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We compare experimental measurements of inhomogeneous plas-
tic deformation in a Ni bicrystal with crystal plasticity simulations.
Polychromatic X-ray microdiffraction, orientation imaging micros-
copy and scanning electron microscopy, were used to characterize
the geometrically necessary dislocation distribution of the bicrys-
tal after uniaxial tensile deformation. Changes in the local crystal-
lographic orientations within the sample reflect its plastic response
during the tensile test. Elastic strain in both grains increases near
the grain boundary. Finite element simulations were used to
understand the influence of initial grain orientation and structural
inhomogeneities on the geometrically necessary dislocations
arrangement and distribution and to understand the underlying
materials physics.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

During deformation, dislocations self-organize into complex inhomogeneous substructures that are
observed even for initially perfect single crystals (Kocks and Mecking, 2003; Arsenlis and Parks, 1999;
Arsenlis et al., 2004; Huang et al., 2000; Gao et al., 1999). Preexisting defects and symmetry breaking
boundary conditions increase the subsequent inhomogeneities (Kocks and Mecking, 2003) and disloca-
tion organization becomes more inhomogeneous as deformation proceeds (even when slip is mainly
homogeneous). Understanding how dislocations multiply and organize during deformation is
important as dislocation substructures affect subsequent materials behavior. Fortunately, emerging
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experimental and theoretical tools promise to provide new insights. For example, strain gradient plas-
ticity models can now predict the influence of different loading conditions on the formation of geomet-
rically necessary dislocations in polycrystalline materials (Bardella, 2007; Bonifaz and Richards, 2008;
Beyerlein and Tome, 2008; Gurtin, 2008; Han et al., 2007; Wang et al., 2007; Volokh and Trapper, 2007;
Sauzay, 2004; Tschopp and McDowell, 2008), and X-ray microdiffraction can measure the local density
of geometrically necessary dislocations, qG, and their density tensor (Larson et al., 2007, 2002; Levine
et al., 2006; Ice and Barabash, 2007; Barabash and Ice, 2005).

Grain boundaries and triple junctions are particularly important locations of inhomogeneous defor-
mation because of the conditions for strain compatibility necessary to accommodate the shape and
orientation changes in neighbor grains (Huang et al., 2008; Jakobsen et al., 2006; Romanov, 2003;
Hansen, 2005; Hansen and Hughes, 1995; Bay et al., 1992). Boundaries may also impede the mobility
of dislocations or create additional constraints for the local plastic response of the material. Disloca-
tions can partially penetrate through the incidental dislocation boundaries (IDBs), while they practi-
cally cannot penetrate through the geometrically necessary boundaries (GNBs) (Barabash and
Pantleon, 2004). In general, boundaries influence the distribution of both geometrically necessary
(GN) and Statistically Stored (SS) dislocations.

Recently, strain studies of bicrystal specimens have become popular due to their simple geometry
(Spearot et al., 2007, 2005; Monzen et al., 2005; Feng et al., 2003; Chen et al., 2004; Miura et al., 2004,
2003; Ziegler et al., 2003; Lu et al., 2003; Sun et al., 2000). This paper presents an analysis of GN and SS
dislocation distributions, and local lattice curvature in a natural Ni bicrystal during in situ uniaxial ten-
sile straining. Experimental measurements and model calculations are carried out as a function of
depth from the sample free surface and distance from the grain boundary. Two procedures were
exploited for the analyses of the mesoscale dislocation density tensor: (1) depth resolved measure-
ments with differential aperture X-ray microscopy (DAXM), which provides detailed point-to-point
lattice orientation as a function of depth for each probed location (Larson et al., 2007); (2) streak anal-
yses, which determines the low limit number of GNDs and their density tensor within each probed
region (Ice and Barabash, 2007; Barabash and Ice, 2005). The main objective of this paper is to com-
pare the results of experimental and numerical analyses, and to induce some physical insights into the
non-uniform deformation near grain boundaries.

2. Method of experiments and numerical simulations

2.1. Ni bicrystal preparation

A Ni bicrystal (>99.9% purity) was prepared by the vertical Bridgman technique. The orientations of
the two grains forming the bicrystal were determined by standard Laue X-ray back-reflection. A ten-
sile sample was cut from the bicrystal by electrical discharge machine. The sample surface was then
electropolished with an electrolyte of HNO3 and methanol. The grain boundary was revealed by etch-
ing the sample with 1:1 HNO3 and acetic acid. The sample was cut such that the grain boundary is at
the mid-length and almost perpendicular to the tensile axis. The final sample dimensions are
Fig. 1. SEM image of the Ni bicrystal tensile sample after deformation with the schematic of PXM probing locations and the
Cartesian reference frame.
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8.43 � 0.68 � 0.6 mm3. A laboratory Cartesian reference frame was set such that the loading direction
is aligned along the X-axis. The orientations of the grains with respect to the tensile axis are shown in
Fig. 1. Initial inhomogeneities other than the grain boundary, such as subboundaries or non-uniform
distributions of impurities and grown-in dislocations are also supposed to exist in the specimen due to
the technique used in the specimen preparation and relatively low purity of the material. Effects of
such inhomogeneities are discussed in the Section 3.4.

2.2. 3D polychromatic X-ray microdiffraction

Polychromatic X-ray microdiffraction (PXM) offers a fundamentally new approach to the study of
mesoscale dynamics in single and polycrystalline materials (Larson et al., 2007, 2002; Ice and Larson,
2002; Ice and Barabash, 2007; Levine et al., 2006). The PXM technique uses a modified Laue diffraction
method based on polychromatic X-ray radiation and allows for 3D mapping of crystalline phase, ori-
entation, elastic strain and plastic deformation with unprecedented spatial resolution. As the poly-
chromatic beam penetrates the sample, it produces a Laue pattern in each subgrain that it
intercepts. The overlapping Laue patterns from grains probed by the beam, are recorded by a CCD
camera positioned at 90� to the incident beam.

In the DAXM technique the origin of each Laue pattern can be decoded with a wire that scans
through the diffracted beams and shadows different portions of the diffracted intensity. These par-
tially shadowed images corresponding to certain locations of the wire, together with the initial depth
integrated Laue pattern are used to reconstruct the intensity origin of the overlapping Laue patterns.
This decoding technique is called differential aperture X-ray microscopy (DAXM). Lattice rotations as a
function of depth, can be resolved by DAXM with a resolution of �1 lm (Larson et al., 2007, 2002; Le-
vine et al., 2006). The detailed description of experimental characterization of the mesoscale disloca-
tion density tensor with DAXM is described by Larson et al. (2007).

First large area was probed along several lines perpendicular to the boundary (Fig. 1), and the zones
of large plastic deformation were determined via streak analysis (Ice and Barabash, 2007; Barabash
and Ice, 2005). Then in several specific locations near the boundary the depth resolved DAXM mea-
surements of point-to-point lattice orientations were performed.

In a typical experiment, the sample is mounted on a precision 3-axis rectilinear sample stage. A re-
gion of interest is identified using an optical microscope and the (polychromatic) X-ray beam is fo-
cused onto the sample. The orientation of each subgrain is (precisely) determined by an automated
indexing program (Larson et al., 2007, 2002). Details on the experimental setup and the method of
data collection are described elsewhere (Larson et al., 2007, 2002; Ice and Barabash, 2007). PXM
experiments were carried out on station 34-IDE at the Advanced Photon Source. The initial lattice ori-
entations and subsequent local rotation in the bicrystal specimen were determined during in situ uni-
axial tensile deformation at 0%, 12% and 16% macroscopic plastic strain.

The incident X-ray beam was parallel to the Y-axis and the sample surface inclined at 45� to the
incident beam. Dimensions of the beam were �0.46 by 0.55 lm2 with a penetration depth of
�40 lm for the Ni sample.

Scanning electron (SEM) and the orientation imaging microscopy (OIM) images, based on electron
backscattering diffraction, were also collected using a Philips XL30 field-emission scanning electron
microscope equipped with a DigiView camera.

2.3. Streak analysis of GNDs induced lattice re-orientation

Dislocations displace atoms from their initial positions in the undeformed crystal. Such atomic dis-
placements change the diffraction conditions and broaden the region of high intensity around each
Bragg position (Ice and Barabash, 2007; Barabash et al., 2001). Streak analysis is complementary to
the DAXM measurements. Below this analysis is expanded for the case of multiple slip.

In the PXM technique, a crystal scatters the white beam into a characteristic Laue pattern that de-
pends on the crystal space lattice, its orientation and the incident-beam energy distribution. The direc-
tion of the scattered polychromatic radiation from a deformed grain is characterized by a unit vector,
k̂ ¼ k= j k j. The misorientation between the unit vectors parallel to a Bragg reflection (hkl), k̂hkl, and an
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arbitrary direction in its vicinity, k̂ near a Bragg reflection is defined (Ice and Barabash, 2007; Barabash
and Ice, 2005; Barabash et al., 2001) as a vector, m ¼ k̂� k̂hkl. The recorded intensity in PXM is a func-
tion of the misorientation vector, m.

For an equal number of random ‘‘+b” and ‘‘�b” SS dislocations the broadening of the diffracted
intensity is induced by random local fluctuations in the unit cell orientations and the interatomic dis-
tance, d, in different locations near a dislocation line that tend to cancel out over (long) length scales.
For example, due to the character of the displacement field around edge dislocation, displacements
occur only in planes perpendicular to the direction of dislocation line s. As a result, coherence does
not change along the dislocation line direction and the diffracted intensity in this direction is the same
as for crystals without dislocations. The size of X-ray spot in our experiment is about�0.5 lm in diam-
eter with the penetration depth about �40 lm, and we suppose paired dislocations in this area with
0.5 � 0.5 � 40 lm are detected as SS dislocations.

The unpaired GN dislocation density varies throughout a crystal due to inhomogeneous plastic defor-
mation. The GN portion of dislocation content is due to the incompatibility of plastic deformation and to
the local curvature of the corresponding crystal lattice. In other words, GNDs must arise in non-uni-
formly deformed crystals to maintain the continuity of the crystal lattice. GN dislocations are length
scale dependent; at a differential (microscale) volume level, all dislocations are ‘‘geometrically neces-
sary” (Arsenlis et al., 2004; Arsenlis and Parks, 1999; Nabarro, 2001; Nye, 1953). Therefore, when we dis-
cuss GN portion of dislocation population the representative volume element (RVE) over which the
GND’s density is determined should be described explicitly (Arsenlis et al., 2004; Arsenlis and Parks,
1999).

The GN portion of dislocation population within each RVE causes lattice curvature (bending and/or
twisting). When the X-ray beam probes a region with a curved lattice it intercepts layers with distinct
orientations. Differently oriented layers scatter X-rays in different directions. For this reason instead of
a sharp intensity maximum (Laue spot) scattering occurs over an angle interval. This ‘‘streaking” of the
Laue spots changes as the probed region moves through the sample: the change in the GN portion of
dislocation content and lattice curvature is accompanied by the change in the PXM intensity distribu-
tion. The lattice curvature K (in the first approximation) can be modeled by a network of randomly
distributed unpaired GN dislocations with the density qG and Burgers vector b. The curvature
K = qGb coincides with the effective strain gradient, g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1giikgjjk þ c2gijkgijk þ c3gijkgkji
p

(Huang
et al., 2000; Gao et al., 1999), g = K = qGb. The GN dislocation density tensor qG,ik can be re-written
in terms of the distortion tensor xij = uj,i, and in terms of strain gradient tensor glmk as follows:
qG;ik ¼ �
1
b

eilmglmk ¼ �
eilm

b
oxmn

oxl
; and glmk ¼ o2uk=oxloxm; uk ¼

X
t

ctukt : ð1Þ
In this equation, eklm is the permutation symbol, b is the magnitude of the Burgers vector, uk is the k
component of the displacement field u for any unit cell from the equilibrium positions R0

i ; ct is the
random number describing the position of dislocation line. The displacement u of each unit cell is
due to all dislocations in the RVE (Ice and Barabash, 2007; Barabash and Ice, 2005; Barabash et al.,
2001).

To find the GN dislocation arrangement in a real crystallographic lattice we need to know the Bur-
gers vector and line direction of the dislocation. Burgers vector usually does not change along the dis-
location line. The line direction is free to occupy any direction on the slip plane but we can determine
the direction if we have edge and screw components of the dislocation separately.

In plastically strained crystals with GN dislocations the general expression for scattering by crystals
with dislocations depends on the pair correlations between displacements of every two scattering
cells s and s0, uSt � uS0t . It is given by a general expression:
IðqÞ ¼ f 2
X
s;s0

eiq�DRe�TðR0
S ;DRÞ; T ¼ cD

X
t

1� eðiQ �ðuSt�uS0 tÞÞ: ð2Þ
Here f is the average scattering factor of the matrix atoms, DR ¼ R0
S � R0

S0DR ¼ R0
i � R0

j is the undis-
torted distance vector between two scattering cells s and s0; R0

S is a position vector of the cell s in
the defect-free crystal; cD indicates the fraction of lattice sites intercepted with dislocations. The dif-
fusely scattered intensity about the centroid of the Laue spot depends on the deviation q = Q � Ghkl
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between the diffraction vector Q and the momentum transfer Ghkl for an (hkl) Laue reflection. The cor-
relation function T differs according to dislocation arrangement. In general for an arbitrary distribution
of paired and unpaired dislocations, the correlation function has both imaginary and real parts
T = T1 + T2 + T3. The details of the correlation function analysis can be found elsewhere (Ice and Bar-
abash, 2007; Barabash and Ice, 2005). The first term, T1, is imaginary, linear with respect to the density
of unpaired dislocations n+ and goes to zero when n+ = 0.
T1 ¼ i
X

ta
cD
a ðRss0rÞðGhklustaÞ; T2 ¼ �

X
a

cD
a ½1� cos½ðRss0rÞðGhklustaÞ��;

T3 ¼
i
2

X
at

cD
a cos½ðRss0rÞðGhklustaÞ�ðRijrÞ2ðGhklustaÞ:
Here h, k, l denote the Miller indices of the reflection, Ghkl is a momentum transfer for this reflection, a
numerates different slip systems, s and s0 are two scattering cells. The real part of the correlation func-
tion T2 is independent of whether dislocations are paired or unpaired. The real part of the correlation
function depends only on the total (SS + GN) dislocation density.

For strained crystals with GN dislocations the linear imaginary part T1 makes the most significant
contribution to the correlation function. Part T3 is also imaginary and typically with T3� T1 it may be
neglected. Since displacements of the lattice sites from their ideal positions decrease very slowly with
their distance from dislocations, the main contribution to the T1 is made by the range of large dis-
tances from the dislocation for which we can replace sinðQuss0tÞ � Quss0t and retain only first term of
the expansion in powers of distance vector between s and s0 cells in the undeformed crystal,
DR ¼ R0
s � R0

s0 ;

T1ðR0
S ;DRÞ ¼ �

X
a

cD
a

X
t

DR
o

oR0
S

QuSta or T1ðR0
S ;DRÞ ¼ R0

S ADR:
This term in the correlation function is associated with the mean bending or torsion of the crystal lattice
within the probed region. It can be expressed in terms of the distortion tensor components xij = uj,i pro-
duced by the GN population within probed region (Eq. (1)) Vector A defines the contrast factors when
multiple slip systems with edge and screw dislocations are simultaneously activated within a RVE:
A ¼
X

a
qGbQðnSbaÞ½sa � g�; ns ¼

R0
S

R0
S

ðedge GNDsÞ; ð3aÞ

A ¼ 1
2

X
a

qGbQf½nS � g� � 2ðbanSÞ½ba � g�g ðscrew GNDsÞ: ð3bÞ
It is important that the vector A is always perpendicular to the direction of diffraction vector g = Ghkl/jGhklj.
This is why GNDs (and GNBs) influence the diffraction in the plane transverse to the reciprocal lattice
vector (so called orientation space) which is probed with PXM.

The lattice curvature is measured with PXM at each probing location. Two axes n and m can be de-
fined along and perpendicular to the streak direction (Ice and Barabash, 2007; Barabash and Ice, 2005)
in the plane transverse to the momentum transfer unit vector g. With this coordinate system, the iso-
contours of the scattered white beam intensity are strongly streaked in the n direction, and the full
width at half maximum in the n direction FWHMn for randomly distributed GN dislocations depends
on their density, qG, mutual orientation between the active dislocation system, the momentum trans-
fer unit vector g (through a contrast factor), and the length of the probed region along GNDs slip direc-
tion, L (Ice and Barabash, 2007; Barabash and Ice, 2005; Barabash et al., 2001). In the narrow direction,
m, the FWHMm depends on the average distance between all (GN + SS) dislocations Ls and on the con-
trast factor for the measured Laue spot Cm. It can be used to estimate the total dislocation density
(GN + SS) within each RVE:
FWHMn / gLCn; FWHMm / bL�1
s Cm: ð4Þ
Here Cn and Cm are contrast factors along and perpendicular to the streak, L is the length of the
region probed along the slip direction, and Ls is the average distance between randomly distributed
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dislocations. The predominant GNDs density tensor components and direction of the strain gradient
can be identified because of their distinctly different contributions to streaking of the Laue patterns.

When straining proceeds the randomly distributed dislocations (both GN and SS) partially collect
into walls (Fig. 2). Dislocations of the opposite sign partially annihilate during their grouping within
the wall. The GN portion of dislocations within the wall provides a finite rotation between two neigh-
boring mosaic blocks with a rotation angle H.

With respect to their origin and properties two main types of dislocation walls/boundaries are dis-
tinguished: incidental dislocation boundaries (IDBs) and geometrically necessary boundaries (GNBs)
(Kuhlmann-Wilsdorf and Hansen, 1991; Barabash and Pantleon, 2004; Hansen, 2005; Hansen and
Hughes, 1995; Hirth et al., 2006). Both types of boundaries are connected with misorientations, which
are lower across IDBs than across GNBs (Fig. 2). Thick IDBs result in long-range internal stresses caus-
ing the broadening of X-ray reflections both in radial direction of the diffraction vector and in orien-
tation space. GNBs arise from differences in the activated slip systems on both sides of the boundary.
Their diffracted intensity distribution becomes highly anisotropic in reciprocal space, which can be
used to track the boundary evolution during plastic deformation. For simplicity we describe below
the scattering of polychromatic radiation by GNBs (IDBs can be considered similarly).

We define the average distance D between a geometrically necessary boundary (GNBs) and write
the number of GNBs per unit length as, 1/D. This distance corresponds to the second intrinsic length
scale of the materials. The total density of GN dislocations grouped in the GNBs is denoted by qG = 1/
Dh, where h is an average distance between the dislocations within the wall. The effective strain gra-
dient and lattice curvature in this model can be written as, g = K = H/D. For groupings of GN disloca-
Fig. 2. Sketch of the dislocation grouping within different dislocation walls during straining: (a) thick cell boundary (IDB-1)
with almost vanishing disorientation, (b) IDB-2 with significant disorientation and (c) finite rotation through the low angle tilt
boundary (GNB). Simulated intensity of the Laue streak profile and 2D image are shown at the bottom of each wall type.
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tions within the GN boundaries, GNBs, the FWHMn depends on the average distance, D, between GNBs,
their mutual orientation to the momentum transfer G, the type of GNB (tilt or twist), and the incident
X-ray beam direction (Ice and Barabash, 2007; Barabash and Ice, 2005). For crystals with GNDs within
the dislocation walls (GNBs or IDBs), X-ray diffraction Laue spots are broadened in proportion to the
number of GN dislocations inside the wall and to the total number of walls.

In the case of grouping of some portion of GN dislocations within the boundary and split Laue im-
age (see Fig. 2) the intensity distribution becomes discontinuous due to the finite rotation through the
boundary. When the angle through the boundary becomes large enough there will be two separate
Laue spots instead of one continuous. The misorientation angle through the boundary can be deter-
mined using the centroids of each Laue spots and calculating an average orientation of each region
(at least three Laue spots with different (hkl) are needed). Misorientation created by the remaining
random GN dislocations within each region causes streaking of each Laue spot. In that case total mis-
orientation created by GN dislocations now consists of two parts: (I) infinitesimal misorientation due
to GNDs within each region; (II) finite rotation due to GN dislocations grouped within the boundary.

The GN portion of the dislocation population changes the Laue spots intensity distribution much
more efficiently than the same amount of SS dislocations. The following criterion (Ice and Barabash,
2007; Barabash and Ice, 2005) can be used to characterize the influence of the GN dislocations on
the Laue pattern:
qGL > 0:1
ffiffiffiffiffiffiffiffiffiffi
qGþS

p
: ð5Þ
When this condition is satisfied, the GN dislocations cause essential streaking of the Laue pattern. Here
L is the size of the RVE, qG+S is total density of GN and SS dislocations. For example, if L = 10 lm,
qG+S = 1012 cm�2, qG = 109 cm�2. This means that when the GN portion of dislocation population
qG = 0.01qG+S, the Laue image starts to streak. This is in line with the approach of Arsenlis et al.
(2004), showing that small amounts of GN dislocations (0.01 and less) may cause essential lattice cur-
vature. More details of the streak analysis of PXM images from deformed crystals can be found else-
where (Ice and Barabash, 2007; Barabash and Ice, 2005).

2.4. Dislocation model-based strain gradient crystal plasticity analysis

Here we describe our crystal plasticity model. Assumption of infinitesimal deformation is used for
simplicity. The maximum nominal tensile strain is 10% and the error due to this assumption is mod-
erate and will be tolerated. Slip deformation is assumed to take place on {111} crystal planes and in
h110i crystal directions. The activation condition of the slip system n is given by the Schmidt law:
PðnÞij rij ¼ hðnÞ; PðnÞij
_rij ¼ _hðnÞ ðn ¼ 1; . . . ;12Þ ð6Þ
and,
PðnÞij ¼
1
2
ðmðnÞi bðnÞj þ mðnÞj bðnÞi Þ; ð7Þ
where rij and h(n) denote the stress and the critical resolved shear stress on the slip system n, respec-
tively. The slip plane normal mðnÞi and the slip direction bðnÞi define the Schmid tensor PðnÞij . Quantities
with dot indicate increments of them. Increment of the critical resolved shear stress is written as
follows:
_hðnÞ ¼
X

m

hðnmÞ _cðmÞ: ð8Þ
Here, _cðmÞ denotes the increment of plastic shear strain on slip system m. By assuming the infinitesimal
strain approximation, the constitutive equation is written as follows (Hill, 1966):
_rij ¼ Se
ijkl þ

X
n

X
m

fhðnmÞg�1PðnÞij PðmÞkl

" #�1

_ekl; ð9Þ
where Se
ijkl denotes elastic compliance. Summation is made over the active slip systems.
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The critical resolved shear stress is given by the following equation (Ohashi, 1987, 1994):
hðnÞ ¼ h0 þ
X

m

XðnmÞal~b
ffiffiffiffiffiffiffiffiffi
qðmÞS

q
; ð10Þ
where h0 denotes the lattice friction term and qðmÞS denotes the density of statistically stored
(SS) dislocations that accumulate on the slip system m. Reaction between dislocations on slip
systems n and m defines the magnitude of the interaction matrix X(nm). Diagonal terms in
X(nm) are unity and in the present study, we choose off diagonal terms to express pseudo-iso-
tropic hardening character for every slip system. l and ~b denote the elastic shear modulus and
magnitude of Burgers’ vector, respectively. a is a numerical factor, which is equal to 0.1 in this
paper.

Increment of the SS dislocations is given as follows:
_qðnÞS ¼ c _cðnÞ=~bLðnÞ; ð11Þ
where c is a numerical coefficient of the order of 1. L(n) denotes the mean free path of dislocations on
slip system n and, in this paper, we use the following model for it:
LðnÞ ¼ c	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

m
wnmðqðmÞs þ kqðmÞG kÞ

q�
; ð12Þ
where c* is a material constant of the order of 10–100 (for detailed discussion, see Kuhlmann-Wilsdorf,
1989), and wnm determines the intensity of obstacle effect of dislocations on slip system m to the
movement of dislocations on slip system n. We assume that dislocations accumulated on the same slip
plane as that of moving dislocations do not contribute to the mean free path (wnm = 0), and all the
other dislocations contribute equally (wnm = 1).

The edge and screw components of the geometrically necessary (GN) dislocations are obtained
from the gradients of plastic shear strain on slip systems (Ohashi, 1997)
qðnÞg;edge ¼ �
1
~b

ocðnÞ

onðnÞ
; qðnÞg;screw ¼ �

1
~b

ocðnÞ

ofðnÞ
: ð13Þ
Here, n(n) and f(n)denote the crystal coordinates of slip system (n), respectively. The norm of two com-
ponents defines the scalar density for the GN dislocations
kqðnÞG k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqðnÞG;edgeÞ

2 þ ðqðnÞG;screwÞ
2

q
: ð14Þ
Evaluation of the edge and screw components for the GN dislocations enables one to calculate the
tangent vector l(n) of the dislocation line segments (Ohashi, 1999)
IðnÞ ¼ 1

kqðnÞG k
ðqðnÞG;screwbðnÞ þ qðnÞG;edgebðnÞ � vðnÞÞ; ð15Þ
and the characteristic angle u of the dislocation segment
cos uðnÞ ¼
qðnÞG;screw

kqðnÞG k
; sin uðnÞ ¼

qðnÞG;edge

kqðnÞG k
: ð16Þ
Positive and negative edge dislocation segments have the characteristic angles p/2 and 3p/2, respec-
tively, while positive and negative screw segments have the characteristic angles 0 and p. We can
visualize the distribution of the GN dislocation segments with Eqs. (15) and (16) (Ohashi, 2005;
Ohashi et al., 2007).

The strain hardening coefficient in Eq. (8) is given by the following equation:
hðnmÞ ¼ 1
2

aclXðnmÞ LðmÞ
ffiffiffiffiffiffiffiffiffi
qðmÞS

q� ��
; ð17Þ
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and by substituting Eq. (12) into Eq. (17), we have
hðnmÞ ¼ acl
2c	

XðnmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
kwmkðqðkÞS þ kq

ðkÞ
G kÞ

qðmÞS

vuut : ð18Þ
2.5. Data used for the numerical analysis

Fig. 3 shows the Ni bicrystal specimen and finite element meshing employed for the numerical
analysis. The dimension of the specimen is 8.43 � 0.68 � 0.6 mm, equal to that used in the experi-
ment. The specimen is divided into 90 � 8 � 4 elements in x, y and z direction, respectively, and the
element type used is the composite type brick element with eight nodes. The specimen is meshed
in non-uniform manner in x and y direction which will enable one to follow a possible sharp change
of physical quantities in the vicinity of the grain boundary and specimen surface.

We use experimental data for the magnitude of the Burgers’ vector ð~b ¼ 2:556 ÅÞ and the elastic
compliances (s11 = 0.8347, s12 = �0.3281, and s44 = 0.9804 � 10�11 m2/N). The elastic anisotropy ratio
is 2.372. Therefore, non-uniform deformation takes place near the grain boundary even if the defor-
mation is purely elastic. The initial dislocation density on each slip system is 109 m�2 and we assume
c* = 10 and h0 = 30 MPa.

Crystal orientation is defined by three Euler angles j, h and /, definition of which is shown in Fig. 4
and the relation between the crystal- and the specimen-coordinate systems is given by the following
equation:
u100

u010

u001

0
B@

1
CA ¼

cos h sin h sin / � sin h cos /

sin k sin h � sin k cos h sin /þ cos k cos / sin k cos h cos /þ cos k sin /

cos k sin h � cos k cos h sin /� sin k cos / cos k cos h cos /� sin k sin /

0
B@

1
CA

x

y

z

0
B@

1
CA:
ð19Þ
Fig. 3. Ni bicrystal specimen employed for the numerical analysis and its finite element meshing.

Fig. 4. Definition of Eulerian angles k, h and /.
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In the experiment, the coordinate transformation matrix (orientation matrix) is given numerically (see
Section 3). Because the experimental data of the orientation matrix consists of nine numerical values
and only three Euler angles are independent, the determination of the Euler angles from the orienta-
tion matrix is not straight forward. Therefore, we employed the following procedure: First, we normal-
ize the experimental data of the rotational matrix and then, we solve the nine simultaneous equations
by equating each experimental datum for component of rotational matrix with the component given
in Eq. (19). Variables to be solved are Euler angles and we obtain two sets of solutions since the simul-
taneous equations are multiple valued. Lastly, we apply the two sets of Euler angles to Eq. (19) and
compare the rotation matrix with experimental data to select one set of Euler angles. The results
are summarized in Table 1 which shows good agreement with the experimentally obtained matrices.

Definition of the 12 slip systems of {111}h110i are shown in Table 2. When uniaxial tensile load is
applied in the X direction and the crystal orientations for two crystal grains are given by those shown
in Table 1, the largest Schmid factor in the grain A is 0.4684 which is for the slip system #6, and the
second largest value is 0.4338 for the slip system #12. In the grain B, the largest Schmid factor is
0.4909 for the slip system #3 and the second largest value is 0.4333 on slip system #6.

Finite element nodes on the left surface (x = 0) of the model are not allowed to move in x direction
and the nodes on the right surface (x = 8.43 mm) are given a uniform tensile displacement. We grad-
ually increase the tensile displacement on the right surface and monitor the resolved shear stress on
12 slip systems in each finite element. When the resolved shear stress on a slip system reaches its crit-
ical value, which is given by Eq. (10), we pause the simulation and revise the strain hardening coeffi-
cient for the element. With the new value for the element stiffness, we resume the simulation until the
resolved shear stress on a slip system in some element reaches its critical value. We repeat this pro-
cess of incremental analysis until the macroscopic tensile strain reaches 10%.
Table 1
Euler angles and orientation matrix used for the numerical analysis

Grain Euler angles (deg) Orientation matrix

j h /

A �83.26 37.48 131.4 0.7936 0.45632 0.40247
�0.60424 0.51347 0.60930

0.07138 �0.72672 0.68321
B 22.85 100.6 94.8 �0.18452 0.97937 0.08232

0.38168 �0.00578 0.92428
0.90569 0.20197 �0.37274

Table 2
Twelve slip systems defined for face centered cubic crystals

Slip system No. Schmid–Boas notation Slip plane Slip direction Generic name

1 A2 111 1 �10 Critical slip system
2 A6 " 01 �1 "
3 A3 " 10 �1 "

4 D1 �111 110 Cross slip system
5 D6 " 01 �1 "
6 D4 " 101 "

7 B2 11 �1 1 �10 Co-planar slip system
8 B5 " 011 "
9 B4 " 101 Primary slip system

10 C1 1 �11 110 Conjugate slip system
11 C5 " 011 "
12 C3 " 10 �1 "
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3. Results and discussion

The PXM technique was applied to the complicated dislocation structure arising from the in situ
uniaxial tensile deformation in a Ni bicrystal (Fig. 1). Diffraction patterns were collected from different
sample locations in grains A (left) and B (right) (Fig. 1) by translating the sample under the white
microbeam. PXM patterns were recorded along several lines parallel to the sample x-axis with a step
size of 2 lm. Total 9000 locations were probed. The locations along one of such lines are shown sche-
matically at the SEM image of the sample after deformation (Fig. 1). Although before the deformation
the boundary was practically perpendicular to the sample axes, as a result of deformation the bound-
ary became distorted and inclined to the sample axes (this observation will be further discussed in
Section 3.3). Moreover the stress state is not really uniaxial from the beginning of the deformation be-
cause of elastic anisotropy of the material. Not only tensile but also other components of stress are
acting on the grain boundary plane. The orientation of undeformed grains was
UA ¼
0:7936 0:4563 0:4025
�0:6051 0:5142 0:6101
0:0715 �0:7277 0:6841

2
64

3
75; ð20aÞ

UB ¼
�0:1845 0:9794 0:0823
0:3743 �0:0057 0:9065
0:8882 0:1981 �0:3655

2
64

3
75: ð20bÞ
In grain A the orientation of the surface normal before deformation was almost parallel to [233]
with loading direction approximately in the ½1 �10� direction. In grain B the x-axis is close to the
½�125� direction with surface normal close to ½03 �1� direction. The microbeam-Laue diffraction reveals
pronounced streaking of Laue images after 12% and 16% strain. Typical Laue patterns from the de-
formed A and B grains and the boundary region are shown in Fig. 5. It was possible to track the grain
orientation as the step size between neighboring probing locations was 2 lm. The average orientation
was well preserved within each grain and it was distinct from the other grain (Fig. 5a and c). Laue
beam penetrates approximately 40 lm into the depth of the sample. In the boundary region the over-
lapping of the two Laue patterns corresponding to both A and B grains was observed. The width of the
boundary region was determined as the region where overlapping of Laue patterns from A and B
grains were observed. The thickness of boundary region was equal of several micrometers. During
the experiment we followed three main phenomena: lattice rotations and elastic and plastic deforma-
tion. Plastic response to the uniaxial straining is quite different in the two grains (Fig. 6). In the A grain,
zones with intensive plastic deformations are observed in the region of 100 lm close to the boundary,
while in the B grain the zones with high plastic activity are concentrated in shear bands and separated
with zones with low dislocation density. In both grains plastic deformation is inhomogeneous. Oscil-
lations of GN dislocations are observed even within the shear band. Severe plastic deformation
changes the shape of the Laue spot. They become streaked (elongated) in certain direction as described
in Section 2.3 and the streaking depends on the predominant GN slip systems operating within the
probed region (according to Eq. (4)). Due to inhomogeneous plastic deformation in the grain A the
streak length and direction of all Laue spots oscillates strongly over the grain (Fig. 7).

3D measurement of the depth-dependent local lattice orientation were performed with DAXM
technique at several specific locations in both grains close to the grain boundary (Fig. 8). It is visible
that in both grains the misorientation between the surface and the bulk of the grain increased with the
depth. The scale of the depth-dependent misorientation increased when probing location approached
the boundary in both grains. In the grain A with higher plastic deformation the depth-dependent mis-
orientation was almost twice higher than at the same distance from the grain boundary in the grain B
(compare solid curves in Fig. 8a and b).

3.1. Analysis of the dilatational strain in the vicinity of the boundary

After tensile test both elastic and plastic strain are present in the sample. To analyze possible dila-
tational elastic strain measurements with a monochromatic microbeam were performed in the two



Fig. 6. PXM results for GNDs density oscillations in the vicinity of the boundary between two grains. GNDs density is shown as
their % of the maximal value of 1.5 � 1012 m�2.

Fig. 7. Example of streak oscillations for (040) Laue spot at different probing locations which are shown by dark circles and
labels in Fig. 6.

Fig. 5. Typical Laue patterns for grain A (a) the boundary (b) and grain B (c).
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grains in the vicinity of the boundary. Reflection (224) with d224 = 0.0723 nm in the unstrained
sample was chosen for both neighboring grains (as this Laue spot was observed in both of them).
The reciprocal space in the vicinity of the (224) reflection was scanned within the energy interval
of 13.871–14.09 keV with a step of 1 eV along the line perpendicular to the boundary (Fig. 9). With
the increase of energy of the beam the radius of the Evald sphere changes and at certain energy value
the Evald sphere intercepts (224) reciprocal lattice (r.l.) point. Due to orientation and elastic strain
change the position of the energy corresponding to the (224) reciprocal lattice point changes for dif-
ferent locations in the grain (Fig. 9a). In the grain A energy increases mainly due to orientation change
when the probing location approaches the boundary and remains practically same in the boundary
region and at relatively large distance from the boundary in the grain B. In this region of the grain
B with highly strained lattice no GN dislocations are observed. Dilatational strain slightly changes with
the distance from the boundary in the grains A and B (Fig. 9b). In Fig. 6, where GND density is plotted
against position, the higher density in grain A spreads over the width of 250 lm close to the boundary.
In the grain B the localized band with strong rotational modes and high density of GN dislocations is



Fig. 8. Change of misorientation with depth at four different positions located at 2 lm (solid line) and 10lm (dashed lines) into
the grain B (left) and grain A (right).
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relatively narrow with a width of 62.5 lm. It is observed at the distance of �125 lm away from the
boundary (Fig. 6). In the grain A fast oscillations of the GN dislocations take place relatively close to
the boundary and only in the vicinity of the boundary the lattice remains strained without visible
GN dislocation (Figs. 6 and 9). Such different dislocation substructure in the A and B grains separated
by the boundary is in agreement with classification of the near grain boundary structures described by
(Hansen, 2005). Typically grain boundaries in the polycrystalline materials are not penetrable for slip
dislocations (Hansen, 2005). As a result of interaction between slip dislocations and grain boundaries,
different slip band arrangements may form on both sides of the boundaries which is observed in this
study. In the grain B slip band is observed in the grain interior but no bands at the boundary. In the
grain A slip bands are located much closer to the boundary (Fig. 6). These observations were further
supported by SEM/OIM analysis.

3.2. SEM and OIM characterization of the deformed bicrystal

Typical SEM images of the tensile Ni bicrystal are shown in Fig. 10. The distinct plastic response of
the two grains is demonstrated in Figs. 10a and b. Bending of slip bands parallel to the boundary is
observed in the grain A at the distance of several micrometers from the boundary (Fig. 10a). In the
grain B the bands are not observed within a large distance from the boundary. Essentially inhomoge-
neous plastic deformation in the grain A results in a peculiar shape of a slip band. Some of them dem-
onstrate clear local rotations of the lattice with alternating slip systems in the grain A (Fig. 10d). Many
Fig. 9. Change of the energy corresponding to the (224) reflections (a) and (224) lattice spacing change (b) in the vicinity of the
boundary between grains A and B.



Fig. 10. SEM images of the Ni bicrystal specimen surface: (a,b), slip lines observed near the boundary, (c) typical slip band in the
interior of the grain A, and (d) slip localization observed in the interior of the grain A.
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narrow (with the size of several microns) relatively straight slip bands were observed in the grain B
(Fig. 10c).

The results of OIM analysis of the region in the grain A of the Ni bicrystal are shown in Fig. 11. The
chosen area (Fig. 11a) contained a region with a distinct slip band. OIM image was taken with a step
size 0.7 lm (Fig. 11b). In this study the orientation obtained by OIM analysis coincided with an aver-
age orientation obtained from PXM Laue data. However, OIM analysis is not as sensitive as PXM to
small local misorientations and cannot provide information on the depth-dependent misorientations
caused by geometrically necessary dislocations (GNDs).

3.3. Numerical results for distribution of plastic shear strain and GN and SS dislocations on slip systems

Fig. 12 shows the experimental (red) and numerically calculated (blue curve) flow curves. The
nominal stress versus nominal strain relation obtained by the numerical analysis is very similar to
the experimental one. The specimen shows macroscopic yielding when the nominal stress is about
65 MPa and a moderate strain hardening after that. This stress–strain curve shows slight discrepancies
with the experimental one. One reason for this discrepancy will be that the numerical analysis as-
sumes that crystal orientation, initial dislocation density, or chemical components etc. are perfectly
uniform in each grain. This will not be true for the real material. When there are inhomogeneities, sec-
ondary slip systems tend to be activated after some amount of slip on the primary one. Shear strains
on secondary systems are usually very small but dislocations on the secondary slip systems work as
strong obstacles to moving dislocations on the primary system. This results in a high strain hardening.
This kind of slip behavior is widely observed in tensile deformation of single crystals (that is, forma-
tion of kink bands and band of secondary slip), and it is believed that this causes the transition from
the deformation stage I to II in the deformation curve of single crystals. Fig. 10 shows slip patterns



Fig. 12. Numerical (blue curve) and experimental (red curve) results of the load-elongation curve of the Ni bicrystal under
tensile deformation.

Fig. 11. (a) SEM image of the area in the interior of the grain A; (b) OIM image of this area (orientation map); (c) the pole figure
of this region obtained from OIM analysis.
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experimentally observed in the present study when the nominal tensile strain is 12%. Activation of
secondary slip systems is observed.

Figs. 13a–d show non-uniform distribution of strain components exx, eyy, ezz, and eyz when the nom-
inal strain is 10%. Deformed shape of the specimen is also depicted in Fig. 13a. The specimen looks to
be slightly bent and twisted, which is attributed to anisotropic deformation due to plastic slip on slip
systems. Such bending and twisting of the sample was observed experimentally. Strain components
exy and ezx are not equal to zero, but they are smaller than 5% and are not shown.

Normal component of the strain in tensile direction exx is approximately 8% and 14% in the grain A
and B, respectively, and it gradually decreases to the value less than 2% in the vicinity of the grain
boundary (Fig. 13a). Similar trend is observed in the distribution of eyy and ezz (Fig. 13b and c). For
example, eyy is approximately �1% and �10% in the grain A and B, respectively and it decreases nearly
equal to zero at the grain boundary. The shear strain component eyz is approximately 8% in the grain A
and �12% in the grain B. This means that grains A and B are sheared in the opposite direction and this
causes the twisted shape after deformation.

Figs. 14a–d show the slip activity and accumulation of dislocations on the ð111Þ½10 �1� slip system.
In the grain A, there is no activity of this slip system, while the plastic shear strain in the interior of the
grain B is about �28% and it is suppressed almost completely at the grain boundary. Figs. 14b–c show



Fig. 13. Analysis results for the deformation of the specimen when the nominal strain is 10%. (a) Distribution of the normal
strain eXX which is mapped on the deformed shape of the bicrystal specimen. Deformation is exaggerated by the factor of 2, (b)–
(d) distribution of eYY, eZZ and eYZ on the cross section at Z = 0.3 mm, respectively.
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the density distribution of the GN dislocations. A high density band of GN dislocations is formed from
the intersection of the grain boundary and the bottom surface of the specimen and grows in the direc-
tion approximately 45 degree from the grain boundary (Fig. 14b). The band consists mainly of the edge
type dislocations (Fig. 14c) but the dislocations in the vicinity of the grain boundary have mixed type
character (Fig. 14c). The bicrystal specimen tends to bend and twist under application of uniaxial ten-
sile load due to the anisotropic nature of slip deformation of two component crystals, which we ob-
served already in Fig. 13a. The anisotropic nature of the deformation of the specimen and the
condition of external loading contribute to the formation of high density band of GNDs, although
we will not go into details of the mechanism of the formation of the high density band of GNDs.

Fig. 14d shows density distribution of SSDs. The density of SSDs is almost uniform in the region dis-
tant from the grain boundary. This result corresponds to the fact that the plastic shear strain on this



Fig. 14. Distribution of plastic shear strain, density norm of GNDs, edge and screw component of GNDs and SSDs on the
ð111Þ½10�1� slip system when the nominal strain is 10% and viewed on the Z = 0.3 mm cross section.
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slip system is almost uniform inside the grain and far from the grain boundary. Near the grain bound-
ary, the SSD density gradually decreases, which is also consistent with the result shown in Fig. 14a,
and it is worthwhile to note that density of SSDs is also high along the high density band of GNDs. This
pattern of SSDs is supposed to have formed after some interaction of GNDs and SSDs. Let us consider
this point in detail. The accumulation of SSDs is evaluated by the magnitude of slip strain and dislo-
cation mean free path (Eq. (11)), while the magnitude of slip strain (Fig. 14a) does not show stripe pat-
tern near the grain boundary. Therefore, the high density band of GNDs is supposed to have
contributed to the accumulation of SSDs in the stripe pattern. GNDs in the band obstruct movement
of dislocations as forest dislocations: the mean free path of moving dislocations on slip systems which
have intersecting slip plane with that of the present (ð111Þ½10 �1�Þ slip system are shortened (Eq. (12)).
Fig. 15d shows the density distribution of SSDs on ð�111Þ½110� slip system where we also notice a
stripe pattern growing from the intersection of the grain boundary and the bottom surface of the



Fig. 15. Distribution of plastic shear strain, density norm of GNDs, edge and screw component of GNDs and SSDs on the
ð�111Þ½101� slip system when the nominal strain is 10% and viewed on the Z = 0.3 mm cross section.
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specimen. From these results, following scenario could be developed for the formation of stripe pat-
tern in SSDs. That is, a high density band of GNDs develops due to anisotropic deformation of the
bicrystal and GNDs in the band shorten the mean free path of dislocations on ð�111Þ½110� slip system.
Then, a high density of SSDs on ð�111Þ½110� slip system shorten the mean free path of dislocations on
ð111Þ½10 �1� in the band and results in the formation of stripe pattern of SSDs on this system. In this
way, GN and SS dislocations on more than one slip systems interact in a complicated manner and
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sometimes result in a formation of dislocation pattern which could not be expected from simple com-
patibility requirements at the grain boundary.

It should also be noted that the density of SSDs is approximately ten times larger than that of GNDs
even in the high density band of GNDs. It should be noted that the same ratio between GNDs and SSDs
density holds for the start of streaking of Laue spots (see Eq. (5)). As is well known, the density of
GNDs is scale dependent and the larger the length scale of the material, the smaller the density. There-
fore, the interaction of GN and SS dislocations is assumed to be more significant when the specimen
size is smaller.

Figs. 15a–d show slip activity and dislocation accumulation on the ð�111Þ½101� slip system. Shear
strain on this slip system is close to zero in the grain B, while in the grain A, the shear strain is about
17% in the grain interior and decreases to zero near the grain boundary. GNDs accumulate near the
grain boundary in the grain A (Fig. 15 b) and their character is close to pure screw dislocations
(Fig. 15c). Density distribution of SSDs is shown in Fig. 15d. The density of SSDs in the grain A is
approximately 7 � 1012 m�2 in the area far from the grain boundary and it decreases in the vicinity
of the boundary. We also notice an accumulation of SSDs in the grain B near the boundary and a part
of which makes a stripe pattern, on which we already discussed in some detail.

Fig. 15 shows more or less smooth distribution of shear strain in the grain A, while the slip line pat-
tern obtained in the experiment and shown in Fig. 10 depicts slip bands and other local fluctuations of
slip activities. These fluctuations observed in the experiment are assumed to be caused from initial
inhomogeneities which are inherent in real materials. Ohashi (1990) showed a mechanism for the for-
mation of slip bands from initial inhomogeneities. Even a small fluctuation of the initial dislocation
density or dislocation mean free path was shown to cause the formation of slip bands inside a
grain. In this study we are interested in the GNDs behavior in the vicinity of the boundary. For this
reason the very remote regions where different inhomogeneities can influence this behavior were
not considered.

3.4. Discussion

The plastic response of the material in both A and B grains of the bicrystal can be described by the
formation of GN and SS dislocation populations in the material to relax the stress field induced during
pulling. In FCC crystals, typical edge dislocation lines are parallel to the directions of h112i with Bur-
gers vectors being parallel to the directions h110i and corresponding glide planes {111} (see Table 2).
Formation of the narrow slip bands separating regions with low GN density can be understood from
the view point of mesoscopic self-organized structures. Such self-organization decreases the free en-
ergy of the system. Formation of similar narrow microbands with localized lattice rotations was ob-
served during rolling and torsion of polycrystalline Ni (Hansen and Hughes, 1995; Bay et al., 1992).
Several models for grain subdivision during plastic deformation were proposed (Jakobsen et al.,
2006; Seefeldt et al., 2001; Sedlacek et al., 2002; Romanov, 2003).

With increasing strain due to collective behavior in the interacting dislocation ensemble, rotational
plastic modes appear. Rotations are localized in narrow microbands separating the grain into strongly
disoriented regions (Hansen, 2005). This process can be schematically described as following: (1) ran-
domly distributed dislocations, (2) cell-wall structure; (3) microbands with IDBs and GNBs. As defor-
mation increases the cell boundaries become narrower and result in the formation of IDBs and GNBs.
At the micro and mesoscales the spontaneous reconstruction of dislocation substructure is a typical
sign of the nonlinear behavior of the deformed material. At low-strain deformation without strain gra-
dients the SS dislocation density is an important parameter of the deformed crystal. With increasing
strain SS randomly distributed dislocations reconstruct with a formation of the cell-wall structure
(Mughrabi, 1983; Mughrabi and Obst, 2005). Under strain gradients, the density of GNDs and GNBs
controls formation of microbands with localized rotational modes. Formation of each type of disloca-
tion substructure depends not only on the external strain fields but also on the interaction between
already existing dislocations (and defects). With the increase of dislocation density the average dis-
tance between them decreases, and dislocation/dislocation interaction increases, resulting in the col-
lective phenomena and self-organization in the dislocation ensemble (Seefeldt et al., 2001; Romanov,
2003).
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4. Summary

The dislocation arrangement for patterning at several structural levels involved during in situ uni-
axial pulling of a Ni bicrystal at 0%, 12% and 16% macroscopic plastic strain was investigated. Two
bicrystals were employed: one is real and used in the experiment and the other one in a model used
for numerical analysis. The orientation relationship of grains components for the two bicrystals are the
same. The parallel theoretical background of GNDs characterization with special experimental poly-
chromatic microdiffraction and with the crystal plasticity analysis and evaluation of GNDs is also de-
scribed. Links are discussed between experimental and simulation methods. Both techniques were
utilized to measure the GND densities distribution in the vicinity of the grain boundary.

Results of the numerical analysis show that the model bicrystal deforms, under tensile load, mainly
by the activity of two slip systems, which are ð111Þ½10 �1� and ð�111Þ½101�. The slip system ð111Þ½10 �1�
is active only in one grain and the other slip system, ð�111Þ½101� is active only in the other grain. Mor-
phologies for the density distributions of GNDs on the two slip systems are distinctly different.

On the slip system ð111Þ½10 �1�, GNDs make up a high density band which emerges from the inter-
section of the grain boundary and the specimen surface and develops into the interior of a grain
(Fig. 14). On the other slip system, the GNDs density is highest at the grain boundary and decreases
gradually with distance from the boundary (Fig. 15). The above mentioned features of the density dis-
tribution of GNDs are in good agreement with the experimental results (Fig. 6), in that GND density is
high at the grain boundary and decrease with distance from the boundary in the Grain A, while the
GND density in the Grain B is very low at the grain boundary and show a high value inside a narrow
band in the grain interior. Numerical results also show that SSDs on both slip systems make up high
density bands.

The formation of geometrically necessary (GN) and statistically stored (SS) dislocation arrange-
ments together with lattice rotations were observed during in situ uniaxial pulling of a natural Ni
bicrystal. The density of GN dislocations oscillates locally resulting in the formation of narrow slip
bands with high GN dislocations density in them separated with regions having low GN dislocation
density. Local lattice rotations and GN dislocation density depends on the distance from the boundary,
depth of the location under the surface and on the orientation of the grain relative to the tensile axis.
In the vicinity of the boundary, oscillating dislocation structure was observed in the A grain, while lat-
tice rotations dominated in the B grain. In contrast large dilatational strain of the lattice was observed
at a large distance form the boundary in the grain B while in the grain A strain decreased relatively
quickly. Crystal plasticity analysis together with finite element simulation find a similar dependence
of the plastic response of both grains depending on their orientation and initial structural conditions.

Acknowledgements

Experimental research is supported by the Division of Materials Science and Engineering, Office of
Basic Energy Science and the ORNL SHARE user facility, US Department of Energy. Synchrotron mea-
surements on Unicat beamline 34-ID at the Advanced Photon Source (APS), were also supported by the
US Department of Energy, Office of Science. One of the authors (T.O.) acknowledges that finite element
work was performed under financial support from the Ministry of education, culture, sports, science
and technology under Grant No. 18062001. The author also acknowledges Dr. Ryouji Kondou for his
effort in numerical analysis.

References

Arsenlis, A., Parks, D.M., 1999. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density.
Acta Materialia 47 (5), 1597–1611.

Arsenlis, A., Parks, D.M., Becker, R., Bulatov, V.V., 2004. On the evolution of crystallographic dislocation density in non-
homogeneously deforming crystals. Journal of the Mechanics and Physics of Solids 52, 1213–1246.

Barabash, R.I., Ice, G.E., 2005. Microdiffraction analysis of hierarchical dislocation organization. In: Encyclopedia of Materials:
Science and Technology Updates. Elsevier, Oxford, pp. 1–18.

Barabash, R., Pantleon, W., 2004. Characterization of dislocation boundary evolution with monochromatic X-ray diffraction. In:
Proceedings of the 25th Risø International symposium on Materials Science: Evolution of Deformation icrostructures in 3D,
pp. 233–238.



940 T. Ohashi et al. / International Journal of Plasticity 25 (2009) 920–941
Barabash, R.I., Ice, G.E., Larson, B.C., Pharr, G.M., Chung, J.-S., Yang, W., 2001. White microbeam diffraction from distorted
crystals. Applied Physics Letters 79, 749–751.

Bardella, L., 2007. Some remarks on the strain gradient crystal plasticity modeling, with particular reference to the material
length scale involved. International Journal of Plasticity 23, 296–322.

Bay, B., Hansen, N., Hughes, D.A., Kuhlmann-Wilsdorf, D., 1992. Evolution of F.C.C. deformation structures in polyslip. Acta
Metallurgica and Materialia 40, 205–219.

Beyerlein, I.J., Tome, C.N., 2008. A dislocation-based constitutive law for pur Zr including temperature effects. International
Journal of Plasticity 24, 867–895.

Bonifaz, E.A., Richards, N.L., 2008. The plastic deformation of non-homogeneous polycrystals. International Journal of Plasticity
24, 289–301.

Chen, Q.Z., Jones, C.N., Knowles, D.M., 2004. The grain boundary microstructures of the base and modified RR 2072 bicrystal
superalloys and their effects on the creep properties. Materials Science and Engineering A 385, 402–418.

Feng, Lu, Zhang, Guang, Zhang, Ke-shi, 2003. Materials Science and Engineering A 361, 83.
Gao, H., Huang, Y., Nix, W., Hutchinson, J., 1999. Mechanism-based strain gradient plasticity – I. Theory. Journal of the

Mechanics and Physics of Solids 47, 1239–1263.
Gurtin, M.E., 2008. A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of

geometrically necessary dislocations. International Journal of Plasticity 24, 702–725.
Han, C.-S., Ma, A., Roters, F., Raabe, D., 2007. A finite element approach with patch projection for strain gradient plasticity

formulations. International Journal of Plasticity 23, 690–710.
Hansen, N., 2005. Boundary strengthening over five length scales. Advanced Engineering Materials 7, 815–821.
Hansen, N., Hughes, D.A., 1995. Analysis of large dislocation populations in deformed metals. Physica Status Solidi (b) 149, 155–

172.
Hill, R., 1966. Generalized constitutive relations for incremental deformation. Journal of the Mechanics and Physics of Solids 14,

95–102.
Hirth, J.P., Pond, R.C., Lothe, J., 2006. Disconnections in tilt walls. Acta Materialia 54, 4237–4245.
Huang, Y., Gao, H., Nix, W., Hutchinson, J., 2000. Mechanism-based strain gradient plasticity-II. Journal of the Mechanics and

Physics of Solids 48, 99–128.
Huang, E.-W., Barabash, R.I., Wang, Y., Clausen, B., Li, L., Liaw, P.K., Ice, G.E., Ren, Y., Choo, H., Pike, L.M., Klarstrom, D.L., 2008.

Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading. International Journal of
Plasticity 24, 1440–1456.

Ice, G.E., Barabash, R.I., 2007. White beam microdiffraction and dislocations gradients. In: Dislocations in Solids, vol.13, pp. 500–
601 (Chapter 79).

Ice, G.E., Larson, B.C., 2002. 3D X-ray crystal microscope. Advanced Engineering Materials 2 (10), 643.
Jakobsen, B., Lienert, U., Almer, J., Shastri, S.D., Sorensen, H.O., Gundlach, C., Pantleon, W., 2006. Formation and subdivision of

deformation structures during plastic deformation. Science 312, 889–892.
Kocks, U.F., Mecking, H., 2003. Physics and phenomenology of strain hardening: the FCC case. Progress in Materials Science 48,

171–273.
Kuhlmann-Wilsdorf, D., 1989. Theory of plastic deformation: properties of low energy dislocation structures. Materials Science

and Engineering A113, 1.
Kuhlmann-Wilsdorf, D., Hansen, N., 1991. Geometrically necessary, incidental and subgrain boundaries. Scripta Metallurgica

and Materialia 25, 1557–1562.
Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., Tischler, J.Z., 2002. Three-dimensional X-ray structural microscopy with submicron

resolution. Nature 415, 887.
Larson, B.C., El-Azab, A., Yang, W., Tischler, J.Z., Liu, W., Ice, G.E., 2007. Experimental characterization of the mesoscale

dislocation density tensor. Philosophical Magazine 87 (8-9), 1327–1347.
Levine, L.E., Larson, B.C., Yang, W., Kassner, M.E., Tischler, J.Z., Delos-Reyes, M.A., Fields, R.J., Liu, W., 2006. X-ray microdiffraction

measurements of individual dislocation cell elastic strains in deformed single-crystal copper. Nature Materials 5, 619–622.
Lu, F., Guang, Z., Ke-shi, Z., 2003. Grain boundary effects on the inelastic deformation behavior of bicrystals. Materials Science

and Engineering A 361, 83–92.
Miura, H., Ozama, M., Mogava, R., Sakai, T., 2003. Strain rate effect on dynamic recrystallization at grain boundary in Cu alloy

bicrystal. Scripta Materialia 48, 1501–1505.
Miura, H., Sakai, T., Mogawa, R., Gottstein, G., 2004. Nucleation of dynamic recrystallization at grain boundaries in copper

bicrystals. Scripta Materialia 51, 671–675.
Monzen, R., Watanabe, C., Mino, D., Saida, S., 2005. Initiation and growth of the discontinuous precipitation reaction at [011]

symmetric tilt boundaries in Cu–Be alloy bicrystals. Acta Materialia 53, 1253–1261.
Mughrabi, H., 1983. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta

Metallurgica 31 (9), 1367–1379.
Mughrabi, H., Obst, B., 2005. Misorientations and geometrically necessary dislocations in deformed copper crystals: a

microstructural analysis of X-ray rocking curves. Zeitschrift fur Metallkunde 96 (7), 586–695.
Nabarro, F.R.N., 2001. Sequences of dislocation patterns. Materials Science and Engineering A317, 12–16.
Nye, J.F., 1953. Some geometrical relations in dislocated crystals. Acta Metallurgica 1, 153–162.
Ohashi, T., 1987. Computer simulation of non-uniform multiple slip in face centered cubic bicrystals. Transactions of Japan

Institute of Metals 28, 906–915.
Ohashi, T., 1990. Numerical analyses of deformation band evolution in face-centered cubic single crystals under tensile

deformation. Material Transactions, Japan Institute of Metals 31, 456–462.
Ohashi, T., 1994. Numerical modeling of plastic multislip in metal crystals of f.c.c. type. Philosophical Magazine A70, 793–803.
Ohashi, T., 1997. Finite-element analysis of plastic slip and evolution of geometrically necessary dislocations in FCC crystals.

Philosophical Magazine Letters 75, 51–57.
Ohashi, T., 1999. Evaluation and visualization of geometrically necessary dislocations in metal microstructures by means of

continuum mechanics analysis. Journal of Physics IV France 9. Pr9-279-284.



T. Ohashi et al. / International Journal of Plasticity 25 (2009) 920–941 941
Ohashi, T., 2005. Crystal plasticity analysis of dislocation emission from micro voids. International Journal of Plasticity 21, 2071–
2088.

Ohashi, T., Kawamukai, M., Zbib, H., 2007. A multiscale approach for modeling scale-dependent yield stress in polycrystalline
metals. International Journal of Plasticity 23, 897–914.

Romanov, A.E., 2003. Importance of disclinations in severe plastically deformed materials. Advanced Engineering Materials 5,
301–307.

Sauzay, M., 2004. Analytical modeling of intragranular backstresses due to deformation induced dislocation microstructures.
International Journal of Plasticity 24, 727–745.

Sedlacek, R., Blum, W., Kratochvil, J., Forest, S., 2002. Subgrain formation during deformation: physical origin and consequences.
Metallurgical and Material Transactions A33, 319–327.

Seefeldt, M., Delannay, L., Peeters, B., Kalidindi, S.R., Van Houtte, P., 2001. A disclination-based model for grain subdivision.
Material Science Engineering, 192–196.

Spearot, D.E., Jacob, K.I., McDowell, D.L., 2005. Nucleation of dislocations from [011] bicrystal interfaces in aluminum. Acta
Materialia 53, 3579–3589.

Spearot, D.E., Tschopp, M.A., Jacob, K.I., McDowell, D.L., 2007. Tensile strength of h100i and h110i tilt bicrystal copper interfaces.
Acta Materialia 55, 705–714.

Sun, S., Adams, B.L., King, W.E., 2000. Observation of lattice curvature near the interface of a deformed aluminum bicrystal.
Philosophical Magazine A 80 (1), 9–25.

Tschopp, M.A., McDowell, D.L., 2008. Dislocation nucleation in R3 asymmetric tilt grain boundaries. International Journal of
Plasticity 24, 191–217.

Volokh, K.Y., Trapper, P., 2007. A simple theory of strain gradient plasticity on stress-induced anisotropy of defect diffusion.
International Journal of Plasticity 23, 2085–2114.

Wang, H., Hwang, K.C., Huang, Y., Wu, P.D., Liu, B., Ravichandran, G., Han, C.-S., Gao, H., 2007. A conventional theory of strain
gradient crystal plasticity based on the Taylor dislocation model. International Journal of Plasticity 23, 1540–1554.

Ziegler, A., Campbell, G.H., Kumar, M., Stolken, J.S., 2003. Effects of grain boundary constraint on the Constitutive response of
tantalum bicrystals. Materials Research Society Symposium Proceedings 779. W6.4.1.–6.4.6.


	X-ray microdiffraction and strain gradient crystal  plasticity studies of geometrically necessary dislocations  near a Ni bicrystal grain boundary
	Introduction
	Method of experiments and numerical simulations
	Ni bicrystal preparation
	3D polychromatic X-ray microdiffraction
	Streak analysis of GNDs induced lattice re-orientation
	Dislocation model-based strain gradient crystal plasticity analysis
	Data used for the numerical analysis

	Results and discussion
	Analysis of the dilatational strain in the vicinity of the boundary
	SEM and OIM characterization of the deformed bicrystal
	Numerical results for distribution of plastic shear strain and GN and SS dislocations on slip systems
	Discussion

	Summary
	Acknowledgements
	References


