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Dislocation Density Tensor
Characterization of Deformation
Using 3D X-Ray Microscopy
Three-dimensional (3D) X-ray microscopy with submicron resolution has been used to
make spatially resolved measurements of lattice curvature and elastic strain over two-
dimensional slices in thin deformed Si plates. The techniques and capabilities associated
with white-beam 3D X-ray microscopy are discussed, and both theoretical and experi-
mental considerations associated with the measurement of Nye dislocation density ten-
sors in deformed materials are presented. The ability to determine the local geometrically
necessary dislocation (GND) density in the form of a dislocation density tensor, with
micron spatial resolution over mesoscopic length scales, is demonstrated. Results are
shown for the special case of an elastically bent (dislocation free) thin Si plate and for a
similar thin Si plate that was bent plastically, above the brittle-to-ductile transition tem-
perature, to introduce dislocations. Within the uncertainties of the measurements, the
known result that GND density is zero for elastic bending is obtained, and well-defined
GND distributions are observed in the plastically deformed Si plate. The direct and
absolute connection between experimental measurements of GND density and multiscale
modeling and computer simulations of deformation microstructures is discussed to high-
light the importance of submicron-resolution 3D X-ray microscopy for mesoscale char-
acterization of material defects and to achieve a fundamental understanding of deforma-
tion in ductile materials. �DOI: 10.1115/1.2884336�
Introduction
Lattice defects in crystalline materials, such as point defects,

efect clusters, dislocations, grain boundaries, and inclusions,
lay an important role in determining the strength of materials.
ndeed, processing of materials often aims to adjust the types and
ensity of such defects to achieve certain strength and perfor-
ance objectives. For example, the processing of metallic mate-

ials, especially structural alloys, uses multiple thermomechanical
teps to adjust the phase composition, texture, and grain size dis-
ribution in the alloy. For the class of structural alloys, however,
lastic deformation, which is dominated by a collective disloca-
ion behavior, is a central issue of mechanical behavior. For this
eason, the study of dislocations and their behavior in the context
f metal deformation has been at the core of the mechanical met-
llurgy field; the conceptual, theoretical, and experimental accom-
lishments dating back to the 1950s when dislocations were first
bserved in the electron microscope now constitute the well
nown theory of dislocations �1,2�.

Transmission electron microscopy �TEM� provides very high
patial resolution and is unequalled for imaging individual dislo-
ations and related defects. X-ray microscopy and electron mi-
roscopy represent complementary tools for the investigation of
eformation-induced defects in crystals. Although X-rays are able
o image single dislocations in highly perfect crystals �3�, the
islocation density in deformed crystals quickly becomes too high
or single dislocation imaging to be feasible using X-rays. On the
ther hand, X-rays are able to provide crystal deformation infor-
ation on much larger length scales �4–7�. For instance, the col-

ective nature of dislocation aggregation and patterning over me-
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soscopic length scales �tenths of microns to hundreds of microns�
cannot be addressed effectively by TEM. Moreover, the penetra-
tion power of X-rays makes it possible to probe elastic strain and
lattice curvature induced by dislocation distributions nondestruc-
tively �i.e., without sectioning the samples for observation�
�5,7,8�. Furthermore, on mesoscopic length scales, the response of
dislocation density, rather than individual dislocations, to both ap-
plied and self-generated stresses becomes critical in understanding
their overall evolution.

As discussed in recent reviews �9–12� and as is evident from
the increasing activity associated with spatially resolved 3D X-ray
investigations of materials �13�, we are in the midst of a revolu-
tion in spatially resolved X-ray investigations of materials. This
revolution is driven scientifically by the fact that critical proper-
ties of almost all materials of significant technological and scien-
tific interest derive from the heterogeneity of the material micro-
structure and its complex and hierarchical nature. Revolutionary
advances in X-ray microscopy capabilities have been fueled by
rapid developments in X-ray optics, high brilliance synchrotron
X-ray sources, and high-resolution charge coupled device �CCD�
X-ray area detectors, and by the development of new and power-
ful 3D X-ray microscopy techniques.

Two types of three-dimensional diffraction x-ray microscopy
have been developed �9�. One in the form of “3D crystal micros-
copy” �11,14,15�, as developed by RISØ at the ESRF, utilizes
high-energy monochromatic X-rays in the range of �50 keV; it is
a powerful technique that has been widely applied for the inves-
tigation of deformation in materials as well as other applications.
This technique uses a rotating crystal method and has demon-
strated spatial resolution down to a few microns �11�. The second
technique �the one used in this study� is medium energy
�5–25 keV� white-beam 3D X-ray microscopy as developed by
Oak Ridge National Laboratory �ORNL� at the Advanced Photon
Source �APS� facility �4–10,13,16�. It achieves point-to-point sub-
micron spatial resolution through the use of differential-aperture
�knife-edge� depth profiling.

In this paper, we review the differential-aperture X-ray micros-

copy �DAXM� method for achieving submicron spatial resolution
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n three dimensions �4� and demonstrate the use of 3D X-ray
icroscopy to measure the geometrically necessary dislocation

GND� density over mesocopic length scales in elastically and
lastically deformed thin silicon plates. The dislocation density
ensor as introduced by Nye more than 50 years ago �17� is an
mportant and fundamental quantity characterizing dislocation dis-
ributions in crystals, and it serves as a direct link between experi-

ental measurements and computational modeling of deformation
18–21�. This paper extends results demonstrated for 3D measure-
ents of dislocation density tensors with micron spatial resolution

long a single line in elastically and plastically deformed Si plates
5� to measurements over an areal slice within deformed Si plates.
he results represent the first demonstration of nondestructive,
oint-to-point, micron-resolution 3D X-ray microscopy determi-
ations of full dislocation density tensors over a mesoscopic area
n bulk material. The theoretical background associated with dis-
ocations in elastic media is discussed in relation to elastic strain
nd lattice rotations in deformed crystals as measured by the
-ray technique described here. The importance of nondestruc-

ive, spatially resolved measurements of local lattice strain and
attice rotation is emphasized, and the connection between these

easurements and emerging mesoscale models of deformation
ased on dislocation density evolution is discussed.

Submicron-Resolution 3D X-Ray Microscopy
As mentioned above, the confluence in the last 10–15 years of

igh brilliance synchrotron X-ray sources, high precision X-ray
ocusing optics, and high-performance CCD X-ray detectors has
ed to revolutionary advances in spatially resolved X-ray probes
9�. Although the DAXM �knife-edge profiling� experimental
echnique has been described previously, important aspects of the
ifferential-aperture approach to depth profiling and 3D X-ray mi-
roscopy will be recalled here for completeness.

Figure 1 shows a schematic illustration of the DAXM technique
n which either white �polychromatic� or monochromatic synchro-
ron X-rays are directed to crossed Kirkpatric–Baez focusing mir-
ors. The achromatic nature of forward scattering mirrors focuses
ll wavelengths to the same point with an �0.5 �m diameter and
n �0.5–1 mm depth of field. White microbeams produce full
aue diffraction patterns from each part of the sample irradiated
y the microbeam, so rotations of the sample are not used during
easurements �16�. The use of submicron X-ray beams provides a

wo-dimensional �2D� spatial resolution perpendicular to the beam
irection; however, the diffraction patterns from each submicron
ength segment along the beam are superposed on the CCD detec-

ig. 1 Schematic view of the beamline configuration for the
OR/UNI Sector 34 3D X-ray microscopy facility at the APS.
hite synchrotron radiation is incident onto upper and lower

lits that pass either white radiation directly to the crossed K-B
irrors „top… or, reflecting off the two-bounce monochromator

bottom…, deliver a scanning monochromatic beam to the mir-
ors. The beam is focused to È0.5 �m at the position of the
chematic bent-plate sample. A CCD area X-ray detector is
ounted at 90 deg to the incident microbeam, and the depth-

rofiler wire is advanced with submicron steps through the dif-
racted beams to obtain 3D spatial resolution.
or and must be resolved.
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The DAXM technique depth resolves entire Laue diffraction
patterns from each micron �or submicron� segment along poly-
chromatic microbeams. Depth-resolved information is extracted
by collecting diffraction patterns on the CCD detector for each
step of the profiler wire �50 �m Pt in this case� as the wire is
translated through the Laue diffraction patterns �4,6,22�. The dis-
tance from the profiler to the sample surface is normally less than
200 �m, while the distance from the profiler to the detector is
usually in the range of 30–50 mm; therefore, the 24 �m pixel
size of the CCD contributes only �0.1 �m of parallax at the
microbeam position. Of course, a micron width aperture would be
preferred for performing depth sorting, but for the hard X-rays
�5–25 keV� used here would require slits with �10 �m thick-
ness. This would be more of a collimator passing only a few
degrees of the angular spread of the diffraction pattern, whereas
the full ��45 deg� angular range of the Laue diffraction pattern
striking the detector is required. The circular cross section of the
Pt wire ensures that diffracted rays at all angles are occluded by
the same profiler shape, independent of angle. Therefore, by
knowing the position of the wire and the position of a particular
pixel, it is possible to triangulate back to the microbeam position
to determine the source of diffracted rays on the detector. By
successive CCD image collection, submicron wire stepping, im-
age subtraction, and pixel-by-pixel triangulation back to the beam
position, computer collation can be used to reconstruct entire
�white-beam� Laue diffraction patterns from each segment along
the microbeam. The individual depth-resolved diffraction patterns
can then be analyzed as diffraction from single points �depths�
along the microbeam using the same crystallographic analysis
techniques developed for white microbeam diffraction from thin
films �16,23�.

Since this process produces full diffraction patterns for each
depth, it is possible to determine the crystallographic orientation
by automated computer indexing of the 10–50 peak Laue diffrac-
tion patterns; it is further possible to analyze the details of the
diffraction patterns to extract deviatoric �cell shape� elastic strain.
Dilatation �lattice expansion/compression� strain information can
be obtained using the scanning monochromatic beam capability
shown in Fig. 1 �13,23�, where monochromatic beams provide
energy information to be used in connection with the angular in-
formation provided by the CCD detector to obtain absolute lattice
parameter measurements using individual Bragg diffracted beams.
By performing scans of the Pt wire depth profiler for each position
of the microbeam in a 2D area scan over the surface of the
sample, local orientations and deviatoric strain tensors can be de-
termined for micron or submicron 3D voxels over mesoscopic
volumes within samples. As discussed below, such measurements
are significantly more challenging in deformed than in nonde-
formed materials, and extracting the dilatation component of the
elastic strain tensors has, so far, only been automated for special
cases �13�.

Before discussing the application of 3D X-ray microscopy to
deformed materials, we recall briefly an example of measurements
of local crystallographic orientations for the nondeformed, poly-
crystalline case to illustrate the procedure of local orientation de-
termination. Figure 2 shows a color-coded 3D grain orientation
mapping of individual grains in nondeformed polycrystalline Al
�6,10�, where each voxel in the image represents a micron-
resolution volume in three dimensions at which the crystallo-
graphic orientation was determined. The dark �blue� grain is
shown in a position spatially separated from its position in the
polycrystal to demonstrate how electronic sorting of voxels by
orientation makes it possible to visualize and inspect the morphol-
ogy of individual grains as well as to view lattice orientations on
slices within the volume of the measurement. Nondeformed ma-
terials, such as the individual grains in Fig. 2, produce sharp dif-
fraction spots so that an angular resolution of �0.01 deg can be
obtained and strain tensor measurements with �10−4 resolution

are possible on a submicron resolution point-to-point basis �4,13�.
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igure 2 demonstrates the rather well developed application of the
D X-ray microscopy technique to determine local orientations in
material with little or no intragrain elastic strain or rotational

eformation. The thrust of this paper is to demonstrate the status
f its use for the determination of GND density distributions in
eformed materials, in particular, to determine GND distributions
ontiguously over a mesocopic length scale area; this entails de-
ermining tensor information on lattice curvature and elastic strain
radients at each point.

Although the technique for determining local orientations and
ocal strain tensors in deformed materials is, in principle, the same
s that in nondeformed materials, curvature within individual
easurement voxels leads to elongated �i.e., streaked� spots rather

han sharp, round diffraction spots. This impacts both the reso-
ution and accuracy of orientation and strain tensor measurements
5� because analysis techniques for deconvoluting streaked dif-
raction patterns within the 3D X-ray microscopy technique are
ot available at present. For small deformations and elastically
tiff materials, the peak smearing is relatively small and can be
andled using the centroid of smeared diffraction peaks; both de-
iatoric strain and local orientations can be obtained with good
esolution in such cases �4,6,13�.

For deformation in ductile materials, which typically have sig-
ificantly distorted or streaked Laue spots, measuring strain ten-
ors using white-beam patterns becomes a larger issue. This is
ecause elastic strain is detected by the measurement of relatively
mall deviations in the angles between individual Laue diffraction
pots. Therefore, without deconvolution of the spots, obtaining
ccurate ��10−4� elastic strain tensor information directly from
hite-beam diffraction patterns in ductile deformed materials is
ot feasible. On the other hand, local orientations �and, hence,
oint-to-point misorientations used to determine rotational strain�
an be obtained with a few hundredths of a degree angular reso-
ution, even for cases with relatively strong deformation. This is
ecause the local orientation is a function of the collective �aver-
ge� orientation of all the Laue spots, not deviations between in-
ividual spots. Therefore, local orientation measurements can usu-
lly be made in ductile deformed samples with a precision of
0.02 deg; this is somewhat degraded from the �0.01 deg or

etter precision capabilities in undeformed materials �4,6,13�. We
omment that monochromatic Bragg diffraction techniques have
een developed for microbeams that provide absolute lattice pa-
ameters with �10−4 accuracy from highly streaked �13� as well
s relatively sharp diffraction patterns �8�. Unfortunately, mono-
hromatic measurements can be performed on only one reflection
t a time, so they are, in general, much more tedious to perform
han white-beam measurements. Determinations of full strain ten-
ors with monochromatic techniques would require measurements
n at least three noncollinear reciprocal lattice vectors for each
oxel and have not been carried out so far. These issues will be
evisited in connection with the discussion of the experimental

ig. 2 Color-coded grain structure measured on commercial
urity „1% Si,Fe… polycrystalline Al using 3D X-ray microscopy.
he individual voxels represent micron spaced points in three
imensions at which local orientations were determined; one of

he grains has been separated from its position in the sample
o illustrate the use of electronic orientation grouping.
echniques and results in Secs. 4–6 below.

ournal of Engineering Materials and Technology

ded 04 Sep 2009 to 160.91.157.167. Redistribution subject to ASM
3 Dislocations in Crystalline Materials
The theory of dislocations is a huge subject covering many

physical and mechanical characteristics of dislocations in various
types of crystals. Here, we focus on the mechanical aspects of
dislocations in deformed crystals due to their connection with
both the theory of mesoscale deformation and with the theoretical
basis of the measurements presented here. Specifically, we discuss
the elastic field of dislocations in two cases: the case of a discrete
dislocation system containing a large number of dislocations and
the case of a continuous distribution of dislocations. Understand-
ing the mechanical effects induced by a system of discrete dislo-
cations is at the heart of the formalism of the dislocation dynamics
simulation method �24,25� and the statistical theory of disloca-
tions �26,27�. Continuous dislocation distributions and associated
mechanical effects, on the other hand, are the subject of the con-
tinuum theory of dislocation fields �28–30�. Models based on
these theories are currently used as the basis for understanding
plastic deformation of metals at the mesoscale �31�. The connec-
tion between synchrotron X-ray microbeam measurements char-
acterizing dislocations in deformed crystals and these theoretical
methods is discussed in a recent contribution by the present au-
thors �5�.

Like most crystal defects, dislocations have elastic fields �1,32�.
For a single dislocation, for example, a closed dislocation loop L
with Burgers vector b, this elastic field is described within the
linear theory of elasticity by the displacement field,

um�r� = −�
A

dAjbicijkl
�

�xl�
ûmk�r� − r� �1�

in which A is an arbitrary open area bounded by the dislocation
loop L, cijkl is the elasticity tensor of the crystal, r= �x1 ,x2 ,x3�
= �x ,y ,z� is the field point, r� is a point of A, and ûmk�r�−r� is the
elastic Green’s function. The elastic strain can be found from the
above displacement field �1�,

�ml�r� =
1

8�
�
L

dxk�bp�	−
1

2
�kmepql −

1

2
�klepqm + �lmepqk
 �

�xq
�2R

−
1

1 − �
epjk

�3R

�xi�xj�xm
� �2�

This elastic strain field can be used to determine the stress field
via Hooke’s laws: �ij =cijkl�kl. In the above equation, �km is the
Kronecker delta, epql is the permutation symbol, R= �r�−r�, and r�
is a point on the dislocation loop L. For some reasons, the relevant
literature often reports only the elastic strain and stress fields of
dislocations. The elastic lattice rotation field �ml of dislocations is
an equally important quantity in the context of experimental char-
acterization of dislocations in deformed crystals using synchrotron
X-ray beams. This field is given by the skew-symmetric part of
the displacement gradient, which, for a dislocation loop L, can be
written in the form

�ml =
1

16�
�
L

dxk��elik	bi
�

�xm
+ bm

�

�xi

 + eimk	bl

�

�xi
+ bi

�

�xl

��2R

�3�

Deformed crystals typically contain large numbers of dislocations,
and the total elastic field associated with the entire ensemble of
dislocations is found by summing the contributions due to all
individual dislocation loops. In practice, the line integral of the
individual loops is converted into a sum of integrals over piece-
wise linear segments, as currently done in the method of disloca-
tion dynamics �24,25�. In the case of a large dislocation system,
the total elastic fields can be split into mean components �or

smooth fields� plus fluctuations. That is,
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��r� = �̄�r� + ���r�, ��r� = �̄�r� + ���r�, ��r� = �̄�r�

+ ���r� �4�
ith the overbar denoting the mean fields and the delta terms
enoting the fluctuations about the mean. The relative importance
f the mean field versus fluctuations in the above expressions
epends on the spatial resolution of interest. For example, at the
acroscale, the mean fields are taken to represent the average

uantities over large spatial windows, where the fluctuations are
ften unimportant. At the mesoscale, however, the mean fields are
verage quantities over spatial windows on the order of the wave-
ength of spatial variation of the dislocation density in the crystal.
n this case, the fluctuations are important, but their quantification
epends on how the mean field itself is defined. When the spatial
esolution is extremely small, lower than the distance between
ndividual dislocations, the representation of fields using mean
eld and fluctuations is no longer applicable, and the fields are

nterpreted in an exact sense. The characteristics of these three
egimes �macro, meso, and micro� are important to keep in mind
n interpreting 3D X-ray microscopy data obtained by the present
echnique.

For mesoscopic length scales, the discrete nature of the dislo-
ation system in crystals can be suppressed in favor of a continu-
us representation of the mechanical fields of dislocations. In con-
inuum theory, defects are represented in terms of density fields
hat depend on the nature of the defects themselves. For example,
ontinuous dislocation distributions are described in terms of a
ensor field called the dislocation density tensor �see Refs.
28–30��. The solutions of the mechanical fields for continuously
istributed dislocations is known �33–35�; for example, within the
ounds of linear elasticity theory, the elastic distortion field 	mn

e

ssociated with a continuous distribution of dislocations is ex-
ressed in terms of the dislocation density tensor 
pl�r� as fol-
ows:

	mn
e �r� =� dV�cijklûjn,i�r − r��epmk
pl�r�� �5�

he symmetric and skew-symmetric parts of 	mn
e are the elastic

train and rotation tensor fields associated with the continuous
islocation distribution. The dislocation density tensor, on the
ther hand, is defined by the curl of the plastic distortion tensor

kl
p ,


pl = − epmk	kl,m
p �6�

ooke’s law then provides the internal stress distribution from the
lastic strain field. In the case of infinitesimal deformation, the
lastic rotation tensor has three independent components that de-
ne an equivalent axial vector, the components of which are the

nfinitesimal rotation angles about the x, y, and z �or x1, x2, and x3�
xes. The relationship between the rotation tensor and its axial
ector is �ij =−eijk�k and �i=−eijk� jk /2.

The above equations show that, within the bounds of linear
lasticity theory of defects, there is a unique defect �dislocation�
eld defined for each incompatible plastic distortion, and this de-
ect field completely determines the internal elastic fields in the
rystal �elastic strain, elastic lattice rotation, and stress field�
30,33�. The relationships between the defect content �dislocations
n the present case, whether discrete or continuous� and the in-
uced elastic fields are given by Eqs. �1�–�3�. It is these fields that
re measured by the 3D X-ray microscopy technique described
ere, and the dislocation content is recovered from the differential
orms relating dislocation density tensor with the elastic strain
eld and lattice rotation. This relationship has the form �5,30�:


ij = � ji − �ij�kk − eikl�k�lj �7�

n which the curvature tensor �ij is given by the gradient of the
attice orientation vector �i,
�ij = �i,j �8�

21024-4 / Vol. 130, APRIL 2008
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For cases in which the elastic strains and their gradients are
small compared to the curvature, such as might be the case for
lightly deformed ductile metals, for instance, Eq. �7� reduces to


ij 
 � ji − �ij�kk �9�
The above equations are all applicable in the case of infinitesimal
deformations. Reference �5� contains the corresponding defini-
tions of the dislocation density tensor in terms of the deformation
fields for the case of finite deformation. We note here that the
process of plastic deformation of metals leaves behind the follow-
ing permanent changes in the material: �1� sample shape distor-
tion, which can be seen by slip bands at the specimen surface, �2�
internal elastic strain arising due to the dislocation distributions in
the crystal, �3� the dislocations themselves, and �4� crystal lattice
rotations generated by the distributions of unpaired dislocations
�GNDs�. While slip traces on surfaces can be characterized quan-
titatively using techniques such as atomic force microscopy, non-
destructive 3D techniques are required for the rest of these signa-
tures of the deformation process; this underscores the importance
of 3D X-ray microscopy technique described here in the funda-
mental investigation of deformation and defects in materials.

4 Dislocation Density Tensor Measurements Using 3D
X-Ray Microscopy

The 3D measurement capability discussed in Sec. 2 makes it
possible to obtain detailed microstructural information nonde-
structively on mesoscopic length scales �tenths to hundreds of
microns� for deformed as well as nondeformed polycrystalline and
single crystal materials. Expressing deformation measurements in
terms of dislocation density tensors, � requires a spatially re-
solved determination of the local lattice curvature � and the curl
of the strain tensor, �
�, as indicated in Eq. �7�; experimental
determinations of the curvature and �
� are generated by a nu-
merical differentiation of the spatially resolved orientation and
strain measurement data. It is important to keep in mind that the
spatial resolution of the X-ray measurements determines the
length scale over which dislocations with positive and negative
signs are combined to obtain the density of GNDs. That is, only
the net rotation can be determined from lattice orientation mea-
surements performed at two points in a sample; information on
orientation and strain variations between the two measuring points
is not available unless further measurements can be performed
between the two points �5,6,19,21,35,36�. Accordingly, the spatial
resolution of the experimental technique and the measurement
step size determine the length scale of dislocation density fluctua-
tions that can be observed. When the resolution of both the mea-
surements and the calculations is taken into account, direct com-
parisons of deformation measurements with predictions of theory
and modeling �35,36� can be made on an absolute basis. This is a
powerful result that will be the subject of ongoing development
for both fundamental and applied deformation investigations.

As indicated in Eq. �7�, elastic strain as well as lattice curvature
is important in determining the dislocation density tensor. Unfor-
tunately, as was mentioned at the end of Sec. 2, spatially resolved
measurement of elastic strains in deformed crystals is not always
straightforward because of the difficulty of determining deviatoric
strain tensors in samples with distorted or streaked Laue diffrac-
tion spots. Even in favorable cases �e.g., low deformation, stiff
materials� in which the deviatoric strain tensors can be obtained
directly from white-beam Laue diffraction measurements, the ex-
traction of full strain tensors �i.e., deviatoric+dilatation strain�
requires the specification of at least one absolute lattice parameter
�23�. This entails the use of a scanning monochromatic beam
�4,13,23�. However, for the special case of “elastic” cylindrical
bending of thin Si plates, where anticlastic bending has been dem-
onstrated to vanish at the center of the plate �4,13�, it is possible to
invoke this constraint to specify zero lattice parameter change
along the cylindrical bend axis; this makes it possible to determine

the full strain tensor from spatially resolved white-beam measure-
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ents alone �4,5�. This constraint will be invoked for dislocation
ensity tensor determinations for the elastically bent Si case to be
resented below as well.

There is another important special case for which it is possible
o determine dislocation density tensors in plastically deformed

aterials without explicitly measuring an absolute lattice param-
ter for each voxel. This is when elastic strains are small so that
heir gradients are much smaller than the lattice curvature associ-
ted with plastic deformation-induced misorientations. This con-
ition can be expected to hold for light deformation in soft, ductile
aterials, for instance. For such cases, Eq. �9� indicates that mea-

urements of the lattice curvature alone provide a direct measure
f the dislocation density tensors �. This condition will be shown
o apply for the Si plate that was plastically deformed by anneal-
ng at 700°C under elastic bending stress.

Experiment
Utilizing the procedures described above, 3D X-ray microscopy
easurements of the local orientation, strain, and GND density
ere performed on two deformed �single crystal� Si thin plates.
ne plate was bent elastically at room temperature and thus, by
efinition, contained no dislocations; conversely, dislocations
ere deliberately introduced into the second Si plate by annealing

t �under the bending stress� above the brittle-to-ductile tempera-
ure. The measurements were performed using white-microbeam
aue diffraction on the XOR/UNI Sector 34 microbeam station at

he Advanced Photon Source �APS� �10,16�.
The elastically bent sample was 2 mm wide and �42 �m thick

nd was bent elastically into the form of an arch and held within
slot in a quartz plate for measurement, as shown in Fig. 3�a�.
his resulted in an �elastically stressed� cylindrical shape with a
5 mm bend radius at the apex �4,5�; the measurements on this

ample were performed at the center of the 2 mm width at the
pex of the arch.

The second sample was a 3 mm wide, �25 �m thick, cylindri-
ally bent Si plate that was heated to 700°C �i.e., above the
625°C brittle-to-ductile transition temperature for silicon� in the

ent condition, held for 30 min in order for plastic deformation to
elieve the elastic stress, and slow cooled to room temperature

Fig. 3 Optical photographs of cylindric
the surface-normal direction z, surface
bend axis x. „a… 42 �m thick Si plate be
25 �m thick plastically bent Si plate afte
bent state, where the schematic drawing
sample at a 45 deg angle to the surfac
optical image showing typical slip trac
plastically bent Si plate.
ver several hours. The presence of plastic deformation in the
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annealed sample �shown in Fig. 3�b�� is immediately obvious by
the sharper, nonconical curvature at the apex of the annealed arch.
Further evidence of relief of the elastic bending strain by plastic
deformation is provided by the presence of surface slip traces
spaced 5–20 �m apart along the �110� direction parallel to the
cylindrical bend axis, as shown in Fig. 3�c�; no slip lines were
present at room temperature in the elastically bent state before
annealing.

We comment that the samples used in this study are the same as
those used in a previous study �5�. The measurements in the pre-
vious study demonstrated the capability of measuring dislocation
density tensors with spatial resolution along a single line, that is, a
line along the microbeam direction, which was perpendicular to
the bend axis �i.e., perpendicular to the x axis in the �y ,z� plane in
Fig. 3�. In that study, the gradients of the local orientations and
elastic strains �required to obtain the curvature and strain gradi-
ents in Eqs. �7� and �9�� for a single line were determined by
performing measurements along two additional lines, one after
translating the sample 1 �m normal to the beam in the x direction
and the other after translating the sample 1 �m normal to the
beam in the �y ,z� plane.

In the present investigation, we report the first nondestructive
measurements of full dislocation density tensors with micron spa-
tial resolution over an areal slice in the interior of a sample. To
obtain 3D measurements of dislocation density tensors over a 2D
slice, a series of line measurements were made with micron spac-
ing in the �y ,z� plane, perpendicular to the cylindrical bend axis
�see Fig. 3�; further, an identical set of measurements was per-
formed in the �y ,z� plane after a 1 �m translation of the sample in
the x direction. By making micron spaced in-plane measurements
on two parallel planes �i.e., planes separated by 1 �m�, it is pos-
sible to determine not only the local orientations and elastic
strains for each of the x, y, and z components within the two
planes, but, by numerical differentiation of the data, also the gra-
dients of each of these quantities. Measurements were made of
both the local orientations and elastic strains for the elastically
bent sample. The elastic strain tensors were not measured on the
plastically deformed sample because of the streaked/distorted na-

bent single crystal Si plates indicating
nd tangent direction y, and cylindrical
elastically into the form of an arch; „b…
nealing to 700°C while in an elastically
ustrates that the microbeam enters the
t or near the apex of the arch; and „c…
atterns present on the surface of the
ally
be
nt
r an

ill
e a
e p
ture of the Laue spots �as discussed in Sec. 2 above� and because
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easurements discussed immediately below showed that the elas-
ic bending strains were largely relieved during the 700°C anneal.

Figure 4 shows elastic strain measurements �integrated along
he microbeam� for both the elastically and plastically deformed
i samples and for a perfect Si wafer as a reference. In these
easurements, Bragg scattering from the samples was collected

n the CCD area detector as the energy of the microbeam was step
canned through the energy width of the diffraction patterns for
ither �006� surface-normal or �119� near-normal Bragg reflec-
ions. Since each pixel of the CCD constitutes a separate detector,
his energy-scanning/CCD-detector technique for determining
train widths is equivalent �in energy space� to standard X-ray line
rofile measurements of strain gradients in the sample-rotation
ode of crystal strain analysis �37�. Although the convergent na-

ure of focused X-ray microbeams leads to a rather broad strain
eak width of �7
10−4 for the case of the perfect Si sample
open squares�, the surface-normal strain width in the elastically
ent sample is �3
10−3 �open circles� and the uncertainty in the
eak centroid is �1.5
10−4. The thin lines represent measure-
ents made at a number of representative positions along the apex

f the plastically deformed sample; they indicate that �compared
o the preanneal strains� the elastic strains were largely relieved by
he introduction of dislocations during the 700°C anneal.

Considering that the lattice curvature near the apex of the plas-
ically deformed sample is significantly larger than that in the
lastically bent sample �note the rotation full scales in the captions
or Figs. 5�a� and 6�a��, even if elastic strains in the plastically
eformed sample approached those in the elastically bent sample,
hey would not impact � significantly. Therefore, neglecting elas-
ic strains and using Eq. �9� to determine � can be justified for the
lastically deformed Si sample. We comment that we believe that
he results in Fig. 4 indicate that neglecting elastic strains in de-
ermining � for this plastically deformed sample is more reliable
han smoothing large-uncertainty white-beam measurements of
eviatoric elastic strain, as was done in the previous single-line
tudy �5�.

Results
Figure 5 shows spatially resolved 3D X-ray microscopy mea-

ig. 4 Energy-scanning monochromatic microbeam measure-
ents of surface-normal lattice strains in the elastically bent

thick line, open circles… and plastically bent „thin lines… Si
amples and on a flat, undeformed Si plate „thick line, open
quares… as a strain-free reference. The measurements were
ade at the apex of the elastically bent sample. The measure-
ents on the plastically deformed sample were made near its

pex at five separate positions across the sample width, cho-
en to represent a range of Laue spot streaking. Each of the
lastically bent sample strain measurements show some
roadening compared to that for the perfect, flat sample; how-
ver, all of the plastically deformed sample strain widths are
uch narrower than that for the elastically bent sample.
urements made on the elastically bent sample �see Fig. 3�a��,
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where the top and bottom surfaces of the Si plate define the ver-
tical height of the plots in Fig. 5. Since the X-ray microbeam
penetrates the bent Si plates at a 45 deg angle with respect to both
the y �horizontal� and z �vertical� axes in the sample �see Figs. 1
and 3�, a characteristic parallelogram shaped area normal to the
bend axis �i.e., x axis� is defined as successive depth profile mea-
surements are made. The sample is stepped along the y �horizon-
tal� direction after individual depth scans. The top panel �Fig.
5�a�� is a color-coded mapping of the local rotations in the
sample, and the middle panel �Fig. 5�b�� contains spatially re-
solved measurements of the elastic strain tensors generated by the
bending in Fig. 5�a�. Figure 5�c� is a color-coded, spatially re-
solved plot of the components of the dislocation density tensors �
based on Eq. �7�, where the gradients of the orientations and elas-
tic strain components were determined by numerical differentia-
tion of the measured data in Figs. 5�a� and 5�b�, respectively.

Considering these data in more detail, the three panels in Fig.
5�a� show the x, y, and z components of the rotation vector �
= ��x ,�y ,�z� relative to the reference orientation chosen �arbi-
trarily� as the orientation at the position of the “�” in the figure.
We note first of all that only rotations about the x axis ��x� are
large and that the orientations change uniformly along the y �hori-
zontal� direction as a result of the cylindrical elastic bending
around the x axis. The other rotational components in Fig. 5, �y
and �z, are very small in comparison. We note that since the total
variation in angle from the upper left corner of the measured area
to the lower right position in Fig. 5�a� is only about 10 mrad, the
orientations and gradients can be expected to have nonnegligible
micron-by-micron fluctuations even with the higher angular reso-
lution �0.01 deg ��0.2 mrad� measurement capability of the 3D
X-ray microscopy method.

Figure 5�b� shows a color-coded plot of the components of the
�full� elastic strain tensor �ij as a function of position within the
slice. �ij is given in terms of the deviatoric strain �ij� and the
dilatational strain � by �ij =�ij� +� /3�ij, where � was obtained
from depth-resolved white-beam measurements of �ij� and by us-
ing the additional fact that anticlastic bending vanishes except
very near the edge of the sample �4,13� for cylindrically bent thin
Si plates. In particular, as shown by direct measurements of anti-
clastic bending in bent Si plates �13� and as discussed previously
�4,5,13�, the condition of vanishing anticlastic bending condition
implies that �xx=0 at all positions except near the edge of the
plate. Therefore, �xx� =−� /3 provides a point-by-point measure of
the local dilatation strain � /3, where � is the trace of �ij. The y
component of the strain, �yy, is positive at the top of the arch �i.e.,
along the bend� due to stretching, and compressive �negative� at
the bottom. In addition to �yy, we note that the only component
with measurable strain under cylindrical bending in Si is �zz,
which represents Poisson contraction normal to the Si surface at
the top of the plate and Poisson expansion at the bottom.

Using Eq. �7�, the CND density tensor � for the 1 �m spatial
steps of these measurements is given by the nine components in
Fig. 4�c�. Except for the occurrence of isolated fluctuations �gen-
erated by the �0.01 deg angular orientation measurement uncer-
tainties and �1–2
10−4 strain component uncertainties� at
points distributed throughout the data, the lattice curvature is fully
accounted for by the elastic strain gradients. Thus, the measure-
ments show the known result that the GND density is zero for
elastically bent Si plates.

Although this represents a trivial case in one sense and is, of
course, an extension of previous measurements performed along
single lines �5,13�, it is the first direct demonstration of this result
with micron spatial resolution over a mesoscopic areal slice
within a 3D sample. As such, it demonstrates the principle of the
technique for measuring the GND density using a sample with a
known result �i.e., elastic bending without dislocations�, and it
provides a visual illustration of the information contained in the

individual components of the tensors. Moreover, the nonzero fluc-
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uations in the results provide a measure of the level of uncertain-
ies in the measurements since the Si plates used initially have
egligible inhomogeneities.

From the example of elastic bending in a Si plate, we now turn
o the measurements on the plastically bent Si sample. In Fig.
�a�, we show local lattice orientations for the plastically de-
ormed sample; as in Fig. 5, for the elastically bent sample, the
otational deformation is almost exclusively around the x axis.
owever, unlike the elastically bent case, the curvature is not at

Fig. 5 Color-coded mapping of local o
location density tensors over a vertical
elastically bent Si arch in Fig. 3„a…. „a
vector �= „�x ,�y ,�z… relative to the orie
elastic strain tensor mapping for the el
tion density tensor mapping for elastica
cant GNDs. Full-scale colors correspon
and 3 mrad/�m=0.95Ã109 cm−2 in „c….
top that pertains to all graphs in the fi
included on each axis to further define
ll uniformly distributed along the y �horizontal� direction. Rather,
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the plastic deformation-induced rotations in Fig. 6�a� are highly
localized in a region of strong curvature �the light area� of �x,
where the orientations are changing rapidly from a highly positive
to a highly negative orientation �blue to red� near the center of the
measured area.

Since we concluded from Fig. 4 that the annealed sample con-
tained only a small amount of residual elastic strain after the an-
neal, we use Eq. �9� to obtain the dislocation density tensors �
directly from the lattice curvature � ji, the gradients of the local

tations, elastic strain tensors, and dis-
e perpendicular to the bend axis of the

, y, and z components of the rotation
tion at the “�” in the figure; „b… the

ically bent Si sample; „c… GND disloca-
bent Si, showing no statistically signifi-
o ±5 mrad in „a…, ±3Ã10−3 strain in „b…,
ddition to the 20 �m length bar at the
re, tick marks with 2 �m spacing are
length scale.
rien
slic
… x
nta

ast
lly
d t
In a
gu

the
orientations in Fig. 6�a�. Accordingly, the components of � in Fig.
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�b� �obtained using Eq. �9�� provide the spatial distribution of the
ND density for the plastically deformed Si sample. The 
xy

omponent of the dislocation density tensor clearly contains the
ominant GND density although 
xz contains significant weight as
ell. It is, of course, not a surprise that the 
xy and 
xz compo-
ents are large since they are derived from the y and z gradients of
x, which is by far the largest rotational component. We note that
he GND distribution in 
xy has a relatively complex microstruc-
ure with a few micron length scale. As indicated by the dashed
ines in 
xy �which denote the angle of �111� slip-plane traces�, the
trong bands of deformation tend to be aligned along the slip
lanes, but they do not follow a single slip direction through the
ntire plate.

Discussion
We emphasize first of all that the thrust of this paper is to

emonstrate the ability to characterize GND density in terms of
he dislocation density tensor � over a 2D slice on mesoscopic
ength scales using 3D X-ray microscopy measurements. Al-
hough comments regarding plastic deformation in Si will be pre-
ented, a detailed study of plastic deformation in Si is outside the
cope of this paper. These micron-resolution measurements repre-
ent the first dislocation density tensor measurements reported
ver a 2D slice on mesoscopic length scales �tens of microns�.
he measurements, performed on a plane perpendicular to the
end axis in cylindrically elastically and plastically deformed thin
ilicon plates, highlight present 3D X-ray microscopy capabilities,
nd they also indicate some of the limitations of the method. In
his section, we discuss the results presented above and provide a
erspective on the use of such measurements in relation to com-
uter simulations and multiscale modeling and on the potential
ole of dislocation density tensors in fundamental investigations of
eformation in ductile materials �19–21,38–41�.

The results for the elastically bent Si sample in Fig. 5 provide
n illustrative test as well as a demonstration of the X-ray micros-
opy method for determining GND density �or the lack thereof in
his completely elastic case� from measurements of the lattice cur-

Fig. 6 Color-coded mapping of local ro
a slice perpendicular to the bend axis o
Si sample in Fig. 3„b…. „a… x, y, and
= „�x ,�y ,�z… relative to the orientation at
sity tensor mapping of the plastic defo
the dominant component. Full-scale c
3 mrad/�m=0.95Ã109 cm−2 in „b…. In ad
the figure that pertains to all graphs, tick
each axis to further define the length sc
ature and the elastic strain tensor. The color scale of the figures is
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in units of radians/micron, in accordance with the units of lattice
curvature and elastic strain gradients obtained from the X-ray
measurements. The conversion from curvature � in rad /�m to
dislocation density for Burgers vector b is given by �GND=� /b;
for Si, 1 deg /�m�5.5
109 /cm2. Considering the three mrad
full-scale color of the plots, this leads to full-scale � values of
0.95
109 in Figs. 5�c� and 6�b�. The elastic bend case in Fig. 5
demonstrates directly the �offsetting� balance between elastic
strain gradients and lattice curvature in brittle materials, where
dislocations are not introduced during bending. On the other hand,
Fig. 6 demonstrates a case in which the local orientation gradients
in high temperature �700°C� plastically deformed silicon are not
associated with elastic strain gradients but rather with the pres-
ence of a strong GND density.

As we noted above, the GND density in Fig. 6�b� is largest for
the 
xy component. We note also that the strongly deformed re-
gion is inhomogeneous and highly localized within the �30 �m
measurement region. The localized nature of the GND density
within the sample is consistent with the �5–20 �m spacing of
surface slip traces in Fig. 3�c� and underscores the highly nonuni-
form nature of deformation for Si under such conditions, due in
part to the lack of nucleation sites in perfect crystals. The spatial
distribution of the GNDs is significant in that lattice slip seems to
be activated preferentially along the traces �dashed lines� of two
�111� slip planes. While it is outside the scope of this paper to
analyze the details of the dislocation mediated plastic deforma-
tion, it is interesting to note the similarity between the dislocation
bands in 
xy and the discrete dislocation simulation results of
Cleveringa et al. �41� for plastic bending of plates. The fact that
all of the GND density in the 
xy panel is red in color indicates
that all of the rotations have the same sign within the 1 �m step
size of the measurements. On the other hand, the presence of both
blue and red regions in the 
xz component indicates the presence
of counter-rotations along the z direction; this indicates that the
GND density changes sign. The small areas of red and blue GND
density in the central portion of the components of � in the sec-
ond and third rows appear to be associated in general with local

ons and dislocation density tensors on
e 700°C annealed plastically deformed
components of the rotation vector �

“�” in the figure; „b… dislocation den-
tion-induced GNDs showing �xy to be

rs correspond to ±20 mrad in „a… and
on to the 20 �m length bar at the top of
arks with 2 �m spacing are included on
.

tati
f th
z
the

rma
olo
diti
m
ale
regions of sharp changes in 
xy. Since these small regions of GND
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ensity result from the gradients of the orientations in Fig. 6�a�,
hey suggest the presence of rather complex local rotations; how-
ver, measurement uncertainties need to be considered.

Regarding uncertainties, a full statistical analysis has not been
erformed, but the rms value of the GND density in elastically
ent Si �Fig. 5�c�� is �1.5
108 cm−2. Since the actual GND den-
ity is known to be zero for elastic bending, we take this value as
measure of the present limit on the sensitivity of the 3D X-ray
icroscopy method for measuring GND density. In the plastically

eformed sample, the GND density in the strongly distorted bands
n 
xy is �1.3
109 cm−2, which is then about a factor of 10
bove the �1.5
108 cm−2 sensitivity limit. However, for some
f the other GND structures distributed throughout the plastically
eformed silicon, we cannot distinguish entirely between fluctua-
ions resulting from uncertainties in the measurements and gradi-
nts generated by GNDs. If we use the level of fluctuations in Fig.
�c� as a rough measure of the uncertainties, the more dense GND
tructures that roughly follow the pattern of 
xy are likely to re-
ect local rotations around the y and z axes. We remark that in the
ata presented here, we have not employed smoothing algorithms,
or have we used hand processing to locate and correct spurious
esults; therefore, it can be expected that some of the structures
re not entirely real. Since hand processing of a large number of
oxels included in such plots is neither feasible nor desirable, it
ill be important to develop robust techniques such as those de-
eloped for electron backscattering scanning microscopy �EBSM�
or identifying and dealing with erroneous results.

The overall situation regarding the measurement of elastic
trains and strain gradients as well as the curvature in highly de-
ormed, ductile materials is worth reiterating because the mea-
urement of full elastic strain tensors is intrinsically difficult when
ragg reflections are distorted or streaked. Fortunately, as evi-
enced by the monochromatic measurements in Fig. 4, elastic
trains and gradients in deformed ductile materials tend to be
mall compared to the deformation-induced local lattice curvature.
herefore, it will often be possible to determine the dislocation

ensors for ductile deformation using the lattice curvature � only,
s given by Eq. �9�. On the other hand, hard �but not brittle�
aterials such as deformed Ti–Al alloys are likely to contain sig-

ificant elastic strains as well as large plastic deformation. Ac-
ordingly, the development of robust 3D measurement and analy-
is techniques for determining the elastic strain tensors in
lastically deformed materials with highly distorted diffraction
pots is important.

We consider now the implications of the capabilities demon-
trated here to measure both the magnitude and spatial distribution
f the GND density with micron spatial resolution in three dimen-
ions. With the long-term goal of achieving a predictive under-
tanding of deformation in crystalline materials, it is important
hat the results of experimental, theoretical, and computational
nvestigations be compared directly. The continuum theory of dis-
ocation fields �20,21,38,39� provides strong insight into the de-
ormation at the macroscale with the aid of constitutive law for-
ulations and finite element modeling �FEM�, and discrete

islocation dynamics method implementations �24,25,41� provide
remarkable level of insight into the complex interactions be-

ween individual dislocations and groups of dislocations at the
icroscale. The development of robust theoretical methods such

s the statistical theory of dislocations �26,27� to obtain a similar
nderstanding of deformation processes on mesoscopic length
cales is critical for continued progress toward a fundamental un-
erstanding of dislocation mediated deformation.

Dislocation dynamics deformation simulations produce local
otations and elastic strain fields �the fundamental quantities mea-
ured by 3D X-ray microscopy� with significant density fluctua-
ions �24,25�; contrary to continuum formulations, the discrete-
ess of the dislocation system is an intrinsic feature of the method.
herefore, a comparison of experimental measurements with the
esults of dislocation dynamics requires processing of the elastic
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strain and rotation fields to extract the smooth component as well
as the fluctuation components, as indicated by Eqs. �4�. On the
other hand, in macroscopic situations, the continuum theory of
dislocation fields �with appropriate constitutive assumptions�
yields smooth fields over length scales that are long compared
with the length scale of dislocation field fluctuations in the dis-
crete dislocation dynamics method �38,39�. Because neither of the
limiting cases is able to address the mesoscale appropriately, the
statistical theory of dislocations has been formulated to include
both smooth fields and fluctuations �31�. Accordingly, it is ex-
pected that predictions made by the statistical theory will be better
suited for comparison with mesoscale X-ray microbeam measure-
ments and will provide an interpretation of both the mean field
behavior and the fluctuations in the GND density. Currently, the
continuum theory of dislocation fields is the most highly devel-
oped of these techniques for comparison with experiments, and
both 2D and 3D results are now available �20,21,38,39,42�. Dis-
location dynamics simulations can now be used to simulate the
response of materials with uniform �tension or compression� load-
ing for small deformation levels, say, up to �1%. The statistical
theory, addressing the mesoscale directly, is not fully solved yet,
although applications to simple cases have been tried �38�.

In focusing the present demonstration on X-ray microbeam
measurements of the dislocation density tensor, we underscore the
potential for a direct and absolute comparison between experi-
mental and computational results for deformation in crystalline
materials on mesoscopic length scales. As emphasized in Sec. 3
above, simulations and multiscale modeling of local rotation and
elastic strain deformation on mesoscopic length scales can be cast
in the form of dislocation density tensors, and the spatial reso-
lution of the simulations can be coarse grained to match the spa-
tial resolution of the experimental measurements. It is important
to keep in mind that the dislocation density tensor components
given by Eqs. �7�–�9�, and as measured by X-rays, are direct rep-
resentations of the nine components of the local lattice curvature
and strain gradient tensors. Therefore, a comparison of micron �or
submicron�-resolution 3D X-ray microscopy measurements on de-
formed materials �tension, compression, bending, indents, etc.�
with simulations and modeling of dislocation density tensors can
indeed provide stringent and quantitative tests of our understand-
ing of deformation processes.

We emphasize that within the length scales and spatial reso-
lution of 3D X-ray microscopy measurements, direct and absolute
comparisons of experimentally measured dislocation density ten-
sors can be made not only with top-down FEM crystal plasticity
models, strain gradient models, etc., but also with bottom-up com-
putations such as discrete dislocation modeling and the �presently
under development� statistical dislocation density models. It is
worth noting, however, that since crystalline materials have more
than nine slip systems, in general, the dislocation density tensor
cannot provide “unique” determinations of the GND density in
terms of active slip systems �43�. Face-centered cubic materials
have 12 edge-dislocation slip systems and 6 screw systems, for
instance. Nevertheless, micron and longer length scale correla-
tions of strong dislocation density banding with particular slip
planes, such as in the 
xy component in Fig. 6�b�, are expected to
be of significant value in analyzing and understanding deforma-
tion distribution results.

With the development that is currently ongoing, synchrotron
X-ray microbeam techniques such as submicron-resolution 3D
X-ray microscopy �4–10� and high-energy 3D crystal microscopy
�9,11,44,45� can be expected to provide increasingly detailed non-
destructive information on local lattice rotations and elastic strains
over mesosopic length scales ranging from tenths of microns to
hundreds of microns. This will generate new opportunities for
combined experimental and computational probes of the funda-
mental aspects of deformation in crystalline materials. Although
the measurements reported here were performed with �0.5 �m

microbeams and 1 �m step sizes, microbeams in the sub-100-nm
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ange are now becoming available �46�, and obtaining the requi-
ite thermal and vibration stability measurement conditions is un-
er development. Therefore, �100 nm resolution microstructural
easurements using techniques analogous to those discussed here

an be expected in the foreseeable future.

Summary
We have recalled the basic elements of the 3D X-ray micros-

opy technique, and we have shown that 3D X-ray microscopy
easurements of elastic and plastic deformation in cylindrically

ent silicon plates provide a direct measure of the GND density
ith micron spatial resolution. In particular, the ability to measure

nondestructively� the dislocation density tensor with micron spa-
ial resolution in plastically deformed Si plates was demonstrated
or the first time for 2D slices on mesoscopic length scales. The
otential to use 3D X-ray microscopy measurements of disloca-
ion density tensors for detailed and absolute comparisons with
omputer simulations and multiscale modeling has been dis-
ussed. Present limitations of the technique have been considered
long with the outlook in the future for sub-100-nm-spatial reso-
ution measurements.
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