What can face the plasma in a tokamak?
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Plasma-facing materials s oo xemp sws s

will face the harshest  Jsr = Ned .
environment imaginable %= |
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Slide from C. Parish: Microscopy and Microanalysis 2016 talk
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A large step from now to ITER and DEMO

B. Unterberg et al., PSI20 Aachen 2012.
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P/R (MW/m) 94-130
Win/R (MJ / m) 3 IIEE» 60 125-395
operation time (s/ yr) 4.010*  4.0-10° IIE»2.4-10?
Averaged neutron fluence

(FW) (MW a / m2) = 0.3 EEW ~10

Twall (K) 500 500 II@ 1000
*Range given by different models within EFDA- PPCS (2005) [D. Maisonnier et al 2007 NF 47 1524]

» New challenges for all issues related to fluence, neutron

damage and wall temperature (last two will indirectly affect all

others via material issues)

May 23™ 2012 Institute of Energy and Climate Research — Plasma Physics | Assaciation EURATOM - FZJ No 4
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Several 1ssues exist for functionality of PFCs

PISCES —
Solid surfaces:
 Lifetime of components

— Sputtering yields, response to cyclic/transient loads, neutron
effects

« Changes in thermo-mechanical properties of components
— Due to plasma exposure (s.s. & transients), neutrons
 Tritium retention and permeation
Liquid surfaces:
* Need for an integrated design demonstration (slow vs. fast flow, etc)
« Corrosion effects
« Control of flow streams, free surfaces, recirculation
 Purification of flowing materials (tritium and impurities) in real time
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Sputtering is one of the most fundamental properties of PMI
and it i1s not well understood in a high-flux plasma

on yield

Sputtering yield (atoms/ion)

PISCES —

Be sputterin
— .p. . .g. » Sputtering determines PFC lifetime, is the
source term for material migration, and is

| D Nishijima responsible for codeposition with T

etal.,

—1am2000. ¢ TRIM has been benchmarked against ion
- beam sputtering measurements

 TRIM overestimates sputtering during high-
flux plasma bombardment in LPDs, as well

(eff.) Total Be sputtering yield

- as In tokamaks
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e 1 JNM 2013.
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Can sputtering be exploited to achieve a
desired PMI surface?

PISCES —
. o HSQ: D > EUROFER
EUROFER, F82H, CLAM, RUSSFER all contain 0 T
few % W _
EUROfusion believes preferential sputtering of Fe ;"
and Cr from RAFM steel will provide W-enrichment ¢
of the surface
CX energy must be low-enough not to sputter W from
fl I’St Wa” 107‘:021 1u|22 1623 10'24 1625 1026
. . . D fluence [D/m?]
At hlgh Operatlng temperatu re eﬁeCt may dlsappear Sputtering yield of EUROFER steel by D ion irradiation with
: : different D energies as a function of D fluence (320 K)
due to Fe(Cr) diffusion to the surface W, Jacoh et al ICERM17 Aachen 2015,
Surface morphology changes ., | 5 ) —
at high fluence may mask I R R *%*
. _ 8oy . 5| cme
improvements due to : *e .
§ 601 unexposed ¢ %10-3; * %] * * # ]
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Cyclic surface loading can promote positive
feedback damage to occur on solid PFCs

thermal expansion thermal expansion
during heat-up during heat-up
(compressive stresses) (compressive stresses)

shrinking during cool-down  shrinking during cool-down
(tensile stresses) (tensile stresses)

no change surface elevation and cracking, melting, bubble
roughening edge melting formation, splashing,
recrystallization grain growth

damage threshold

cracking threshold melting threshold
roughening threshold
. thermal
—» mechanical stresses —> heat load ) expansion/contraction

Th. Loewenhoff et al., PMIF4, Oak Ridge 2013.
R. Doerner, UTK, July 26, 2016
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Increasing number of cyclic power load (ELMSs)
events increases surface damage

PISCES —

F,.,{g - *«"‘ ‘}3 Roughening
I AR _ mwizetal, o A DEMO/reactor PFC will likely
& 'R Cracking PS122 Rome 2016. .
. fos 7 : experience a huge number of
TGN ~ Meling cyclic loading events
_ :’: ”’Lﬁ AR G A Y ; :

* Where is the damage threshold as
the number of pulses approaches
Infinity

« How does simultaneous plasma

Surface condition after testing pure W at T = 700 °C (10 MW/m? SSHL)

o p exposure and cyclic loading
no damage .
vouherieigm Impact surface damage
— 055 1 * < smallcr 4 [1026 — .
s crnework ¢ | «  What will be the role of neutron
®. 041 . o cr+melting O [ g 2 2:
z 3 damage
g 027 a 013 8 .. ] .
: 5 « Liquids may provide benefits, but
& 014 =048 ms o o 0.07 & little is known about how free
- u=25Hz .
Mt . : 0 surfaces respond to transients
10° 10° 10* 10° 10° 10’

number of pulses

Th. Loewenhoff et al., Phys. Scr., 2011.
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He in W is an 1ssue for ITER, DEMO & FNSF.

— DEMO =

——— ITER ,

~ 600 - 700 K ~900-1900 K

PISCES-B: pure He plasma

M.J. Baldwin et al, NF 48 3 (2008) 035001 26X% 1077 /m? 0.9 X 1027 /m?
1200 K, 4290 s, 2x10%¢ He*/m?, 25 eV He* 3.7X10% /m?s 1.2x10% /m?s
I : 7200 s
> 2600 K

NAGDIS-II: pure He plasma

N. Ohno et al., in IAEA-TM, Vienna, 2006
1250 K, 36000 s, 3.5x10%” He*/m?, 11 eV He*

PISCES-A: D,-He plasma | q
M. Miyamoto et al. INM 415(2011) S657 , T

600 K, 1000 s, 2.0x10%* He*/m?, 55 eV He* |
* Little morphology
e QOccasional blisters

D. Nishijima et al. INM (2004) 329-333 1029

* Evolving surface morphology
* Nano-scale ‘fuzz’

R. Doerner, UTK, July 26, 2016



Need to minimize tritium retention/migration in

the plasma facing material

PISCES —
TER plasma discharge seconds  Predictive capabilities (multiscale
e 10 100 1000 10 models) are needed to understand T
o Pisces s ow e migration (saturation?) and role of He
11| Normalized imé”* scaing / « Can we rely on the He containing
¢ | 83K burning plasma to help solve this
£ 107 problem
: ? * Can novel materials development
107 assist and survive In this environment
107 Ceemen —% —“%“— -- jt —————— - o E

— Simulation 208 nm
1029 12 { —— Simulation 416 nm

Fluence (D/m°) T
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Alpha spectrum

Incident He is effective in limiting uptake ; 6
of D in W. D is trapped in the nano-bubble layer |
R. Doerner et al., ICFRM17 Aachen 2015.

Channel #
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1 R. Doerner et al.,
| PSI22 Rome 2016.




Data is used to validate models of H-He synergies

e Initial 2 nm diameter, over-pressurized He bubble created 2 nm below W (110) surface
- H initially randomly distributed — strong partitioning of H to the bubble surface (~35-40%)

Courtesy of B. Wirth, UTK : Green: Hydrogen
Blue: Helium
Box Size:6 nmx6 nmx12 nm Initial He Pressure: 10 GPa
s Hydrogen Distribution for (110) Surface af 1800K
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Accessible TBR sets a limit for T retention in PFM

G. Tynan et al., PS122 Rome, 2016
I I I

0.001

C  Pure D plasma
® D plasma with 5%He

0.0001 -

uononpaa

10

H
ol
[ep)
T

Upper limit
On trapping
probability

]
~

Retained fraction
H
. o

=
o
T

Q© 0.2dpa 380K ]|
@ 0.2dpa 1200K

@ 0.3dpa 320 K-
neutrons

1 week
10'9 B FW fluence
10 weeks
10'10 1 1 1 i I W Flluenc¢? 1
1022 1024 1026 1028 1030

Based on data from
Doerner, in press, 16 &
Baldwin NF 2011, Shimada NF ‘15

Fluence (m'z)

R. Doerner, UTK, July 26, 2016

PISCES —

Particle balance model,
assuming TBR =1.05,
sets a limit of less than
106 retained fraction

In solid PFMs, this
appears possible at high
fluence, but need more
data on damaged material
at high fluence (with &
without He)

‘Best’ purification of
liquid Li is ~ 1 appm,
which could be
troublesome (especially
when purifying in real
time, recirculating
envwonment)
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In a reactor, thermomechnaical properties of PFCs
will not remain constant at high fluence

PISCES —
. . E. Dechaumphai JNM 2014.
PFC designs must take into 200 A. Peacock INM 2004,

I I <— Pristine W: m- O Irrad. at R.T.
accountt_ changing material - “Pristine W: 182W/m-K | O Imac. &R T
properties £ 150} A Irrad. at 500C
L 2
Thermal conductivity in W drops P o %
both due to neutron irradiation as g 100} X=n@ 200C
well as plasma exposure g
Neutrons and plasma exposure g7 é N
also both lead to embrittlement £ 0-2dpa 0.6dpa
. 0L— - - -
Resultant damage (high-energy 0001 001 o0 1 10
ions vs neutrons vs plasma) needs rradiation dosage (dpa)
characterization at various 1000 S. Cui et al., JNM 2016.
temperatures = [ . . . e
P _ o % ool  m o om oo
Advantages exist here for liquid — Sarplnsrirendiiurmpli
surfaces, but properties of solids £ 1ol £,
in contact with the free surface E i i ¢
may change (neutrons and g F .
. . . — He-plasma irrad. Sample 2
corrosion with time) —
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Research needs for developing PFCs compatible
with operation in a burning plasma environment

PISCES —

Need to understand material evolution at high fluence

— Mechanical and thermal properties, surface changes (including impurity/mixed-
material effects), macroscopic erosion terms

— How do the large surface concentration of D, T, He and other impurities affect PMI

Need to understand the damage that results from neutrons/plasma
In order to develop more resilient/self-healing materials

Continue development of advanced predictive multiscale models

— T migration, material property evolution, surface evolution, erosion and material
migration

Liquids have some R&D needs commonality

— Surface changes (including impurity/mixed-material effects), response to transients,
erosion terms, material migration

Liquids also present special needs
— Corrosion, purification, free surface stability, recirculation
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