þd�0 � �pjk,

�hiðxÞ ¼ chijk

Z
�

clmpqNjl,m0kðx, x
0Þ�ppqðx

0Þd�0 � chijk�
p
jk,

ð7Þ

in which the tensor Nij is the elastic Neumann tensor and the comma notation involving
a primed index indicates differentiation with respect to the primed coordinate. We keep
in mind that in the case of a discrete dislocation distribution the tensor �p is given by
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Equation (5), and thus the volume integrals in Equation (7) reduce to integrals over the

slipped areas. As shown by Mura [24], however, such surface integrals further reduce to

line integrals along the dislocation lines in the expressions for stress and elastic strain.

The Neumann tensor Nij appearing in the integral solution form (7) is given by

Njlðx, x
0Þ ¼ Gjlðx� x0Þ þHjlðx,x

0Þ, ð8Þ

where Gjl(x� x0) is the infinite-domain elastic Green function and the tensor Hjl(x, x
0) is

the solution of the differential equation

chijkHjl,kiðx, x
0Þ ¼ whlðx, x

0Þ, ð9Þ

subject to the boundary condition

chijkniðxÞHjl,kðx, x
0Þ ¼ �chijkniðxÞGjl,kðx� x0Þ: ð10Þ

In the above, n is the unit outward normal to @�, as previously specified, and the tensor-

valued function whl is given by

whlðx, x
0Þ ¼ j�j�1�hl þ �hij�

�1
jm �mlkð�i � xiÞð�k � x0kÞ, ð11Þ

with j�j being the volume of � and ��1jm the inverse of the tensor �jm defined by

�jm ¼ �jm	ii � 	jm: ð12Þ

In the above formulae, the tensor 	jm and the vector � i are defined by

	jm ¼

Z
�

ð�j � xjÞð�m � xmÞd� and �i ¼ j�j
�1

Z
�

xid�: ð13Þ

A few remarks are in order regarding the Kinoshita-Mura solution of the bounded-

domain eigenstrain problem. First, we note that (as asserted by the additive decomposition

of the Neumann tensor) the solution of this problem can be split into two parts, one part

corresponding to the infinite-domain problem and the other being the image field. Next,

when a bounded domain is free of external traction or displacement constraints, the issue of

global equilibrium of the domain becomes important. Indeed, the overall force and moment

balance was enforced in fixing the solution of the bounded-domain eigenstrain problem in

[19]. Furthermore, although splitting the overall solution into an infinite-domain

contribution plus an image correction supports the ansatz of additive decomposition of

the solution (1), this decomposition cannot be classified as a superposition in the strict sense

of the term in the theory of linear elasticity. In linear elasticity, superposition rather implies

that more than one solution, each of which corresponds to a well-posed boundary value

problem, are added together to obtain the solution corresponding to the sum of the

boundary conditions and/or sources associated with the individual problems. In the case of

dislocations in a bounded crystals, the infinite-domain contribution may or may not

constitute a solution of a well-posed problem, depending on whether the dislocation

configuration is closed inside the boundary or open with lines ending on the boundary.

Finally, we emphasize that the solution of the subsidiary boundary value problem given by

Equations (9) through (11) is still required to complete the eigenstrain problem solution. In

the case of dislocations, this subsidiary boundary value problem is recast in the form of

a problem of finding a fourth-order tensor field [24].

3532 J. Deng et al.
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3. A new statement of the boundary value problem

In dislocation dynamics simulation models, the infinite-domain stress expression for
dislocation segments (of finite or differential length) provides a basis for computing the
long-range interactions of dislocations. As far as bounded crystal volumes are concerned,
the Kinoshita-Mura line integral form for the elastic field of dislocations [24] can also be
cast as a sum of contributions by dislocation segments. However, the implementation of
the Kinoshita-Mura formalism requires the solution of an additional boundary value
problem to completely fix the Neumann tensor field. On the other hand, compared with
the Kinoshita-Mura formalism, the decomposition ansatz discussed earlier for the overall
stress field of dislocations, see Equation (1), is more attractive because methods such as
FEM or BEM can be used to solve the image field problem systematically. Before pursuing
this approach, it is important to fix the statement of the image field boundary value
problem.

As stated earlier, previous attempts to fix this problem focused on satisfying the
traction-free boundary condition but overlooked the development of a correct local form
for stress equilibrium. That is, the problem was set up based on the assumption that the
image field is completely fixed by the boundary condition that the overall stress field is
traction free. Of course this assumption is justified if the dislocation configuration is fully
contained within the finite domain �, with no dislocations ending on its boundary.
However, when dislocations end on the boundary a different treatment is required and
a new statement of the boundary value problem is needed for the image field of
dislocations in bounded domains.

The starting point for studying the stress equilibrium for dislocations in a bounded
domain with a traction free boundary is to enforce the following two conditions on the
overall stress field,

div rðxÞ ¼ div r1ðxÞ þ ~rðxÞð Þ ¼ 0, x 2 �,

r1 þ ~rð ÞnðxÞ ¼ 0, x 2 @�,
ð14Þ

where p1 is the stress field of the dislocation configuration computed using the famous
line-integral form used in infinite-domain problems, see for example Equation (17), and
~r is the image stress field. The former contribution may of course be cast as the sum of
contributions by individual segments contained in �. It is important to note here that the
decomposition of the total stress field into two components can be arbitrary and that
specifying one of these components to be the stress field of the dislocation configuration
in an infinite medium is a matter of convenience in the present case. Making use of the fact
that the Kinoshita-Mura solution discussed above shows that taking the infinite-domain
stress of dislocations as a part of the overall stress field is a natural choice, the conditions
in Equation (14) lead to the following statement of the elastic boundary value problem for
the image stress field of dislocations in a bounded domain:

stress equilibrium: div ~rðxÞ þ ~fðxÞ ¼ 0, ~fðxÞ ¼ divr1ðxÞ, x 2 �,

traction boundary condition: ~rnðxÞ ¼ ~tðxÞ, ~tðxÞ ¼ �r1ðxÞnðxÞ, x 2 @�,

stress-strain law: ~r ¼ c : Symgrad ~u:

ð15Þ

Here ũ is the image displacement field. It is clear that, in addition to the traction boundary
condition specified by ~t on @�, which is the inverse of the residual traction left by the
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infinite-domain solution, the image field is in general not divergence free. Rather, its
divergence is equal to a distributed body force completely fixed by the divergence of the
stress field p1 of the dislocation configuration, which is computed as if the dislocations
were contained in an infinite domain. We remark here that the body force ~f ¼ divr1ðxÞ

vanishes identically if the dislocation configuration in � is fully closed. We remark further
that additional external traction or displacement conditions can be added to the above
statement of the boundary value problem by the usual superposition principle of linear
elasticity.

We note that the overall stress field of dislocations in a bounded domain � can be
fixed completely by solving the boundary value problem given in Equation (15) for the
image stress, and adding to this solution the infinite-domain stress contribution by the
dislocation segments contained in �. An implementation of this approach is in
progress. We anticipate that the use of FEM to solve the (elastic) image field
problem (15) will be easier than the approach of Lemarchand et al. [15,16]. This is
because the FEM solution of the elastic image field problem is much less
computationally intensive than solving the combined crystal-plasticity/dislocation-
dynamics problem. Moreover, the scheme developed here will be simpler than dealing
with the subsidiary boundary value problem required to fix the Neumann tensor field
in the Kinoshita-Mura formulation.

The following global equilibrium conditions follow from the statement of the boundary
value problem given in Equation (15) above:

null force resultant:

Z
@�

~tðxÞdAþ

Z
�

~fðxÞd� ¼ 0,

null moment resultant:

Z
@�

~tðxÞ � ðx� x�ÞdAþ

Z
�

~fðxÞ � ðx� x�Þd� ¼ 0:

ð16Þ

As will be shown below, these conditions are important for testing the accuracy of the
finite element solution of the image field boundary value problem. For this purpose, the
first of these conditions is sufficient as the second follows from the first and the symmetry
of the stress tensor.

4. Implications for the method of dislocation dynamics simulation

In dislocation dynamics simulations, the crystal volume under consideration is always
finite. Depending on the imposed boundary conditions, this volume can represent
a bounded crystal or a RVE whose (average) response is equivalent to the response of a
uniformly loaded infinite crystal. The question of which boundary conditions apply to the
simulation volume in the two cases has been addressed previously by El-Azab [7], where
two types of boundary conditions were formulated, the elastic boundary conditions and
the dislocation flux boundary condition. With regard to the elastic boundary condition, it
was shown for the case of a bounded crystal that the total stress field in the crystal consists
of the infinite-domain stress field of dislocations plus an image field determined such that
the crystal surface remains traction free. In the case of an RVE, on the other hand, the
requirement that the volume average of the RVE response be equal to the average response
of the infinite crystal leads to the conditions that the average of the dislocation stress field
over the RVE must vanish. This condition implies that the stress contribution within the
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RVE by dislocations from outside the RVE is the same as the image field of dislocations

contained within the RVE itself.
The important inference to draw from the above result is that the bounded crystal and

the RVE situations are basically the same when it comes to internal stress computation.

However, for the case of a bounded crystal, as pointed out in the introduction, only the

method by Lemarchand and coworkers [15] yields an accurate solution, albeit at the cost

of solving a relatively complex plasticity problem by the FEM method. For the case of an

RVE, on the other hand, the available simulation models employ periodic boundary
conditions to enforce statistical homogeneity; see for example the ParaDiS model [3]. This

periodicity entails a significant complexity in computing the image field. An early proposal

for computing the image field in the context of periodic boundary conditions was to use

the minimum image convention and a pre-tabulation and interpolation scheme of long

range stress [25]. Basically, in [25] the stress field of differential dislocation segments was

pre-tabulated with both the source and field points on a regular grid, which was then

interpolated for use during the actual field computation. Unfortunately, the minimum

image convention procedure does not capture the long range interactions well because

these interactions are cut off beyond one box size. Consideration of more complete

periodic sums and their conditional convergence in the case of dislocation dynamics has

been addressed in [26]. In actual implementation, however, the sum is taken over a large

number of images.
Based on the above observations, it is clear that the problem of stress computation in

dislocation dynamics simulation requires further improvement. The formulation of this
problem given in the previous section provides a powerful alternative in this regard that

is both simple and exact, since it satisfies the stress equilibrium rigorously for both the

bounded crystal and RVE situations. For the RVE case in particular, this will give a self-

consistent representation of the elastic interactions between the dislocations in the central

simulation volume and in the rest of the infinite crystal, without making any assumptions

(e.g. periodicity) about the dislocation structure outside the simulation volume. Compared

with periodic boundary conditions, this is indeed a remarkable development.

5. Approximate solution

The solution of the exact boundary value problem (15) is in progress. In this section,

however, an approximate solution based on the virtual dislocation concept [6] is pursued

to gain insight into the convergence characteristics of the solution and to provide a means

for comparison with the solution of the exact boundary value problem. The

implementation of the virtual dislocation solution here differs from that reported in [6]

in two respects. First, we ensure the equilibrium of the reversed traction, in the sense of

Equation (3), by extending the segments touching the surface of the domain of solution to

infinity. Second, to compute the traction boundary condition for the image field, we use

the non-singular stress solution developed in [20] for the field p1. We note here that the

extension to infinity of the segments touching the surface can be done arbitrarily, which

renders the contribution to ~t by the (virtual) dislocations outside � dependent on how the
configuration of these dislocations is constructed. This does not pose a serious issue,

though, because the error associated with the construction of the virtual dislocation

configuration is much smaller than the error arising due to the violation of equilibrium if
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such dislocations were completely ignored. With this argument justifying the use of virtual

dislocations to approximate the image field, we will test the effectiveness of combining

the finite element method and the non-singular infinite domain solution of dislocation

segments for computing the image stress field.
The superposition principle used with the virtual dislocation method is illustrated in

Figure 1. Because the actual dislocation structure is augmented by semi-infinite segments,

the infinite domain solution of the extended dislocation system is divergence-free.

Consequently, the image field is also divergence free and satisfies the boundary condition
~rn ¼ ~t ¼ �r1n on the boundary @�. This problem is solved here using FEM, where p1

has contributions from both the actual dislocation configuration within the solution

domain and the virtual dislocation extensions outside this domain. The non-singular form

of p1 developed in [20] is used in the current implementation, which is denoted here by

pns,1. For a dislocation loop L in an infinite isotropic medium, this stress field is expressed

in the form

�ns,1�� ðxÞ ¼



8�

I
L

@i@p@pRa bm�im� dx
0
� þ bm�im�Ra dx

0
�

h i

þ



4�ð1� �Þ

I
L

bm�imk @i@�@�Ra � ���@i@p@pRa

� �
dx0k, ð17Þ

where @i� @/@xi, Ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2
p

, and R¼ jx� x0j, 
 is the shear modulus, and � is the

Poisson’s ratio. The parameter a represents the width of the dislocation core, which we call

here the non-singular parameter. The residual traction ~t based on this expression is non-

singular in the neighborhood of the points of intersection of the dislocation lines with the

domain boundary. For computational purposes, the line integral in expression (17) is

converted into a sum of integrals over linear dislocation elements of finite length; see [20]

for further details. For the sake of completeness, we have also developed complimentary

expressions for the non-singular elastic rotation and strain tensors; these are given,

respectively, by

!ns,1
ml ðxÞ ¼

1

16�

I
L

�lik bi@m þ bm@ið Þ þ �imk bl@i þ bi@lð Þ½ �@j@jRa dx
0
k,

"ns,1ml ðxÞ ¼ �
1

16�

I
L

bp �km�pql þ �kl�pqm � 2�lm�pqk
� �

@q@j@jRa þ
2

1� �
�pjk@l@j@mRa

� �
dx0k:

ð18Þ

Figure 1. Illustration of the superposition principle with virtual dislocations.
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The FEM computational algorithm for the image stress field proceeds as follows:

(i) For a given dislocation configuration in a finite domain, extend all dislocation

segments intersecting the surface to infinity. The new configuration consisting of

the actual configuration inside � and the virtual dislocations is called the

augmented dislocation configuration.
(ii) Calculate the residual surface traction from the infinite domain stress of the

augmented dislocation configuration, reverse its sign and use the result to

determine the nodal forces acting at the boundary nodes of the FEM mesh for

the image field solution. The residual traction is required only at the quadrature

points of surface element.
(iii) Check to see if Equation (3) is satisfied by the computed nodal forces. Here we

focus mainly on the sum of the nodal forces
P

Fn¼FR, which is zero if it captures

the traction integral in (3) exactly. Non-zero values of the sum may arise due to

a coarse FEM mesh, inadequate quadrature order or boundary traction

singularities.
(iv) Subtract the rigid-body motion by fixing six degrees of freedom in the resulting

FEM system of equations. Rigid translation is prevented by setting the

displacement of a point equal to zero in three directions, and rigid rotation is

prevented by setting the displacement of three other points equal to zero, in one

(different) direction per point.
(v) Solve the FEM system of equations for the displacement field, obtain the strain

from the displacement, and then use the strain to compute the image stress using

Hooke’s law. The image stress is then added to the infinite-domain solution to fix

the overall stress.

The resulting finite element system has the form: Kũh¼F, where K is the stiffness

matrix, ũh the displacement vector, and F the nodal force vector. As noted above, this

system cannot be solved without subtracting the rigid-body motion, which is accomplished

by fixing six degrees of freedom as explained above. If FR (defined in step (iii) above) is

sufficiently close to zero, the solution of the FEM system yields boundary reactions that

are sufficiently close to the nodal forces computed using the residual traction, which means

that the conditions (3) are accurately satisfied. To ensure that this indeed is the case, the

mesh resolution and quadrature order are selected to ensure acceptably small values of FR.

The selection of suitable mesh resolution and quadrature order do, of course, depend on

the non-singular parameter a.

6. Convergence tests and application

A simple dislocation configuration has been used to test the above computational

algorithm for the image field of dislocations. The domain � is chosen to be a cube of

side ‘, with the origin at the center. The dislocation configuration consists of three

segments contained within the cube. Two of these segments are extended to infinity along

their respective directions to form the virtual dislocations outside the box. Table 1

summarizes the coordinates of this five-segment configuration. Segment S1 and S5 are

virtual segments, representing the extension of segments S2 and S4, respectively to infinity.

This configuration is denoted as C1. In order to study the effect the virtual dislocations on
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the resulting image field, an alternate virtual dislocation configuration is considered;
a second configuration C2 is constructed from C1 by extending the virtual segments S1
and S5 to infinity at arbitrary angles. Namely, the pair of angles (
, �) defining the
direction of the virtual segments, see Table 1, are set equal to (0.32�, 0.45�) for segment S1
and to (0.16�, 0.54�) for segment S5.

The elastic and crystallographic properties of the domain containing the dislocations
here are chosen to correspond to a Mo crystal with a shear modulus of 130 GPa and
a Poisson’s ratio of 0.31. The primary slip systems of Mo are of the type �a/2 h111i {110},
with the magnitude of the Burgers vector b¼ 2.725 Å. These Burgers vectors include
�a/2[111], �a=2½11�1�, �a=2½1�11�, and �a=2½1�1�1�, with �a being the lattice parameter (not to be
confused with the non-singular parameter a). The Burgers vectors are denoted here by b1,
b2, b3 and b4, respectively. The cubic Mo crystal domain under consideration here has an
edge length of ‘¼ 17.5� 103 b (	4.77mm), and the test dislocation configurations C1 and
C2 have Burgers vectors of the type b1.

The convergence of the computational algorithm outlined earlier has been investigated
with respect to three parameters: the non-singular parameter a, the FEM mesh density
represented by the parameter NE and the order of quadrature Q used in computing the
surface forces from the residual traction. Here, the parameter a is expressed in units of
Burgers vector. We note that the classical singular solution of dislocations in an infinite
domain (see, for example, [27]) is recovered exactly from the non-singular stress expression
(17) in the limit a! 0. Hence, the smaller the value of the parameter a, the closer to the
singular expression the non-singular solution becomes. As for the FEM implementation,
the crystal domain under consideration has been meshed into cubic trilinear (isopara-
metric) elements constructed by partitioning the cube edges into NE elements; therefore,
the solution domain contains a total of N3

E finite elements. The surface elements are thus
square, two-dimensional elements and a quadrature order Q means that each surface
element contains Q2 Gauss quadrature points. As shown below, the appropriate mesh
resolution and quadrature order depend on the value of the parameter a, and the interplay
between these three parameters is studied by investigating the quantity

P
Fn¼FR as

a function of the these parameters. This quantity, which is the integral of the traction over
the boundary, is itself the numerical error of the traction integral because it must be zero
if the nodal boundary forces are computed accurately.

Figure 2 shows a plot of the boundary traction integral error FR for a non-equilibrium
situation in which the image traction is due to the interior dislocation segments alone;

Table 1. Dislocation configuration used to test the computational algorithm.

Segment Start pointa End pointa Orientation (
, �)b

S1 1 ð�0:25,�0:25
ffiffiffi
3
p

,�0:5Þ (�4,
�
3)

S2 ð�0:25,�0:25
ffiffiffi
3
p

,�0:5Þ (0, 0, 0) (�4,
�
3)

S3 (0, 0, 0) (0, 0, 0.25) (0,�)
S4 (0, 0, 0.25) (0.125

ffiffiffi
3
p

, 0.125, 0.5) (�4,
�
6)

S5 (0.125
ffiffiffi
3
p

, 0.125, 0.5) 1 (�4,
�
6)

aCoordinates in units of the box size ‘.
b
 is the angle between the segment and x3-coordinate. � is the angle between the projection of
segment onto the x1x2-plane and the x1-coordinate.
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Figure 2. Boundary traction integral error FR corresponding to interior segments of dislocation
configuration C1. (a) Q¼ 3 and a¼ 5. (b) NE¼ 30 and a¼ 5. (c) NE¼ 30 and Q¼ 2.
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see Table 1. Figure 2a shows the magnitudes of the components of FR as a function of the

mesh density parameter NE for a¼ 5 and Q¼ 3. In Figure 2b, these magnitudes are plotted

against Q for NE¼ 30 and a¼ 5, while in Figure 2c, they are plotted against a for NE¼ 30

and Q¼ 2. The large imbalance of the residual traction for all values of a, Q and NE clearly

demonstrates the need for virtual segments to ensure equilibrium.
Figure 3 displays FR as a function of the FEM mesh density parameter for Q¼ 3

(part a) and as a function of quadrature order for NE¼ 30 (part b), for the augmented

dislocation configuration C2. In both cases, the non-singular parameter a is set equal to

zero, meaning that the singular field of dislocations is used to compute the residual

traction. We note that, because the analytical form of the residual traction does satisfy

equilibrium, the magnitudes of the components of the error FR are about an order of

magnitude smaller than their counterparts displayed in Figure 2, where the dislocation

Figure 3. Boundary traction integral error FR plotted against mesh density and quadrature order for
dislocation configuration C2 when a¼ 0. (a) Q¼ 3. (b) NE¼ 30.
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configuration does not satisfy equilibrium. However, in spite of the fact that the singular
stress field of the augmented configuration C2 satisfies equilibrium and reasonably good

mesh density and quadrature order were used, the error FR is still unacceptably high. This
indicates that, for the mesh resolution and quadrature order used, the nodal force values
are inaccurate due to the high gradients of the residual traction near the points of
intersection of dislocations with the surface. Therefore, a further increase in the mesh

resolution and/or quadrature order is required to capture the nodal forces accurately. This
result is consistent with the findings in [6], where fine resolution and high quadrature
order, up to Q¼ 10, were used in some cases. We remark here that, in dislocation dynamics
simulations, the image field is required to be updated at every time step, and thus a finely
resolved FEM mesh combined with a high quadrature order can raise the computational

cost significantly.
The examples in Figures 2 and 3 show clearly that accurate and practical FEM

computations of the image field of dislocations in bounded domains require that both the
equilibrium of residual traction and the traction singularities on the boundary be dealt
with satisfactorily. This fact is illustrated in the examples shown in Figures 4 and 5. In

Figure 4 the magnitudes of the components of FR are shown as functions of the mesh
density parameter, quadrature order and the non-singular parameter a, for the augmented
dislocation configuration C2. In Figure 5 the same is shown for augmented configuration
C1. In both cases, the residual traction is based on the non-singular stress formula (17).
It is important to note that the components of FR decay roughly exponentially to

negligible values for moderate mesh density, relatively low quadrature order and small
values of the non-singular parameter. Based on Figures 4 and 5, it is obvious that
quadrature of fourth or fifth order and a non-singular parameter in the range 5–10 would
yield accurate nodal forces at moderate FEM mesh resolution; this corresponds to a/dq in

the range 0.05–0.1, where dq is the average distance between Gauss quadrature points.
In order to determine the effect of the virtual dislocation construction on the image

field, the L2 norm of the difference between the image stresses corresponding to the
augmented configurations C1 and C2 has been computed. In doing so, the following
formula has been used:

L2 ¼
1

N3
E

XN3
E

k¼1

~�C1ij ðkÞ � ~�C2ij ðkÞ
	 
22

4
3
5

1=2

, for i, j ¼ 1, 2, 3: ð19Þ

The image field was computed here by analytically averaging the stress field over each
element and assigning the result to the center of the element. The L2 norm results are
summarized in Table 2. In this particular example, the following parameters were used:
NE¼ 30, Q¼ 5 and a¼ 5. The maximum value of the magnitude of image stress

components was on the order of 50MPa, which occurs at the boundary near the
dislocation intersection. The L2 norm is thus much smaller than the maximum numerical
value of the image field in the domain of solution. Although this is a good indicator of the
weak effect the virtual dislocation configuration has on the image field, one must take this

result with some caution, because it is not just the average difference between the stresses
of C1 and C2 that matters. The point-by-point comparison of the fields is also important
in assessing the impact of the virtual dislocation construction on the image field.
Such a comparison would be difficult to do here because the FEM mesh involves about
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Figure 4. Convergence of the boundary traction integral error with mesh density, quadrature order
and non-singular parameter for dislocation configuration C2. (a) Q¼ 3 and a¼ 5. (b) NE¼ 30 and
a¼ 5. (c) NE¼ 30 and Q¼ 2.
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Figure 5. Convergence of the boundary traction integral error with mesh density, quadrature order
and non-singular parameter for dislocation configuration C1. (a) Q¼ 3 and a¼ 5. (b) NE¼ 30 and
a¼ 5. (c) NE¼ 30 and Q¼ 2.
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27,000 elements. However, we remind the reader that the goal of the current exercise is to
test the use of the non-singular infinite-domain solution with the FEM method for image
field calculations. Based on Figures 4 and 5, this seems to offer a very good combination of
methods to solve for the image field.

For the sake of illustrating the applicability of the solution method outlined here to
large scale problems, the method has been used to compute the internal stress arising due
to complex dislocation configurations in a cubic crystal volume of size ‘¼ 17.5� 103 b.
These dislocation configurations have been obtained using the dislocation dynamics
simulation code ParaDis [3]; see [28] for the material parameters. We alert the reader here
that the method under testing in this section was not used as part of the ParaDiS code
simulations. In obtaining the dislocation configurations, the crystal was loaded in the [100]
crystallographic direction at a constant strain rate. Because of the multiple slip nature
of this loading, the dislocation configuration includes dislocations with the four types of
Burgers vectors mentioned previously. A typical dislocation configuration is shown in
Figure 6, featuring a large number of dislocation segments. In computing the total stress

Figure 6. Typical dislocation configuration in Mo crystal of size 4.77mm strained to 0.5% at strain
rate of 10 s�1.

Table 2. L2 norm of the difference between image stresses for augmented dislocation
configurations C1 and C2.

Stress component ~�11 ~�12 ~�13 ~�22 ~�23 ~�33

L2 norm
a 0.200 0.130 0.079 0.180 0.068 0.140

ain MPa.
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field, the non-singular parameter a is set to 5, and the image field is computed using a mesh
parameter NE¼ 30 and quadrature order Q¼ 5; both the infinite-domain and image field
contributions were averaged analytically over each finite element and this value (in units of
MPa) was assigned to the center of the element to display the result.

A sample calculation of the internal stress field in the crystal is shown in Figure 7.
The figure displays the spatial distribution of the stress component �33 at crystal strain

Figure 7. Distribution of �33 in a Mo crystal of size 4.77mm at strains �¼ 1.5� 10�2 (in a) and
�¼ 2.23� 10�2 (in b) and strain rate _� ¼ 1 s�1.
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�¼ 1.5� 10�2 (part a) and �¼ 2.23� 10�2 (part b), where the crystal was strained at a rate
_� ¼ 1 s�1. The complexity of the internal stress distribution is apparent in this sample

result, and it is obvious that a formal statistical analysis method is required in order to

make quantitative statements about such distributions. While a full analysis of the stress

distribution is outside the scope of this paper, some qualitative remarks on its salient

features are in order. One important feature is that the stress distribution can exhibit

a tendency toward internal patterning (Figure 7). The stress distribution is of course

connected with the spatial distribution of the dislocation density. Hence, the discreteness

of the dislocation density is the decisive factor in dictating the spatial fluctuations of the

internal stress. Other results (not shown here) indicate that the morphological features of

stress patterning depend strongly on the level of crystal strain and strain rate, which is

not surprising since these two parameters are known to affect dislocation density and its

distribution in the crystal.
The internal stress field of dislocations in crystals must of course average to zero over

the crystal volume because dislocations are internal stress sources. The local value of the

internal stress thus represents the local stress fluctuation relative to its volume average.

These fluctuations can be characterized quantitatively by the spatial correlation of the

internal stress distribution. Accordingly, statistical analyses along these lines are underway

with the goal of establishing a direct link between dislocation dynamics simulations and

sub-micrometer resolution 3D X-ray microscopy measurements of the internal

elastic fields (strain and rotation) in crystals containing high densities of dislocations

[21,22,29,30]. Establishing such a link will be critical for detailed evaluation of the

predictive capabilities of mesoscale plasticity models.

7. Concluding remarks

The present paper contains two contributions. The first contribution is a formalism for the

elastic boundary value problem of dislocations in bounded crystals that rigorously

describes stress equilibrium, and the second is the demonstration of an approximate

solution of this problem based on the concept of virtual dislocations.
With respect to the elastic boundary value problem addressed in Section 3, it is

important to emphasize that the formalism presented here provides a definitive method

for describing stress equilibrium in bounded crystal domains with complex dislocation

configurations, irrespective of how the boundary value problem is solved. This result

provides a useful framework for solving the long-range interaction problem in dislocation

dynamics problems when considered along with the conclusion reached earlier by one of

the authors in [7], that the bounded crystal and RVE are equivalent when it comes to

image stress calculation.
The greatest benefit of this framework is expected to be for the case of an RVE, where

no assumptions (such as periodicity) regarding the dislocation configuration outside of the

simulated crystal volume are needed to compute the evolution of dislocation structure

inside the domain. This is a remarkable result given the complexity and cost of computing

the image fields when periodic boundary conditions are considered in the case of RVE

simulation.
The approximate solution presented in Sections 5 and 6 has been pursued here mainly

to examine the use of FEM techniques in conjunction with non-singular infinite-domain
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dislocation stress [20] for solving the image field problem of dislocations. We have shown
that the removal of the singularity from the classical solution of the stress field of
dislocations makes it significantly easier to use the FEM technique to solve the image field
boundary value problem. In particular, it has been shown that residual dislocation
boundary traction can be captured accurately into nodal forces when the singularity of the
dislocation stress field is smeared over a distance of several Burgers vectors. This, in turn,
makes it possible to solve the image field problem for complex dislocation configurations
by the FEM method using only moderate quadrature order and moderate finite element
mesh resolution. The importance of this result is that it opens the door for the use of the
non-singular stress solution developed in [20] in conjunction with the FEM technique to
solve image field boundary problems within dislocation dynamics models.

The complex nature of the internal elastic fields in crystals containing high densities of
dislocations underscores the need for statistical analysis to obtain quantitative measures of
the spatial distributions of these fields. Combined with statistical models of the dislocation
populations, e.g. those developed in [28], such analysis of internal elastic fields will help
close the crystal mechanics part of the kinetic theory of dislocations [31] self-consistently.
In addition, statistical analyses of the internal elastic fields of dislocations will make
possible a quantitative comparison between the predictions of dislocation dynamics
simulations and 3D X-ray microscopy measurements of internal elastic fields in deformed
crystals [21,22,29,30].
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