
A Discrete EVent system Simulator

Jim Nutaro

November 14, 2013

ii

Contents

1 About this manual 1

2 Building and Installing 3

3 Modeling and simulation with Adevs 5

4 Atomic Models 19

5 Network Models 31
5.1 Parts of a Network Model . 31

5.1.1 The route method . 31
5.1.2 The getComponents method . 34
5.1.3 Illegal networks . 34

5.2 Simulating a Network Model . 34
5.3 A complete example of a network model . 35
5.4 Digraph Models . 38
5.5 Cell Space Models . 44

6 Variable Structure Models 49
6.1 Building and Simulating Variable Structure Models . 49
6.2 A Variable Structure Example . 51

7 Continuous Models 59
7.1 Differential equation modeling with the ode system class . 59
7.2 Modeling hybrid systems with adevs and OpenModelica . 63

8 The Simulator Class 71

9 Simulation on multi-core computers 73
9.1 Limits of the parallel simulator . 75
9.2 Modifying your models to exploit lookahead . 75
9.3 Partitioning your model . 78
9.4 Partitioning and lookahead . 79
9.5 A complete example . 80
9.6 Managing memory across thread boundaries . 84
9.7 Notes on repeatability and performance . 86

10 Models with Many Input/Output Types 87

11 Alternate types for time 91

12 Random Numbers 93

iii

13 Interpolation 95

iv

Chapter 1

About this manual

The purpose of this manual is to get you working with Adevs as quickly as possible. To that end, this manual
documents the major features of the simulation engine with an emphasis on how they are used. The table
of contents summarizes which aspects of the simulator are described here.

Among the features omitted from this manual are the Java language bindings for the Adevs simulator.
Build instructions for the Java bindings are given in the “Build and Install” section. How these bindings are
used will (I hope) be obvious once you have perused the C++ interface: the interfaces for building models
and running simulations with Java are essentially the same as with C++.

The Java bindings have three limitations. First, you pay a (usually unnoticeable) cost in execution time
for the extra work that Adevs must to do manage memory associated with input and output objects and
models that are orphaned during a change of structure. Second, the facilities for combined simulation of
discrete event and continuous models are not implemented for Java. Third, this is not a ‘pure Java’ simulation
engine: it uses a great deal of native code to do its work (though this is invisible to the programmer).

There are at least two positive aspects of the Java bindings. The first is it omits the need for explicitly
managing memory. The Java garbage collector (plus some extra work by the simulation engine) takes care
of this for you. Second, you have access to the nice features and standard libraries of the Java programming
language.

Other topics not included in this manual are theory (why the simulator is built as it is) and some exper-
imental features of the simulation engine. Among the latter are support for simulating hybrid differential-
algebraic systems and conservative, parallel simulation using multicore processors. If you are interested in
any of these subjects, I offer the following (greatly abridged) list of books and articles:

1. A. M. Uhrmacher. Dynamic structures in modeling and simulation: a reflective approach, ACM
Transactions on Modeling and Computer Simulation, Vol. 11, No. 2 , pp. 206-232. April 2001. This
paper describes the approach used by Adevs to model and simulate dynamic structure systems.

2. Bernard P. Zeigler, Tag Gon Kim and Herbert Praehofer. Theory of Modeling and Simulation, Second
Edition. Academic Press. 2000. This book develops the Discrete Event System Specification (DEVS)
from its roots in abstract systems theory.

3. James J. Nutaro. Building Software for Simulation: Theory and Algorithms, with Applications in
C++. Wiley. 2010. This book presents the Discrete Event Systems Specification with code for the
(slightly abridged) Adevs simulator and has several examples of its use. This book also describes the
conservative, parallel simulator and discusses the construction of new ODE solvers and event finding
modules for Adevs.

Question and comments about this software can be sent to Jim Nutaro at nutarojj@ornl.gov.

1

2

Chapter 2

Building and Installing

The Adevs package is organized into the following directory structure:

adevs-x.y.z

+->docs

+->examples

+->include

+->src

+->test

+->util

The Adevs simulation engine is comprised almost entirely of template classes, and these are implemented
in the header files located in the include directory. The exceptions are the random number generators, the
Java language bindings, the OpenModelica support, and some aspects of the parallel simulation engine. If
you do not want to use these features then its sufficient for your program to include adevs.h and to be sure
your compiler can find the include directory that adevs.h is in.

If you want to use the random number generators and parallel simulation engine, then you must build
the adevs static library. To do this, enter the src directory and execute the command ’make’ if you are using
a Linux system or ’build’ if you are using Windows. On Windows, the batch file creates a static library
called adevs.lib. For Linux systems, the makefile creates a static library called libadevs.a.

If you are using a Windows system, the batch file must be executed from the Visual C++ command
prompt. This will ensure the batch file can find the compiler, linker, and necessary system header files. For
Linux systems, make sure you have a recent version of the GNU C++ compiler and GNU make. You may
need to edit the makefile (i.e., the file Makefile) to set compiler flags, etc. but the defaults should work in
most cases.

To build the Java language bindings, you need to have the Sun (now Oracle) JDK or something that
is compatible with it (such as the OpenJDK). On a Windows system, from the src directory enter the
adevs jni directory and then execute the command ’build’. This creates three files: adevs.jar, java adevs.dll,
and java adevs.lib. To build and run your Java programs, you will need to put adevs.jar into your classpath
and java adevs.dll into your java.library.path (or make sure it is in your regular PATH for finding executables
and dynamic link libraries).

On a Linux system, stay in the src directory and execute the command ’make java adevs’. This creates
two files: adevs.jar and libjava adevs.so. As before, you need to put adevs.jar into your classpath and
libjava adevs.so into your java.library.path or make sure it is in your LD LIBRARY PATH for locating
dynamic link libraries.

Adevs includes some support for simulating Modelica models that are compiled with the OpenMod-
elica compiler. If you want to enable this support, you must get and build the OpenModelica compiler.
For this purpose, the shell script build-omc.sh is provided in the util directory. This shell script does the

3

following: 1) creates the directory openmodelica at the location where the script is run, 2) fetches the min-
imal set of packages that are needed to compile the OpenModelica compiler, and 3) fetches and builds a
bare-bones OpenModelica compiler. The compiler is called omc and it is located in the directory openmod-
elica/trunk/build/bin.

After running the build-omc script, go to the Adevs src directory. Edit the makefile so that MODEL-
ICA HOME points to the openmodelica/trunk directory that was created by the build-omc script. Now
run ’make adevs with modelica’. This creates the static library libadevs.a with the Adevs random number
generators, parallel simulator, and all parts of the OpenModelica runtime system that are needed to simulate
Modelica models.

To run the test suite (which is not required to use the software), you must build the static library file and
install Tcl (the test scripts need Tcl to run; if you can run ‘tclsh’ then you already have a working copy of
Tcl). If you want to test the Java bindings or OpenModelica support then you will need to build those too.
There are four sets of tests that can be executed: one for the serial simulation engine, one for the parallel
simulation engine, one for the Java language bindings, and one for the OpenModelica support.

To run the tests for the serial simulation engine, use ’make check cpp’. To run the tests for the parallel
simulation engines use ’make check par’ (note: the environment variable OMP NUM THREADS must be
set to at least four). To run the Java test cases, use ’make java test’. To run the OpenModelica test cases,
put the omc compiler into your PATH and run ’make check modelica’. To run all of the test cases, use
’make’. The test script will abort when any test fails. If the test script run to completion, then all of the
tests passed.

The test cases can be a bit of a bear to run on a Windows computer. If you need to edit compiler settings,
executable directives, etc. to make it work, then modify the file make.common. For Linux systems using the
GNU tools the test cases should work out of the box. Otherwise, edit make.common to fix things to fit your
development environment.

4

Chapter 3

Modeling and simulation with Adevs

Adevs is a simulator for models described in terms of the Discrete Event System Specification (DEVS)1 The
key feature of models described in DEVS (and implemented with Adevs) is that their dynamic behavior is
defined by events. An event is any change that is significant within the context of the model being developed.

The modeling of discrete event systems is most easily introduced with an example. Suppose we want
to model the checkout line at a convenience store. There is a single clerk who serves customers in a first
come-first served fashion. The time required for the clerk to ring up each customer’s bill depends on the
number of items purchased. We are interested in determining the average and maximum amount of time
that customers spend waiting in line at the clerk’s counter.

Figure 3.1: Customers waiting in line at BusyMart.

To simulate this system, we need an object to represent each customer in the line. A class called
Customer is created for this purpose. Each customer object has three attributes. One attribute is the time
needed to ring up the customer’s bill. Because we want to know how long a customer has been waiting in
line, we also include two attributes that record when the customer entered the line and when the customer
left the line. The difference of these times is the amount of time the customer spent waiting in line. Below
is the code for the customer class. This code is in a single header file called Customer.h.

#include "adevs.h"

/// A Busy-Mart customer.

struct Customer

{

/// Time needed for the clerk to process the customer

double twait;

/// Time that the customer entered and left the queue

double tenter, tleave;

1A comprehensive introduction to the Discrete Event System Specification can be found in “Theory of Modeling and

Simulation, 2nd Edition” by Bernard Zeigler et. al., published by Academic Press in 2000.

5

};

/// Create an abbreviation for the Clerk’s input/output type.

typedef adevs::PortValue<Customer*> IO_Type;

Customers are served (processed) by the clerk, which is our first example of an atomic model. The clerk
has a line of people waiting at her counter. When a customer is ready to make a purchase, that customer
enters the end of the line. If the clerk is not busy and the line is not empty, then the clerk rings up the
bill of the customer that is first in line. That customer then leaves the line and the clerk processes the next
customer or, if the line is empty, the clerk sits idly at her counter.

The DEVS model of the clerk is as follows. First, we specify the type of object that the model consumes
and produces. For this model, we use PortValue objects. The PortValue class describes a port-value
pair. In this case, Customer objects are the value and they appear at the clerk’s “arrive” port. Customers
depart via the clerk’s “depart” port.

Second, we specify the state variables that describe the clerk. In this case, the state comprises the
customers that are in line. We use a list from the C++ Standard Template Library for this purpose.

To complete the model of the clerk, we implement the four methods that model her behavior. First, lets
construct the header file for the clerk. Then we can fill in the details.

#include "adevs.h"

#include "Customer.h"

#include <list>

/**

* The Clerk class is derived from the adevs Atomic class.

* The Clerk’s input/output type is specified using the template

* parameter of the base class.

*/

class Clerk: public adevs::Atomic<IO_Type>

{

public:

/// Constructor.

Clerk();

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Time advance function.

double ta();

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Clerk();

/// Model input port.

static const int arrive;

/// Model output port.

static const int depart;

private:

/// The clerk’s clock

double t;

/// List of waiting customers.

6

std::list<Customer*> line;

/// Time spent so far on the customer at the front of the line

double t_spent;

};

This header file is an archetype for almost any atomic model that we want to create. The Clerk class is
derived from the Adevs Atomic class. The Clerk implements six virtual methods that it inherits from
Atomic. These are the state transition functions delta int, delta ext, and delta conf; the output function
output; the time advance function ta, and the garbage collection method gc. The Clerk also has a set of
static, constant port variables that correspond to the Clerk’s input (customer arrival) and output (customer
departure) ports.

The constructor for the Clerk class invokes the constructor of its Atomic base class. The template
argument of the base class defines the type of object that the clerk uses for input and output. The Clerk
state variables are defined as private class attributes. These are the list of customers (line), the clerk’s clock
(t), and the time spent so far on the first customer in line (t spent).

The ports “arrive” and “depart” are assigned integer values that are unique within the scope of the Clerk
class. Typically, the ports for a model are numbered in a way that corresponds to the order in which they
are listed; for example,

// Assign locally unique identifiers to the ports

const int Clerk::arrive = 0;

const int Clerk::depart = 1;

The Clerk constructor places the Clerk into its initial state. For our experiment, this state is an empty
line and the Clerk’s clock is initialized to zero.

Clerk::Clerk():

Atomic<IO_Type>(), // Initialize the parent Atomic model

t(0.0), // Set the clock to zero

t_spent(0.0) // No time spent on a customer so far

{

}

Because the clerk starts with an empty line, the only interesting thing that can happen is for a customer
arrive. Arriving customers appear on the clerk’s “arrive” input port. The arrival of a customer causes
the clerk’s external transition method to be invoked. The arguments to this method are the time that has
elapsed since the clerk last changed state and a bag of PortValue objects.

The external transition method updates the clerk’s clock by adding to it the elapsed time. The time
spent working on the current customer’s order is updated by adding the elapsed time to the time spent so
far. After updating these values, the input events are processed. Each PortValue object has two attributes.
The first is the port. It contains the number of the port that the event arrived on and is equal to “arrive”
in this case. The second is the Customer that arrived. The clerk records the time of arrival for the new
customer and places him at the back of the line.

void Clerk::delta_ext(double e, const Bag<IO_Type>& xb)

{

// Print a notice of the external transition

cout << "Clerk: Computed the external transition function at t = " << t+e << endl;

// Update the clock

t += e;

// Update the time spent on the customer at the front of the line

if (!line.empty())

{

t_spent += e;

7

}

// Add the new customers to the back of the line.

Bag<IO_Type>::const_iterator i = xb.begin();

for (; i != xb.end(); i++)

{

// Copy the incoming Customer and place it at the back of the line.

line.push_back(new Customer(*((*i).value)));

// Record the time at which the customer entered the line.

line.back()->tenter = t;

}

// Summarize the model state

cout << "Clerk: There are " << line.size() << " customers waiting." << endl;

cout << "Clerk: The next customer will leave at t = " << t+ta() << "." << endl;

}

The time advance function describes the amount of time that will elapse before the clerk’s next internal
(self, autonomous) event, barring an input that arrives in the interim. In this case, the time advance is the
time remaining for the clerk to process the current customer. If there are no customers in line, then the
clerk will not do anything and so the time advance returns infinity (in Adevs represented by DBL MAX).
Otherwise, the clerk’s next action is when the first customer in line has been rung up, and so the time
advance is the difference of the Customer’s twait and the clerk’s t spent.

double Clerk::ta()

{

// If the list is empty, then next event is at inf

if (line.empty()) return DBL_MAX;

// Otherwise, return the time remaining to process the current customer

return line.front()->twait-t_spent;

}

Two things happen when the clerk finishes ringing up a customer. First, the clerk sends that customer
on his way. This is accomplished by the clerk’s output func method, which is invoked when the time advance
expires. The output func method places the departing customer onto the Clerk’s “depart” port by creating
a PortValue object and putting it into the bag yb of output objects. The clerk’s output func method is
shown below.

void Clerk::output_func(Bag<IO_Type>& yb)

{

// Get the departing customer

Customer* leaving = line.front();

// Set the departure time

leaving->tleave = t + ta();

// Eject the customer

IO_Type y(depart,leaving);

yb.insert(y);

// Print a notice of the departure

cout << "Clerk: Computed the output function at t = " << t+ta() << endl;

cout << "Clerk: A customer just departed!" << endl;

}

Second, the clerk begins to process the next customer in the line. If, indeed, there is another customer
waiting in line, then the clerk begins ringing that customer. Otherwise, the clerk becomes idle. These
actions are accomplished by the Clerk’s internal transition method, which is called immediately after the
output func method. The Clerk’s internal transition method updates the Clerk’s clock and removes the
departing customer from the line. The code for this method is shown below.

8

void Clerk::delta_int()

{

// Print a notice of the internal transition

cout << "Clerk: Computed the internal transition function at t = " << t+ta() << endl;

// Update the clock

t += ta();

// Reset the spent time

t_spent = 0.0;

// Remove the departing customer from the front of the line.

line.pop_front();

// Summarize the model state

cout << "Clerk: There are " << line.size() << " customers waiting." << endl;

cout << "Clerk: The next customer will leave at t = " << t+ta() << "." << endl;

}

We have almost completed the model of the clerk; only one thing remains to be done. Suppose a customer
arrives at the clerk’s line at the same time that the clerk finishes ringing up a customer. In this case we have
a conflict because the internal transition function and external transition function must both be activated to
handle these two events (i.e., the simultaneously arriving and departing customers). This conflict is resolved
by the confluent transition function.

The clerk handles simultaneous arrivals and departures by first handling the departures and then the
arrivals. To do this, the confluent transition function calls the internal transition function first (to remove
the departed customer from the list) and then the external transition function (to add new customers to the
end of the list and begin ringing up the first customer). The confluent transition function is shown below.

void Clerk::delta_conf(const Bag<IO_Type>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

Enter checkout line Time to process order
1 1
2 4
3 4
5 2
7 10
8 20
10 2
11 1

Table 3.1: Customer arrival times and times needed to process the customer orders.

To see how this model behaves, suppose customers arrive according to the schedule shown in Table 3.1.
The first customer appears on the clerk’s “arrive” port at time 1, the next customer at time 2, and so on.
The print statements in the Clerk’s internal, external, and output functions let us watch the evolution of
the clerk’s line. Here is the output trace produced by the above sequence of inputs.

Clerk: Computed the external transition function at t = 1

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 2.

Clerk: Computed the output function at t = 2

Clerk: A customer just departed!

9

Clerk: Computed the internal transition function at t = 2

Clerk: There are 0 customers waiting.

Clerk: The next customer will leave at t = 1.79769e+308.

Clerk: Computed the external transition function at t = 2

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 6.

Clerk: Computed the external transition function at t = 3

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 6.

Clerk: Computed the external transition function at t = 5

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 6.

Clerk: Computed the output function at t = 6

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 6

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 10.

Clerk: Computed the external transition function at t = 7

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 10.

Clerk: Computed the external transition function at t = 8

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 10.

Clerk: Computed the output function at t = 10

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 10

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 12.

Clerk: Computed the external transition function at t = 10

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 12.

Clerk: Computed the external transition function at t = 11

Clerk: There are 5 customers waiting.

Clerk: The next customer will leave at t = 12.

Clerk: Computed the output function at t = 12

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 12

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 22.

Clerk: Computed the output function at t = 22

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 22

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 42.

Clerk: Computed the output function at t = 42

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 42

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 44.

Clerk: Computed the output function at t = 44

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 44

10

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 45.

Clerk: Computed the output function at t = 45

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 45

Clerk: There are 0 customers waiting.

Clerk: The next customer will leave at t = 1.79769e+308.

The basic simulation algorithm is illustrated by this example. Notice that the external transition function
is activated when an input (in this case, a customer) arrives on an input port. This is because the external
transition function describes the response of the model to input events.

The internal transition function is activated when the simulation clock has reached the model’s time of
next event. The internal transition function describes the autonomous behavior of the model (i.e., how the
model responds to events that it has scheduled for itself). Internal transitions are scheduled with the time
advance function.

A call to the internal transition function is always immediately preceded by a call to the output function.
Consequently, a model produces output by scheduling events for itself. The value of the output is computed
using by the output function using the model’s current state.

To complete our simulation of the convenience store, we need two other Atomic models. The first model
creates customers for the Clerk to serve. The rate at which customers arrive could be modeled using a
random variable or it with a table such as the one used in the example above. In either case, we hope that
the model of the customer arrival process accurately reflects what happens in a typical day at the convenience
store. Data used in the table for this example could come directly from observing customers at the store, or
it might be produced by a statistical model in another tool (e.g., a spreadsheet program).

We will create an Atomic model called a Generator to create customers. This model is driven by a
table formatted like Table 3.1. The input file contains a line for each customer. Each line has the customer’s
time of arrival followed by the customer’s time for service. The Generator does not need to process input
events because all of its activities are scripted in the input file. The Generator has a single output port
“arrive” through which it exports arriving customers. The model state is the list of Customers yet to arrive
at the store. Here is the header file for the Generator.

#include "adevs.h"

#include "Customer.h"

#include <list>

/**

* This class produces Customers according to the provided schedule.

*/

class Generator: public adevs::Atomic<IO_Type>

{

public:

/// Constructor.

Generator(const char* data_file);

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Time advance function.

double ta();

/// Output value garbage collection.

11

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Generator();

/// Model output port.

static const int arrive;

private:

/// List of arriving customers.

std::list<Customer*> arrivals;

};

The behavior of this model is very simple. The constructor opens the file containing the customer data
and uses it to create a list of Customer objects. The inter-arrival times of the customers are stored in their
tenter fields. Here is the constructor that initializes the model.

// Assign a locally unique number to the arrival port

const int Generator::arrive = 0;

Generator::Generator(const char* sched_file):

Atomic<IO_Type>()

{

// Open the file containing the schedule

fstream input_strm(sched_file);

// Store the arrivals in a list

double next_arrival_time = 0.0;

double last_arrival_time = 0.0;

while (true)

{

Customer* customer = new Customer;

input_strm >> next_arrival_time >> customer->twait;

// Check for end of file

if (input_strm.eof())

{

delete customer;

break;

}

// The entry time holds the inter arrival times, not the

// absolute entry time.

customer->tenter = next_arrival_time-last_arrival_time;

// Put the customer at the back of the line

arrivals.push_back(customer);

last_arrival_time = next_arrival_time;

}

}

Because the generator does not respond to input events, its external transition function is empty. Simi-
larly, the confluent transition function merely calls the internal transition function (though, in fact, it could
be empty because the confluent transition will never be called).

void Generator::delta_ext(double e, const Bag<IO_Type>& xb)

{

/// The generator is input free, and so it ignores external events.

}

12

void Generator::delta_conf(const Bag<IO_Type>& xb)

{

/// The generator is input free, and so it ignores input.

delta_int();

}

The effect of an internal event (i.e., an event scheduled for the generator by itself) is to place the arriving
Customer onto the Generator’s “arrive” output port. This is done by the output function.

void Generator::output_func(Bag<IO_Type>& yb)

{

// First customer in the list is produced as output

IO_Type output(arrive,arrivals.front());

yb.insert(output);

}

After the generator has produced this output, its internal transition function removes the newly arrived
customer from the arrival list.

void Generator::delta_int()

{

// Remove the first customer. Because it was used as the

// output object, it will be deleted during the gc_output()

// method call at the end of the simulation cycle.

arrivals.pop_front();

}

Internal events are scheduled with the time advance function. The Generator’s time advance function
returns the time remaining until the next Customer arrives at the store. Remember that the tarrival
field contains Customers’ inter-arrival times, not the absolute arrival times, and the time advance function
simply returns this value.

double Generator::ta()

{

// If there are not more customers, next event time is infinity

if (arrivals.empty()) return DBL_MAX;

// Otherwise, wait until the next arrival

return arrivals.front()->tenter;

}

To conduct the simulation experiment, the Generator’s output must be connected to the Clerk’s input.
When these are connected, output from the Generator’s “arrive” port becomes input on the Clerk’s
“arrive” port. These inputs cause the Clerk’s external transition function to be activated. The relationship
between input and output events can be understood by viewing the whole model as a block diagram with
two distinct components, the Generator and the Clerk, that are connected via their input and output
ports. This view of the model is depicted in Figure 3.2.

Figure 3.2: A block-diagram view of Generator and Clerk models.

TheClerk, Generator, and their interconnections constitute a coupled (or network) model. The coupled
model depicted in Figure 3.2 is realized with a Digraph that has the Generator and Clerk as components.
Shown below is the code snippet that creates this two component model.

13

int main(int argc, char** argv)

{

...

// Create a digraph model whose components use PortValue<Customer*>

// objects as input and output objects.

adevs::Digraph<Customer*> store;

// Create and add the component models

Clerk* clrk = new Clerk();

Generator* genr = new Generator(argv[1]);

store.add(clrk);

store.add(genr);

// Couple the components

store.couple(genr,genr->arrive,clrk,clrk->arrive);

...

This code snippet first creates the components models and then adds them to the Digraph. Next, the
components are connected by coupling the “arrive” output port of the Generator to the “arrive” input
port of the Clerk.

Having created a coupled model to represent the store, all that remains is to perform the simulation.
Here is the code snippet that simulates the model.

...

adevs::Simulator<IO_Type> sim(&store);

while (sim.nextEventTime() < DBL_MAX)

{

sim.execNextEvent();

}

...

Putting this all of this together gives the main routine for the simulation program that generated the
execution traces shown in the example above.

#include "Clerk.h"

#include "Generator.h"

#include "Observer.h"

#include <iostream>

using namespace std;

int main(int argc, char** argv)

{

if (argc != 3)

{

cout << "Need input and output files!" << endl;

return 1;

}

// Create a digraph model whose components use PortValue<Customer*>

// objects as input and output objects.

adevs::Digraph<Customer*> store;

// Create and add the component models

Clerk* clrk = new Clerk();

Generator* genr = new Generator(argv[1]);

Observer* obsrv = new Observer(argv[2]);

store.add(clrk);

store.add(genr);

14

store.add(obsrv);

// Couple the components

store.couple(genr,genr->arrive,clrk,clrk->arrive);

store.couple(clrk,clrk->depart,obsrv,obsrv->departed);

// Create a simulator and run until its done

adevs::Simulator<IO_Type> sim(&store);

while (sim.nextEventTime() < DBL_MAX)

{

sim.execNextEvent();

}

// Done, component models are deleted when the Digraph is

// deleted.

return 0;

}

We have completed our first Adevs simulation program! However, a few details have been glossed over.
The first question - an essential one for a programming language without garbage collection - is what happens
to objects that we create in the Generator and Clerk output functions? The answer is that each model
has a garbage collection method that is called at the end of every simulation cycle (in the example above,
immediately prior to the return of the method execNextEvent()). The argument to the garbage collection
method is a bag of objects created as output in the current simulation cycle.

In our example, the Clerk and Generator models use their garbage collection method to delete the
Customer pointed to by each PortValue object in the garbage list. The implementation of the garbage
collection method is shown below. This listing is for the Generator model; the Clerk’s gc output()
method is identical.

void Generator::gc_output(Bag<IO_Type>& g)

{

// Delete the customer that was produced as output

Bag<IO_Type>::iterator i;

for (i = g.begin(); i != g.end(); i++)

{

delete (*i).value;

}

}

A second question is how to collect the statistics that were our original objective. One approach is to
modify the Clerk so that it writes waiting times to a file as customers are processed. This approach works
but has the unfortunate effect of cluttering up the Clerk with code specific to our experiment.

A better approach is to have an Observer that is coupled to the Clerk’s “depart” port. The Observer
records the desired statistics as it receives Customer objects on its “depart” input port. The advantage of
this approach is that we can create new types of clerks to perform the same experiment, using, for example,
different queuing strategies, without changing the experimental setup (i.e., customer generation and data
collection). Similarly, we can change the experiment (i.e., how customers are generated and what data is
collected) without changing the clerk.

Below is the code for the Observer class. This model is driven solely by external events. The observer
reacts to an external event by recording the time that the Customer departed the Clerk’s queue (i.e., the
current simulation time) and how long the Customer waited in line. Here is the Observer header file.

#include "adevs.h"

#include "Customer.h"

#include <fstream>

/**

* The Observer records performance statistics for a Clerk model

15

* based on its observable output.

*/

class Observer: public adevs::Atomic<IO_Type>

{

public:

/// Input port for receiving customers that leave the store.

static const int departed;

/// Constructor. Results are written to the specified file.

Observer(const char* results_file);

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Time advance function.

double ta();

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Observer();

private:

/// File for storing information about departing customers.

std::ofstream output_strm;

};

Below is the Observer source file.

#include "Observer.h"

using namespace std;

using namespace adevs;

// Assign a locally unique number to the input port

const int Observer::departed = 0;

Observer::Observer(const char* output_file):

Atomic<IO_Type>(),

output_strm(output_file)

{

// Write a header describing the data fields

output_strm << "# Col 1: Time customer enters the line" << endl;

output_strm << "# Col 2: Time required for customer checkout" << endl;

output_strm << "# Col 3: Time customer leaves the store" << endl;

output_strm << "# Col 4: Time spent waiting in line" << endl;

}

double Observer::ta()

{

// The Observer has no autonomous behavior, so its next event

// time is always infinity.

return DBL_MAX;

16

}

void Observer::delta_int()

{

// The Observer has no autonomous behavior, so do nothing

}

void Observer::delta_ext(double e, const Bag<IO_Type>& xb)

{

// Record the times at which the customer left the line and the

// time spent in it.

Bag<IO_Type>::const_iterator i;

for (i = xb.begin(); i != xb.end(); i++)

{

const Customer* c = (*i).value;

// Compute the time spent waiting in line

double waiting_time = (c->tleave-c->tenter)-c->twait;

// Dump stats to a file

output_strm << c->tenter << " " << c->twait << " " << c->tleave << " " << waiting_time << endl;

}

}

void Observer::delta_conf(const Bag<IO_Type>& xb)

{

// The Observer has no autonomous behavior, so do nothing

}

void Observer::output_func(Bag<IO_Type>& yb)

{

// The Observer produces no output, so do nothing

}

void Observer::gc_output(Bag<IO_Type>& g)

{

// The Observer produces no output, so do nothing

}

Observer::~Observer()

{

// Close the statistics file

output_strm.close();

}

This model is coupled to the Clerk’s “depart” output port in the same manner as before. The resulting
coupled model is illustrated in Figure 3.3.

Figure 3.3: The Generator, Clerk, and Observer model.

Given the customer arrival data in Table 3.1, the consequent customer departure and waiting times are

17

Time that the customer left the store Time spent waiting in line
2 0
6 0
10 3
12 5
22 5
42 14
44 32
45 33

Table 3.2: Customer departure times and waiting times.

shown in Table 3.2. With this output, we can use a spreadsheet to find the maximum and average times
that the customers spent waiting in line.

Again notice that the customer departure times correspond exactly with the production of customer
departure events by the Clerk model. Each entry in Table 3.2 is the result of executing the Observer’s
external transition function. Also notice that the Observer’s internal and confluent transition functions are
never executed because the Observer’s time advance method always returns infinity.

This section has demonstrated the most common parts of a simulation program built with Adevs. The
remainder of the manual covers Atomic and Network models in greater detail, demonstrates the construc-
tion of variable structure models, and shows how continuous models can be added to your discrete event
simulation.

18

Chapter 4

Atomic Models

Atomic models are the basic building blocks of a DEVS model. The behavior of an atomic model is described
by its state transition functions (internal, external, and confluent), its output function, and its time advance
function. Within Adevs, these aspects of an atomic model are implemented by sub-classing the Atomic class
and implementing the virtual methods that correspond to the internal, external, and confluent transition
functions, the output function, and the time advance function.

The state of an atomic model is realized by the attributes of the object that implements the model. The
internal transition function describes the model’s autonomous behavior; that is, how its state evolves in the
absence of input. These types of events are called internal events because they are self-induced; i.e., internal
to the model. The time advance function schedules these autonomous changes of state. The output function
gives the model’s output when these internal events occur.

The external transition function describes how the model changes state in response to input. The
confluent transition function handles the simultaneous occurrence of an internal and external event. The
types of objects that are accepted as input and produced as output are specified with a template argument
to the Atomic base class.

The Clerk described in Section 3 demonstrates all the aspects of an Atomic model. We’ll use it here to
demonstrate how an Atomic model generates output, processes input, and schedules internal events. Below
is the Clerk’s class definition:

include "adevs.h"

#include "Customer.h"

#include <list>

class Clerk: public adevs::Atomic<IO_Type>

{

public:

/// Constructor.

Clerk();

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Time advance function.

double ta();

/// Output value garbage collection.

19

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Clerk();

/// Model input port.

static const int arrive;

/// Model output port.

static const int depart;

private:

/// The clerk’s clock

double t;

/// List of waiting customers.

std::list<Customer*> line;

/// Time spent so far on the customer at the front of the line

double t_spent;

};

and here its implementation

#include "Clerk.h"

#include <iostream>

using namespace std;

using namespace adevs;

// Assign locally unique identifiers to the ports

const int Clerk::arrive = 0;

const int Clerk::depart = 1;

Clerk::Clerk():

Atomic<IO_Type>(), // Initialize the parent Atomic model

t(0.0), // Set the clock to zero

t_spent(0.0) // No time spent on a customer so far

{

}

void Clerk::delta_ext(double e, const Bag<IO_Type>& xb)

{

// Print a notice of the external transition

cout << "Clerk: Computed the external transition function at t = " << t+e << endl;

// Update the clock

t += e;

// Update the time spent on the customer at the front of the line

if (!line.empty())

{

t_spent += e;

}

// Add the new customers to the back of the line.

Bag<IO_Type>::const_iterator i = xb.begin();

for (; i != xb.end(); i++)

{

// Copy the incoming Customer and place it at the back of the line.

line.push_back(new Customer(*((*i).value)));

// Record the time at which the customer entered the line.

20

line.back()->tenter = t;

}

// Summarize the model state

cout << "Clerk: There are " << line.size() << " customers waiting." << endl;

cout << "Clerk: The next customer will leave at t = " << t+ta() << "." << endl;

}

void Clerk::delta_int()

{

// Print a notice of the internal transition

cout << "Clerk: Computed the internal transition function at t = " << t+ta() << endl;

// Update the clock

t += ta();

// Reset the spent time

t_spent = 0.0;

// Remove the departing customer from the front of the line.

line.pop_front();

// Summarize the model state

cout << "Clerk: There are " << line.size() << " customers waiting." << endl;

cout << "Clerk: The next customer will leave at t = " << t+ta() << "." << endl;

}

void Clerk::delta_conf(const Bag<IO_Type>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

void Clerk::output_func(Bag<IO_Type>& yb)

{

// Get the departing customer

Customer* leaving = line.front();

// Set the departure time

leaving->tleave = t + ta();

// Eject the customer

IO_Type y(depart,leaving);

yb.insert(y);

// Print a notice of the departure

cout << "Clerk: Computed the output function at t = " << t+ta() << endl;

cout << "Clerk: A customer just departed!" << endl;

}

double Clerk::ta()

{

// If the list is empty, then next event is at inf

if (line.empty()) return DBL_MAX;

// Otherwise, return the time remaining to process the current customer

return line.front()->twait-t_spent;

}

void Clerk::gc_output(Bag<IO_Type>& g)

{

21

// Delete the outgoing customer objects

Bag<IO_Type>::iterator i;

for (i = g.begin(); i != g.end(); i++)

{

delete (*i).value;

}

}

Clerk::~Clerk()

{

// Delete anything remaining in the customer queue

list<Customer*>::iterator i;

for (i = line.begin(); i != line.end(); i++)

{

delete *i;

}

}

Consider the simulation of the convenience store described in Section 3 (i.e., with the arrivals listed in
Table 3.1). The arrival data is listed again here:

Enter checkout line Time to process order
1 1
2 4
3 4
5 2
7 10
8 20
10 2
11 1

Table 4.1: Customer arrival times and times to process customers’ orders.

Table 4.1 describes an input sequence that is input to the Clerk model. The algorithm for processing
this, or any other, input sequence is listed below. The Atomic model being simulated is called ‘model’, t is
the current simulation time (i.e., the time of the last event - internal, external, or confluent), and t input is
the time of the next unprocessed event in the input sequence.

1. Set the next event time tN to the smaller of the next internal event time t self = t + model.ta() and
the next input event time t input.

2. If t self = tN and t input ¡ tN then produce an output event at time t self by calling model.output func()
and then compute the next state by calling model.delta int().

3. If t self = t input = tN then produce an output event at time t self by calling model.output func() and
then compute the next state by calling model.delta conf(x) where x contains the input at time t input.

4. If t self ¡ tN and t input = tN then compute the next state by calling model.delta ext(t input-t,x)
where x contains the input at time t input.

5. Set t equal to tN.

6. Repeat if there are more input or internal events to process.

22

The first step of this algorithm computes the time of the next event as the sooner of the next input event
and the next internal event. If the next internal event happens first, then the model produces an output and
its next state is computed with the internal transition function.

If the next input event happens first, then the next state of the model is computed with the external
transition function; no output is produced in this case. The elapsed time argument given to the external
transition function is the amount of time that has passed since the previous event - internal, external, or
confluent - at that model.

If the next input and internal event happen at the same time, then the model produces an output and
its next state is computed with the confluent transition function. The simulation clock is then advanced to
the event time. These steps are repeated until there are no internal or external events remaining to process.

The output trace resulting from the input sequence in Table 4.1 is shown below. It has been broken up
to show where each simulation cycle begins and ends and the type of event occurring in each cycle.

-External event--

Clerk: Computed the external transition function at t = 1

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 2.

-Confluent event--

Clerk: Computed the output function at t = 2

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 2

Clerk: There are 0 customers waiting.

Clerk: The next customer will leave at t = 1.79769e+308.

Clerk: Computed the external transition function at t = 2

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 6.

-External event--

Clerk: Computed the external transition function at t = 3

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 6.

-External event--

Clerk: Computed the external transition function at t = 5

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 6.

-Internal event--

Clerk: Computed the output function at t = 6

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 6

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 10.

-External event--

Clerk: Computed the external transition function at t = 7

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 10.

-External event--

Clerk: Computed the external transition function at t = 8

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 10.

-Confluent event--

Clerk: Computed the output function at t = 10

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 10

23

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 12.

Clerk: Computed the external transition function at t = 10

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 12.

-External event--

Clerk: Computed the external transition function at t = 11

Clerk: There are 5 customers waiting.

Clerk: The next customer will leave at t = 12.

-Internal event--

Clerk: Computed the output function at t = 12

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 12

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 22.

-Internal event--

Clerk: Computed the output function at t = 22

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 22

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 42.

-Internal Event--

Clerk: Computed the output function at t = 42

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 42

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 44.

-Internal event--

Clerk: Computed the output function at t = 44

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 44

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 45.

-Internal event--

Clerk: Computed the output function at t = 45

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 45

Clerk: There are 0 customers waiting.

Clerk: The next customer will leave at t = 1.79769e+308.

Now lets create a more sophisticated clerk. This clerk interrupts the checkout of a customer with a large
order to more quickly serve a customer with a small order. The clerk, however, does this only occasionally.
To be precise, let a small order be one requiring no more than one unit of time to process. Moreover, the
clerk interrupts the processing of an order at most once in every 10 units of time.

This new clerk has two state variables. The first records the time remaining before the clerk is willing to
interrupt the processing of a customer. The second is the list of customers waiting to be served. Here is the
header file for the new clerk model, which is called Clerk2.

#include "adevs.h"

#include "Customer.h"

#include <list>

class Clerk2: public adevs::Atomic<IO_Type>

24

{

public:

/// Constructor.

Clerk2();

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Time advance function.

double ta();

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Clerk2();

/// Model input port.

static const int arrive;

/// Model output port.

static const int depart;

private:

/// Structure for storing information about customers in the line

struct customer_info_t

{

// The customer

Customer* customer;

// Time remaining to process the customer order

double t_left;

};

/// List of waiting customers.

std::list<customer_info_t> line;

//// Time before we can preempt another customer

double preempt;

/// The clerk’s clock

double t;

/// Threshold correspond to a ’small’ order processing time

static const double SMALL_ORDER;

/// Minimum time between preemptions.

static const double PREEMPT_TIME;

};

The Clerk2 constructor sets the clerk’s clock and interruption timer to zero.

Clerk2::Clerk2():

Atomic<IO_Type>(),

preempt(0.0),

t(0.0)

{

}

The output function of this model sets the exit time of the departing customer and then ejects that customer
via the “depart” port.

25

void Clerk2::output_func(Bag<IO_Type>& yb)

{

/// Set the exit time of the departing customer

line.front().customer->tleave = t+ta();

/// Place the customer at the front of the line onto the depart port.

IO_Type y(depart,line.front().customer);

yb.insert(y);

// Report the departure

cout << "Clerk: A customer departed at t = " << t+ta() << endl;

}

The external transition function works as follows. When a new customer arrives, the clerk first advanced
its clock by the elapsed time. Next, she reduces the time remaining to process the current customer. This
reduction reflects the amount of time that has already been spent on the customer’s order, which is the time
elapsed since the clerk’s last change of state. Then the clerk decrements the time remaining before she is
willing to interrupt the processing of a large order. This timer is also decremented by the elapsed time.

Now the clerk records the time at which each arriving customer enters the line. This time is the value
of the clock. If any of the arriving customers has a small checkout time and the clerk is willing to interrupt
the present order, then that customer with the small order goes to the front of the line. This preempts the
current customer, who now has the second place in line, and causes the preempt timer to be reset. Otherwise,
the new customer simply goes to the back of the line.

void Clerk2::delta_ext(double e, const Bag<IO_Type>& xb)

{

/// Update the clock

t += e;

/// Update the time spent working on the current order

if (!line.empty())

{

line.front().t_left -= e;

}

/// Reduce the preempt time

preempt -= e;

/// Place new customers into the line

Bag<IO_Type>::const_iterator iter = xb.begin();

for (; iter != xb.end(); iter++)

{

cout << "Clerk: A new customer arrived at t = " << t << endl;

/// Create a copy of the incoming customer and set the entry time

customer_info_t c;

c.customer = new Customer(*((*iter).value));

c.t_left = c.customer->twait;

/// Record the time at which the customer enters the line

c.customer->tenter = t;

/// If the customer has a small order

if (preempt <= 0.0 && c.t_left <= SMALL_ORDER)

{

cout << "Clerk: The new customer has preempted the current one!" << endl;

/// We won’t preempt another customer for at least this long

preempt = PREEMPT_TIME;

/// Put the new customer at the front of the line

line.push_front(c);

}

26

/// otherwise just put the customer at the end of the line

else

{

cout << "Clerk: The new customer is at the back of the line" << endl;

line.push_back(c);

}

}

}

The internal transition function begins by decrementing the time remaining before the clerk will interrupt
an order. The customer that just departed the store via the output function is then removed from the front
of the line. If the line is empty, then there is nothing to do and the clerk sits idly behind her counter. If the
line is not empty and the preemption time has expired, then the clerk scans the line for the first customer
with a small order. If such a customer can be found, that customer moves to the front of the line. Then the
clerk starts ringing up the first customer in her line. Here is the internal transition function for the Clerk2
model.

void Clerk2::delta_int()

{

// Update the clerk’s clock

t += ta();

// Update the preemption timer

preempt -= ta();

// Remove the departing customer from the front of the line.

// The departing customer will be deleted later by our garbage

// collection method.

line.pop_front();

// Check to see if any customers are waiting.

if (line.empty())

{

cout << "Clerk: The line is empty at t = " << t << endl;

return;

}

// If the preemption time has passed, then look for a small

// order that can be promoted to the front of the line.

list<customer_info_t>::iterator i;

for (i = line.begin(); i != line.end() && preempt <= 0.0; i++)

{

if ((*i).t_left <= SMALL_ORDER)

{

cout << "Clerk: A queued customer has a small order at time " << t << endl;

customer_info_t small_order = *i;

line.erase(i);

line.push_front(small_order);

preempt = PREEMPT_TIME;

break;

}

}

}

The time advance function returns the time remaining to process the customer at the front of the line,
or infinity (i.e., DBL MAX) if there are no customers to process.

double Clerk2::ta()

27

{

// If the line is empty, then there is nothing to do

if (line.empty()) return DBL_MAX;

// Otherwise, wait until the first customer will leave

else return line.front().t_left;

}

The last function to implement is the confluent transition function. The Clerk2 model has the same
confluent transition as the Clerk in section 3:

void Clerk2::delta_conf(const Bag<IO_Type>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

The behavior of the Clerk2 model is more complex than that of the Clerk model. To exercise the
Clerk2, we replace the Clerk model in the example from section 3 with the Clerk2 model and perform the
same experiment. Here is the output trace for the Clerk2 model in response to the input sequence shown
in Table 4.1. This trace was generated by the print statements shown in the source code listings for the
Clerk2 model.

Clerk: A new customer arrived at t = 1

Clerk: The new customer has preempted the current one!

Clerk: A customer departed at t = 2

Clerk: The line is empty at t = 2

Clerk: A new customer arrived at t = 2

Clerk: The new customer is at the back of the line

Clerk: A new customer arrived at t = 3

Clerk: The new customer is at the back of the line

Clerk: A new customer arrived at t = 5

Clerk: The new customer is at the back of the line

Clerk: A customer departed at t = 6

Clerk: A new customer arrived at t = 7

Clerk: The new customer is at the back of the line

Clerk: A new customer arrived at t = 8

Clerk: The new customer is at the back of the line

Clerk: A customer departed at t = 10

Clerk: A new customer arrived at t = 10

Clerk: The new customer is at the back of the line

Clerk: A new customer arrived at t = 11

Clerk: The new customer has preempted the current one!

Clerk: A customer departed at t = 12

Clerk: A customer departed at t = 13

Clerk: A customer departed at t = 23

Clerk: A customer departed at t = 43

Clerk: A customer departed at t = 45

Clerk: The line is empty at t = 45

The evolution of the Clerk2 line is depicted in Fig. 4.1. Until time 11, the line evolves just as it did
with the Clerk model. At time 11, the Clerk2 changes the course of the simulation by moving a customer
with a small order to the front of the line.

28

Figure 4.1: The evolution of the Clerk2 line in response to the customer arrival sequence listed in Table
4.1.

29

30

Chapter 5

Network Models

A network model comprises atomic models and other network models that are interconnected. Network
models can be components of other network models, thereby enabling the construction of multi-level systems.
Unlike atomic models, network models do not directly define new dynamic behavior. The dynamics of a
network model are determined by the dynamics of its component parts and their interactions. Atomic models
define fundamental behaviors; network models define structure.

5.1 Parts of a Network Model

Network models are derived from the Network class. This class has two virtual methods: route and
getComponents. The route method implements connections between the components of the network and
between these components and the inputs and outputs of the network itself. The getComponents method
provides the set of components that constitute the network.

5.1.1 The route method

The route method realizes three types of connections. The first are connections between components of
the network. The second are connections from the network’s inputs to the inputs of its component models.
The third are connections from the component outputs to the outputs of the network. The signature of the
route method is

void route(const X& value, Devs<X>* model, Bag<Event<X> >& r)

The value argument is the object to route, the model argument is the Network or Atomic model that
is the source of the value object, and the r argument is a bag to be filled with models that should receive the
value object as input. Each target is described by an Event object that carries two pieces of information:
a pointer to the model that is the target and the object to be delivered to that target. The simulator uses
the Event objects in one of three ways depending on the relationship between the source of the object and
its target. These uses are

1. If the source is a component of the network and the target is the network itself, then the value becomes
an output from the network.

2. If the source is the network and the target is a component of the network, then the value becomes an
input to that component.

3. If the source and target are both components of the network, then the value becomes an input to the
target.

31

Figure 5.1: Two connected Atomic components in a single Network.

Any other relationship between the source and the target is illegal and causes the simulator to raise an
exception.

The simplest example of the route method converts output from one Atomic component into input
for another Atomic component. Figure 5.1 illustrates this case. The simulator begins by invoking the
output func method of Atomic model A. Next, the simulator iterates through the elements of A’s output
bag, calling the Network’s route method for each one. The arguments passed to route at each call are

1. the output object itself, which is the value argument,

2. a pointer to A, which is the model argument, and

3. an empty Bag for holding Event objects.

Two things are done by the route method to cause Atomic model B to receive the output object from
A. First, an Event object is created that contains the output object and a pointer to B. Second, this Event
object is inserted into the Bag r. If we suppose, for the sake of illustration, that input and output objects
have type int, then the route method for this example is

void route(const int& value, Devs<int>* model, Bag<Event<int> >& r) {

if (model == A) {

Event<int> e(B,value);

r.insert(e);

}

}

where A and B are pointers to the respective models. This route method implements the network shown in
Fig. 5.1.

A more complicated example is the network receiving input destined for one of its atomic components.
This can happen, for instance, when the network is a component of another network. Suppose the input to
the network is to become input for Atomic model A. Figure 5.2 extends Fig. 5.1 to include this connection.

Figure 5.2: Two connected Atomic components with external input coupling to component A.

32

When an event appears at the input of the network, the simulator calls the Network’s route method
with the following arguments:

1. the input object, which is the value argument,

2. a pointer to the Network that is receiving the input, and

3. an empty Bag for holding Event objects.

As before, route creates an Event object that indicates the target model and value of the input. This
Event object is put into the Bag r of receivers. The code below implements the network shown in Fig. 5.2;
note that ‘this’ points to the Network itself (i.e., to the network that is receiving the initial input).

void route(const int& value, Devs<int>* model, Bag<Event<int> >& r) {

if (model == A) {

Event<int> e(B,value);

r.insert(e);

}

else if (model == this) {

Event<int> e(A,value);

r.insert(e);

}

}

Figure 5.3: A network with external input, external output, and internal coupling.

For a complete example, the network is extended to include two more connections: a connection from the
output of model B to the output of the network and a feedback connection from B to A. This configuration
is shown in Fig. 5.3. These new connections require an additional case in the route method. This case checks
for output from B and, if such an output is found, directs it to both A and the network. An Event object
is created for each target and added to the Bag r of receivers: one of these Events results in an input to A
and the other in an output from the network. Here is the implementation.

void route(const int& value, Devs<int>* model, Bag<Event<int> >& r) {

if (model == A) {

Event<int> e(B,value);

r.insert(e);

}

else if (model == this) {

Event<int> e(A,value);

r.insert(e);

}

else if (model == B) {

Event<int> e1(this,value);

Event<int> e2(A,value);

33

r.insert(e1);

r.insert(e2);

}

}

Though not demonstrated above, the route method is allowed to modify the value object before sending
it to a target. This can be useful in some instances.

5.1.2 The getComponents method

The getComponents method is the other virtual method that must be implemented by any class that is
derived from Network. The simulator passes to this method an empty Set of pointers to models, and this
set must be filled with the network’s components. The signature of the getComponents method is

void getComponents(Set<Devs<X>*>& c)

where c is the set to be filled. The code below shows how this method is implemented for the two component
network shown in Fig. 5.3. This code, of course, also works for the networks shown in Figs. 5.2 and 5.1.

void getComponents(Set<Devs<int>*>& c) {

c.insert(A);

c.insert(B);

}

5.1.3 Illegal networks

There are two rules that must be followed when building networks. First, components cannot be connected
to themselves. This means that direct feedback loops and connections directly through a network model
are illegal. The former can always be replaced with an internal event and the latter by simply bypassing
the network. These two cases are illustrated in Fig. 5.4. Second, direct coupling can only occur between
components belonging to the same network, and every component must belong to at most one network.

Figure 5.4: Illegal coupling in a Network model.

5.2 Simulating a Network Model

There are four steps in each iteration of the simulation algorithm. These are

1. Advance the simulation clock to the time of the next event.

2. Compute the outputs from atomic models that will change state (i.e., that will undergo an internal or
confluent event) and convert these outputs into inputs for other models.

34

3. Calculate the next state of each model with events - internal, external, or both to process.

4. Cleanup garbage left over from the output calculations.

These four steps are repeated until the time of the next event is at infinity (i.e., DBL MAX) or you decide
to stop the simulation.

There are no special rules for simulating hierarchical models. The simulator considers the entire collection
of atomic models when determining the next event time, output from atomic models are recursively routed to
their atomic destinations, and the state transitions and garbage collection are performed over the complete
set of active atomic components. Hierarchies of network models are a convenient organizing tool for the
modeler, but the simulator flattens (indirectly, via its recursive routing of events) multi-level networks during
simulation.

Algorithm 1 sketches the simulation procedure. Note that the procedure for simulating atomic models
(see section 4) is embedded in the procedure for simulating network models. The rules for atomic models
do not change: each atomic model sees a sequence of input events and produces a sequence of output events
just as before. The only difference here is that the input events are created by other atomic models, and so
the input sequence for each atomic model is constructed as the simulation progresses.

Algorithm 1 The simulation procedure for a network model.

Initialize the state of every Atomic model
Set the time of last event tl,i of every Atomic model i to 0
Set the simulation time t to 0
Set the time of next event for model i to tl,i + tai()
while The smallest time of next event for the Atomic models is less than DBL MAX do
Set t to the smallest time of next event for the Atomic models
Find the set of Atomic models whose next event time is equal to t. These are the imminent models.
Get the output of each imminent model by calling its output func
Convert output from imminent models to input for other models using the Networks’ route methods
(do this recursively if the network has more than one level)
for each Atomic model i that is imminent or has input do
if i is an imminent model and it does not have input then
Compute the next model state with delta int()

else if i is an imminent and it has input then
Compute the next model state with delta conf(xb), where xb is the input

else if i is not an imminent model and it has input then
Compute the next model state with delta ext(t− tl,i,xb), where xb is the input

end if
Set tl,i to t
Set the time of next event for model i to tl,i + tai()

end for
end while

5.3 A complete example of a network model

I’ll use the SimpleDigraph class to illustrate how to build a network model. The SimpleDigraph models a
network of components whose connections are represented with a directed graph. If, for example, component
A is connected to component B, then all output from A becomes input to B.

The SimpleDigraph has two methods for building a network. The add method takes an Atomic or
Network model and adds it to the set of components. The couple method accepts a pair of components
and connects the first to the second. Below is the class definition for the model. Note that it has a template
parameter for setting its input and output type.

35

template <class VALUE> class SimpleDigraph: public Network<VALUE> {

public:

/// A component of the SimpleDigraph model

typedef Devs<VALUE> Component;

/// Construct a network with no components

SimpleDigraph():Network<VALUE>(){}

/// Add a model to the network.

void add(Component* model);

/// Couple the source model to the destination model

void couple(Component* src, Component* dst);

/// Assigns the model component set to c

void getComponents(Set<Component*>& c);

/// Use the coupling information to route an event

void route(const VALUE& x, Component* model, Bag<Event<VALUE> >& r);

/// The destructor destroys all of the component models

~SimpleDigraph();

private:

// Component model set

Set<Component*> models;

// Coupling information

std::map<Component*,Bag<Component*> > graph;

};

The SimpleDigraph has two member variables. The first is a set of pointers to the components of the
network. These are stored in the Set called models. The components can be Atomic objects, Network
objects, or both. These components of the SimpleDigraph are the nodes of its directed graph. The second
member variable is the network’s links. These are stored in the map called graph.

The SimpleDigraph has four methods plus the required route and getComponents. One of these
is the constructor, which creates an empty network. Another is the destructor, which deletes all of the
network’s components. The remaining two are add and couple .

The add method does three things. First, it checks that the network is not being added to itself. This
is illegal and will cause the simulator to throw an exception. Next, it adds the new component to its set
of components. Last, the SimpleDigraph makes itself the component’s parent. This needed so that the
simulator can climb up and down the model tree. If this step is omitted then the recursive routing of events
will fail. Here is the implementation of the add method.

template <class VALUE>

void SimpleDigraph<VALUE>::add(Component* model) {

assert(model != this);

models.insert(model);

model->setParent(this);

}

The couple method does two things. First, it adds the source (src) and destination (dst) models to the
set of components. We could simply have required that the user call the add method before calling the
couple method, but adding the components here doesn’t hurt and might prevent an error. Second, couple
adds the src → dst link to the graph. Notice that the SimpleDigraph itself is a node in the network, but
it is not in the set of components!. Components that are connected to the network cause outputs from the
network. Similarly, connecting the network to a component causes input to the network to become input to
the component. Here is the implementation of the couple method.

template <class VALUE>

36

void SimpleDigraph<VALUE>::couple(Component* src, Component* dst) {

if (src != this) add(src);

if (dst != this) add(dst);

graph[src].insert(dst);

}

Of the two required methods, route is the more complicated. The arguments to route are an object to
be routed, the network element (i.e., either the SimpleDigraph or one of its components) that created that
object, and the Bag to be filled with Event objects that indicate the object’s receivers. The method begins
by finding the collection of components that are connected to the source of the object. Next, it iterates
through this collection and for each receiver adds an Event to the Bag of receivers. When this is done the
method returns. The implementation is below.

template <class VALUE>

void SimpleDigraph<VALUE>::route(const VALUE& x, Component* model,Bag<Event<VALUE> >& r) {

// Find the list of target models and ports

typename std::map<Component*,Bag<Component*> >::iterator graph_iter;

graph_iter = graph.find(model);

// If no target, just return

if (graph_iter == graph.end()) return;

// Otherwise, add the targets to the event bag

Event<VALUE> event;

typename Bag<Component*>::iterator node_iter;

for (node_iter = (*graph_iter).second.begin();

node_iter != (*graph_iter).second.end(); node_iter++) {

event.model = *node_iter;

event.value = x;

r.insert(event);

}

}

The second required method, getComponents, is trivial. If we had used some collection other than a
Set to store the components, then the method would have needed to explicitly insert every component model
into the Set c. But because models and c are both Set objects, and the Set has an assignment operator, a
call to that operator is sufficient.

template <class VALUE>

void SimpleDigraph<VALUE>::getComponents(Set<Component*>& c) {

c = models;

}

The constructor and the destructor complete the class. The constructor only calls the superclass con-
structor. The destructor deletes the component models. Its implementation is shown below.

template <class VALUE>

SimpleDigraph<VALUE>::~SimpleDigraph() {

typename Set<Component*>::iterator i;

for (i = models.begin(); i != models.end(); i++) {

delete *i;

}

}

37

5.4 Digraph Models

This section introduces the Digraph model, which is part of the Adevs simulation library. The Digraph is
a tool for building networks described by a block diagram. The model of the convenience store, developed
in section 3, was our first example of a Digraph model. The code used to construct the convenience store
model (without the Observer) is shown below. The block diagram that corresponds to this code snippet is
shown in Fig. 5.5.

// Create a digraph model whose components use PortValue<Customer*>

// objects as input and output objects.

adevs::Digraph<Customer*> store;

// Create and add the component models

Clerk* clrk = new Clerk();

Generator* genr = new Generator(argv[1]);

store.add(clrk);

store.add(genr);

// Couple the components

store.couple(genr,genr->arrive,clrk,clrk->arrive);

Figure 5.5: A Digraph model with two components.

The components of a Digraph must use adevs::PortValue objects for their input and output type.
The Digraph is a template class with two template parameters. The first parameter is the type of object
used for a value in its PortValue objects. The second parameter is the type of object used for a port in its
PortValue objects. The port parameter is of type ‘int’ by default.

The Digraph has two methods that are used to construct a network. The add method adds a component
to the network. The argument to the add method is the model to be included in the network. The couple
method connects components of the network. The first two arguments to the couple method are the source
model and port. The second two arguments are the destination model and port.

The effect of coupling a source model to a destination model is that output produced by the source model
on the source port appears as input to the destination model on the destination port. To illustrate this,
consider the output function of the Generator model shown in Fig. 5.5.

void Generator::output_func(Bag<IO_Type>& yb)

{

// First customer in the list is produced as output

IO_Type output(arrive,arrivals.front());

yb.insert(output);

}

This output function places a value of type ‘Customer*’ on the “arrive” port of the Generator; recall
that ’IO Type’ is a typedef for ‘PortValue¡Customer*¿’. A corresponding PortValue object appears in the
input bag of the Clerk. The value attribute of the PortValue object received by the clerk points to the
Customer object created by the Generator. The port attribute of the PortValue object is the Clerk’s
“arrive” port.

The components for the network need not consist only of Atomic models; the Digraph can also have
other Network models as its components. For instance, suppose we want to model a convenience store

38

that has two clerks. When customers are ready to pay their bill, they enter the shortest line. To build this
model, we reuse the Clerk, Generator and Observer models introduced in section 3. We add a model
called Decision of how customers select a line.

The code for the Decision model is shown below. This model has two output ports, one for each line,
and there are three input ports. One input port accepts new customers. The others are used to track
the number of customers departing each line: a customer departing either clerk generates an event on the
appropriate input port. In this way, the model is able to track the number of customers in each line and
assign new customers to the shortest one. Here is the class definition

#include "adevs.h"

#include "Customer.h"

#include <list>

// Number of lines to consider.

#define NUM_LINES 2

class Decision: public adevs::Atomic<IO_Type>

{

public:

/// Constructor.

Decision();

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& x);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& x);

/// Output function.

void output_func(adevs::Bag<IO_Type>& y);

/// Time advance function.

double ta();

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Decision();

/// Input port that receives new customers

static const int decide;

/// Input ports that receive customers leaving the two lines

static const int departures[NUM_LINES];

/// Output ports that produce customers for the two lines

static const int arrive[NUM_LINES];

private:

/// Lengths of the two lines

int line_length[NUM_LINES];

/// List of deciding customers and their decision.

std::list<std::pair<int,Customer*> > deciding;

/// Delete all waiting customers and clear the list.

void clear_deciders();

/// Returns the arrive port associated with the shortest line

int find_shortest_line();

};

39

and here is the implementation

#include "Decision.h"

#include <iostream>

using namespace std;

using namespace adevs;

// Assign identifiers to ports. Assumes NUM_LINES = 2.

// The numbers are selected to allow indexing into the

// line length and port number arrays.

const int Decision::departures[NUM_LINES] = { 0, 1 };

const int Decision::arrive[NUM_LINES] = { 0, 1 };

// Inport port for arriving customer that need to make a decision

const int Decision::decide = NUM_LINES;

Decision::Decision():

Atomic<IO_Type>()

{

// Set the initial line lengths to zero

for (int i = 0; i < NUM_LINES; i++)

{

line_length[i] = 0;

}

}

void Decision::delta_int()

{

// Move out all of the deciders

deciding.clear();

}

void Decision::delta_ext(double e, const Bag<IO_Type>& x)

{

// Assign new arrivals to a line and update the line length

Bag<IO_Type>::const_iterator iter = x.begin();

for (; iter != x.end(); iter++)

{

if ((*iter).port == decide)

{

int line_choice = find_shortest_line();

Customer* customer = new Customer(*((*iter).value));

pair<int,Customer*> p(line_choice,customer);

deciding.push_back(p);

line_length[p.first]++;

}

}

// Decrement the length of lines that had customers leave

for (int i = 0; i < NUM_LINES; i++)

{

iter = x.begin();

for (; iter != x.end(); iter++)

{

40

if ((*iter).port < NUM_LINES)

{

line_length[(*iter).port]--;

}

}

}

}

void Decision::delta_conf(const Bag<IO_Type>& x)

{

delta_int();

delta_ext(0.0,x);

}

double Decision::ta()

{

// If there are customers getting into line, then produce output

// immediately.

if (!deciding.empty())

{

return 0.0;

}

// Otherwise, wait for another customer

else

{

return DBL_MAX;

}

}

void Decision::output_func(Bag<IO_Type>& y)

{

// Send all customers to their lines

list<pair<int,Customer*> >::iterator i = deciding.begin();

for (; i != deciding.end(); i++)

{

IO_Type event((*i).first,(*i).second);

y.insert(event);

}

}

void Decision::gc_output(Bag<IO_Type>& g)

{

Bag<IO_Type>::iterator iter = g.begin();

for (; iter != g.end(); iter++)

{

delete (*iter).value;

}

}

Decision::~Decision()

{

clear_deciders();

41

}

void Decision::clear_deciders()

{

list<pair<int,Customer*> >::iterator i = deciding.begin();

for (; i != deciding.end(); i++)

{

delete (*i).second;

}

deciding.clear();

}

int Decision::find_shortest_line()

{

int shortest = 0;

for (int i = 0; i < NUM_LINES; i++)

{

if (line_length[shortest] > line_length[i])

{

shortest = i;

}

}

return shortest;

}

The block diagram of the store and its multiple clerks is shown in Fig. 5.6. The external interface for this
block diagram is identical to that of the clerks. It has the same inputs and outputs as the Clerk and Clerk2
models, and we can therefore use the Generator and Observer models to conduct the same experiments
as before.

The external “arrive” input of the multi-clerk model is connected to the “decide” input of the Decision
model. The “depart” output ports of each of the Clerk models is connected to the external “arrive” output
port of the multi-clerk model. The Decision model has two output ports, each producing customers for a
distinct clerk. These output ports are coupled to the “arrive” port of the appropriate clerk. The Clerk’s
“depart” output ports are coupled to the appropriate “departures” port of the decision model.

Figure 5.6: Component models and their interconnections in the multi-clerk convenience store model.

The multi-clerk model is implemented by deriving a new class from Digraph. The constructor of this
new class creates and adds the component models and establishes their interconnections. Here is the header
file for this new multi-clerk model.

#include "adevs.h"

#include "Clerk.h"

42

#include "Decision.h"

/**

A model of a store with multiple clerks and a "shortest line"

decision process for customers.

*/

class MultiClerk: public adevs::Digraph<Customer*>

{

public:

// Model input port

static const int arrive;

// Model output port

static const int depart;

// Constructor.

MultiClerk();

// Destructor.

~MultiClerk();

};

And here is the source file

#include "MultiClerk.h"

using namespace std;

using namespace adevs;

// Assign identifiers to I/O ports

const int MultiClerk::arrive = 0;

const int MultiClerk::depart = 1;

MultiClerk::MultiClerk():

Digraph<Customer*>()

{

// Create and add component models

Decision* d = new Decision();

add(d);

Clerk* c[NUM_LINES];

for (int i = 0; i < NUM_LINES; i++)

{

c[i] = new Clerk();

add(c[i]);

}

// Create model connections

couple(this,this->arrive,d,d->decide);

for (int i = 0; i < NUM_LINES; i++)

{

couple(d,d->arrive[i],c[i],c[i]->arrive);

couple(c[i],c[i]->depart,d,d->departures[i]);

couple(c[i],c[i]->depart,this,this->depart);

}

}

MultiClerk::~MultiClerk()

{

43

}

Notice that the MultiClerk destructor does not delete its component models. This is because the compo-
nents are adopted by the base class when they are added using the Digraph’s add method. Consequently,
the component models are deleted by the base class destructor, rather than the destructor of the derived
class.

5.5 Cell Space Models

A cell space model is a collection of atomic and network models arrange in a regular grid and with each
model connected to its neighboring models. Conway’s Game of Life is a classic example of a cell space model
that can be described very nicely as a discrete event system. This game is played on a flat board divided
into regular cells much like a checkerboard. Each cell has a neighborhood that comprises its eight adjacent
cells: above, below, left, right, and the four corners. A cell can be dead or alive. The switch from dead to
alive and vice versa occurs according to two rules:

1. (Death rule). If a cell is alive and it has less than two or more than three living neighbors then the
cell dies.

2. (Rebirth rule). If a cell is dead and it has three three living neighbors then the cell is reborn.

Our implementation of the Game of Life has two parts: atomic models that implement the individual
cells and a CellSpace that contains the cells. The CellSpace is a type of Network, and its components
exchange CellEvent objects that have four attributes: the x, y, and z coordinates of the target cell (the cell
space can have three dimensions; the Game of Life uses just two) and the object to deliver to that target.
The CellEvent class is a template class whose template argument sets the type of object that the event
delivers. The size of the CellSpace is determined when the CellSpace object is created, and it has methods
for adding and retrieving cells by location.

The Atomic cells in our Game of Life have two state variables: the dead or alive status of the cell and
its count of living neighbors. Two methods are implemented to test the death and rebirth rules, and the cell
sets its time advance to 1 whenever a rule is satisfied.

The output of the cell is its new dead or alive state. In order to produce properly targeted CellEvents,
each cell knows its own location in the cell space. The internal transition function causes the cell to change
its dead/alive state. The external transition function updates the cell’s count of living neighbors as those
neighbors change their dead/alive state. Here is header file for our Game of Life cell.

/// Possible cell phases

typedef enum { Dead, Alive } Phase;

/// IO type for a cell

typedef adevs::CellEvent<Phase> CellEvent;

/// A cell in the Game of Life.

class Cell: public adevs::Atomic<CellEvent> {

public:

/**

Create a cell and set the initial state.

The width and height fields are used to determine if a

cell is an edge cell. The last phase pointer is used to

visualize the cell space.

*/

Cell(long int x, long int y, long int width, long int height,

Phase phase, short int nalive, Phase* vis_phase = NULL);

44

... Required Adevs methods and destructor ...

private:

// location of the cell in the 2D space

long int x, y;

// dimensions of the 2D space

static long int w, h;

// Current cell phase

Phase phase;

// number of living neighbors.

short int nalive;

// Output variable for visualization

Phase* vis_phase;

// Returns true if the cell will be born

bool check_born_rule() const {

return (phase == Dead && nalive == 3);

}

// Return true if the cell will die

bool check_death_rule() const {

return (phase == Alive && (nalive < 2 || nalive > 3));

}

};

The template argument supplied to the base Atomic class is a CellEvent whose value attribute has the
type Phase. The check born rule method tests the rebirth condition and the check death rule method
tests the death condition. The appropriate rule, as determined by the cell’s dead or alive status, is used in
the time advance, output, and internal transition methods (i.e., if the cell is dead then check the rebirth
rule; if alive, check the death rule). The number of living cells is updated by the cell’s delta ext method
when neighboring cells report a change in their state. Here are the Cell’s method implementations.

Cell::Cell(long int x, long int y, long int w, long int h,

Phase phase, short int nalive, Phase* vis_phase):

adevs::Atomic<CellEvent>(),x(x),y(y),phase(phase),nalive(nalive),vis_phase(vis_phase) {

// Set the global cellspace dimensions

Cell::w = w; Cell::h = h;

// Set the initial visualization value

if (vis_phase != NULL) *vis_phase = phase;

}

double Cell::ta() {

// If a phase change should occur then change state

if (check_death_rule() || check_born_rule()) return 1.0;

// Otherwise, do nothing

return DBL_MAX;

}

void Cell::delta_int() {

// Change the cell state if necessary

if (check_death_rule()) phase = Dead;

else if (check_born_rule()) phase = Alive;

}

45

void Cell::delta_ext(double e, const adevs::Bag<CellEvent>& xb) {

// Update the living neighbor count

adevs::Bag<CellEvent>::const_iterator iter;

for (iter = xb.begin(); iter != xb.end(); iter++) {

if ((*iter).value == Dead) nalive--;

else nalive++;

}

}

void Cell::delta_conf(const adevs::Bag<CellEvent>& xb) {

delta_int();

delta_ext(0.0,xb);

}

void Cell::output_func(adevs::Bag<CellEvent>& yb) {

CellEvent e;

// Assume we are dying

e.value = Dead;

// Check in case this in not true

if (check_born_rule()) e.value = Alive;

// Set the visualization value

if (vis_phase != NULL) *vis_phase = e.value;

// Generate an event for each neighbor

for (long int dx = -1; dx <= 1; dx++) {

for (long int dy = -1; dy <= 1; dy++) {

e.x = (x+dx)%w;

e.y = (y+dy)%h;

if (e.x < 0) e.x = w-1;

if (e.y < 0) e.y = h-1;

// Don’t send to self

if (e.x != x || e.y != y)

yb.insert(e);

}

}

}

The output func method shows how a cell sends messages to its neighbors. The nested for loops create
a CellEvent targeted at each adjacent cell. The location of the targeted cell is written to the x, y, and z
attributes of the CellEvent object. Just like arrays, the locations range from zero to the cell space’s size
minus one. The CellSpace routes the CellEvent objects to their targets. However, if the target of the
CellEvent is outside of the cell space, then the CellSpace itself will produce the CellEvent as an output.

The remainder of the simulation program looks very much like the simulation programs that we’ve seen.
A CellSpace object is created and we add cells to it. Then a Simulator object is created and a pointer to
the CellSpace is passed to the Simulator’s constructor. Last, we execute events until our stopping criteria
is met. The execution part is already familiar, so let’s just focus on creating the CellSpace. Here is the
code snippet that performs the construction.

// Create the cellspace model

cell_space = new adevs::CellSpace<Phase>(WIDTH,HEIGHT);

for (int x = 0; x < WIDTH; x++) {

for (int y = 0; y < HEIGHT; y++) {

// Count the living neighbors

short int nalive = count_living_cells(x,y);

46

// The 2D phase array contains the initial Dead/Alive state of each cell

cell_space->add(new Cell(x,y,WIDTH,HEIGHT,phase[x][y],nalive,&(phase[x][y])),x,y);

}

}

Just as with the Digraph class, the CellSpace template argument determines the value type for the
CellEvent objects used as input and output. The CellSpace constructor sets the dimensions of the space.
Every CellSpace is three dimensional, and the constructor accepts three arguments for its x, y, and z
dimensions. Omitted arguments default to 1. The signature of the constructor is

CellSpace(long int width, long int height = 1, long int depth = 1)

Components are added to the cellspace with the add method. This method places a component at a
specific x, y, and z location. Its signature is

void add(Cell* model, long int x, long int y = 0, long int z = 0)

where Cell is a Devs (atomic or network) by the type definition

typedef Devs<CellEvent<X> > Cell;

Also like the Digraph, the CellSpace deletes its components when it is deleted.
The CellSpace has five methods for retrieving cells and the dimensions of the cell space. These are more

or less self-explanatory; the signatures are shown below.

const Cell* getModel(long int x, long int y = 0, long int z = 0) const;

Cell* getModel(long int x, long int y = 0, long int z = 0);

long int getWidth() const;

long int getHeight() const;

long int getDepth() const;

The Game of Life produces a surprising number of distinct patterns. Some of these patterns are fixed
and unchanging. Others oscillate, cycling through a set of patterns that always repeats itself. Still others
seem to crawl or fly. One common pattern is the Block, which is shown in Fig. 5.7. Our discrete event
implementation of the Game of Life doesn’t do any work when simulating a Block. None of the cells in a
Block change in any way: their states are constant and so are their neighbor counts.

Figure 5.7: The Block.

The Blinker in Fig. 5.8 is more interesting. This oscillating pattern has just two stages: a vertical and a
horizontal. Table 5.1 shows the input, output, and state transitions that are computed for the cell marked
with a * in Fig. 5.8. Just like the pattern it is a part of, the cells oscillates between two different states.

The confluent transition function plays an important role in the Blinker. All but the first row in Table 5.1
has simultaneous input and output, which means that an internal and external event coincide. Consequently,
the next state of the cell is determined by its delta conf method. It is also important that the input and
output bags carry multiple values. The external transition function (which is used in defining the confluent
transition function) must be able to compute the number of living neighbors before determining its next
state. If input events were provided one at a time (e.g., if the input bag were replaced by a single input
event), then our discrete event Game of Life would be much more difficult to implement.

47

Figure 5.8: The Blinker. The input, output, and state transitions for the cell marked with a * are shown in
Table 5.1. The address of each cell is shown in its upper left corner. Living cells are indicated with a $.

Time State Input Output to all neighbors
0 (dead,3) No input No Output
1 (alive,1) (dead,2,1,0) (dead,2,3,0) alive
2 (dead,1) (alive,2,1,0) (alive,2,3,0) dead

Table 5.1: State, input, and output trajectory for the cell marked with * in Fig. 5.8.

48

Chapter 6

Variable Structure Models

The composition of a variable structure model changes over time. New components are added as, for ex-
ample, machinery is installed in a factory, organisms reproduce, or shells are fired from a cannon. Existing
components are removed as machines break, organisms die, or shells in flight find their targets. Compo-
nents are rearranged as, for example, parts move through a manufacturing process, organisms migrate, or a
command and control network loses communication lines.

For modeling systems with a variable structure, Adevs provides a simple but effective mechanism to
coordinate changes in structure and changes in state. This mechanism is based on the Dynamic DEVS
modeling formalism described in A.M. Uhrmacher’s paper “Dynamic structures in modeling and simulation:
a reflective approach”, ACM Transactions on Modeling and Computer Simulation (TOMACS), Volume 11,
Issue 2, pgs. 202-232, April 2001.

6.1 Building and Simulating Variable Structure Models

Every Network and Atomic model has a virtual method called model transition . This method is
inherited from the Devs class that is at the top of the Adevs class hierarchy. The signature of the
model transition method is

bool model_transition()

and its default implementation simply returns false.
At the end of every simulation cycle (that is, after computing the models’ new states but prior to the

garbage collection step) the simulator invokes the model transition method of every Atomic model that
changed state in that cycle. When the model transition method is invoked, the Atomic model can do
anything except alter the set of components of a Network model.

If a model’s model transition method returns true, then the simulator calls the model transition
method of that model’s parent. The parent is, of course, a Network model, and its model transition
method may add, remove, and rearrange the network’s components. But it must not delete any components!
The simulator will automatically delete components that are removed from the model when the structure
change calculations are finished.

As before, if the Network’s model transition method returns true then the simulator invokes the
model transition method of its parent. Note, however, that the model transition method of any model
is invoked at most once in each simulation cycle. This invocation, if it occurs, takes place after every
component of the network qualifying for the evaluation of its model transition method has computed its
change of structure.

After invoking every eligible model’s model transition method, the simulator performs a somewhat
complicated cleanup process. During this process the simulator constructs two sets. The first set contains 1)
the components that belonged to all of the Network models whose model transition method was invoked

49

and 2) all of the components of every model in this set (i.e., this set is constructed recursively: if any model
is in the set, so are its component models). The second set is defined in the same way, but it is computed
using sets of components as they are after the model transition methods have been invoked.

The simulator deletes every model that has actually been removed. These are the models in the first set
but not in the second. The simulator initializes every model that is genuinely new by computing its next
event time (i.e., its creation time plus its time advance) and putting it into the event schedule. These are
the models in the second second set but not in the first. The simulator leaves all other models alone.

The procedure for calculating a change of structure can be summarized as follows:

1. Calculate the model transition method of every atomic model that changed state.

2. Construct the set of network models that contain an atomic model from step 1 whosemodel transition
method returned true. These network models are sort by their depth in the tree of models with the
bottom-most first and top-most last. This ensures that structure changes are calculated from the
bottom up.

3. Calculate the model transition methods of the networks in order. On completing each transition,
do the following:

(a) Remove the network from the list.

(b) If the network’s model transition method returns true, put the parent of the network into the
sorted list of networks from step 2. This ensures that a network’s model transition method
is invoked only after all of its eligible components have had their model transition method
invoked.

4. When there are no more networks in the list, do the following:

(a) Delete the components removed from the model (i.e., the models without a parent).

(b) Initialize the components that were added to the model.

The procedure for calculating a change of structure is illustrated in Fig. 6.1. The black models’
model transition methods returned true. The set of components examined before and after the struc-
ture change are listed above the before (left) and after (right) trees. Notice that these models are in the
sub-tree below the model C, which is the top-most model in that sub-tree that returned false from its
model transition method. Also note that while the leaves of the tree may have had their model transition
method invoked, none returns true and so their parents’ model transition methods are not invoked nor are
their sets of components considered when determining what models have been added and removed from the
model. The set of deleted components is {c,D, d, e, f} − {e, g, d} = {c,D, f}. The set of new components is
{e, g, d} − {c,D, d, e, f} = {g}.

The model transition method can break the strict hierarchy and modularity that is usually observed
when building Network models. Any Network model can, in principle, modify the set of components of
any other model, regardless of proximity or hierarchy. The potential for anarchy is great, and so the design
of a variable structure model should be considered carefully. There are two approaches to such a design that
are simple and, in many cases, entirely adequate.

The first approach is to allow only Network models to effect structure changes and to restrict those
changes to the Network’s immediate sub-components. With this approach, an Atomic model initiates a
structure change by posting a structure change request for its parent. TheAtomicmodel’smodel transition
method returns true causing its parent’s model transition method to be invoked. The parent Network
model then retrieves and acts on the requests posted by its components. The Network repeats this process
if it wants to effect structure changes involving models other than its immediate children; i.e., it posts a
request for its parent and returns true from its model transition method.

The second approach allows arbitrary changes in structure by forcing the model at the top of the hierarchy
to invoke its model transition method. This causes the simulator to consider every model in the aftermath
of a structure change. As in the first approach, an Atomic model that wants to effect a change of structure

50

Figure 6.1: Illustration of a change of structure in a variable structure model.

uses its model transition method to post a request for its parent. This request is percolated up the model
hierarchy by the Network models whose model transition methods always return true.

The first approach trades flexibility for execution time. The second approach trades execution time for
flexibility. With the first approach, structure changes that involve a small number of components require a
small amount of work by the simulator. The scope of change must, however, be carefully restricted. With
the second approach, every structure change requires the simulator to include every part of the model in its
calculations, regardless of the actual extent of the change in structure. In this case, however, the scope of a
structure change may be unlimited.

6.2 A Variable Structure Example

The Custom Widget Company is expanding its operations. Plans are being drawn for a new factory that will
make custom gizmos (and to change the company name to The Custom Widget and Gizmo Company). The
machines for the factory are expensive to operate. To keep costs down, the factory will operate just enough
machinery to fill orders for gizmos. The factory must have enough machinery to meet peak demand, but
much of the machinery will be idle much of the time. The factory engineers want answers to two questions:
how many machines are needed and how much will it costs to operate them.

We will use a variable structure model to answer these questions. This model has three components: a
generator that creates orders for gizmos, a model of a machine, and a model of the factory that contains
the machines and that activates and deactivates machines as required to satisfy demand. The model of the
factory is illustrated in Fig. 6.2.

The generator creates new orders for the factory. Each order is identified with an integer label, and
the generator produces orders at the rate anticipated by the factory engineers. Demand at the factory is
expected to be steady with a new order arriving every 1/2 to 2 days. This expected demand is modeled with
a random variable that is uniformly distributed in [0.5,2]. Here is the code for the generator:

#include "adevs.h"

// The Genr models factory demand. It creates new orders every 0.5 to 2 days.

class Genr: public adevs::Atomic<int>

{

public:

/**

* The generator requires a seed for the random number that determines

* the time between new orders.

51

Figure 6.2: Block diagram of the model of the factory. The broken lines indicate structural elements that
are subject to change.

*/

Genr(unsigned long seed):

adevs::Atomic<int>(),next(1),u(seed){ set_time_to_order(); }

// Internal transition updates the order counter and

// determines the next arrival time

void delta_int() { next++; set_time_to_order(); }

// Output function produces the next order

void output_func(adevs::Bag<int>& yb) { yb.insert(next); }

// Time advance returns the time until the next order

double ta() { return time_to_order; }

// Model is input free, so these methods are empty

void delta_ext(double,const adevs::Bag<int>&){}

void delta_conf(const adevs::Bag<int>&){}

// No explicit memory management is needed

void gc_output(adevs::Bag<int>&){}

private:

// Next order ID

int next;

// Time until that order arrives

double time_to_order;

// Random variable for producing order arrival times

adevs::rv u;

// Method to set the order time

void set_time_to_order() { time_to_order = u.uniform(0.5,2.0); }

};

The model of a machine is similar to the Clerk in section 3. A machine requires 3 days to make a gizmo,
and orders for gizmos are processed first come, first serve. The Machine’s model transition method is
inherited from its Atomic base class. I’ll discuss the role of the model transition method after introducing
the Factory class. Here is the code for the Machine.

#include "adevs.h"

#include <cassert>

#include <deque>

/**

52

* This class models a machine as a fifo queue and server with fixed service time.

* The model_transition method is used, in conjunction with the Factory model_transition

* method, to add and remove machines as needed to satisfy a 6 day turnaround time

* for orders.

*/

class Machine: public adevs::Atomic<int>

{

public:

Machine():adevs::Atomic<int>(),tleft(DBL_MAX){}

void delta_int()

{

q.pop_front(); // Remove the completed job

if (q.empty()) tleft = DBL_MAX; // Is the Machine idle?

else tleft = 3.0; // Or is it still working?

}

void delta_ext(double e, const adevs::Bag<int>& xb)

{

// Update the remaining time if the machine is working

if (!q.empty()) tleft -= e;

// Put new orders into the queue

adevs::Bag<int>::const_iterator iter = xb.begin();

for (; iter != xb.end(); iter++)

{

// If the machine is idle then set the service time

if (q.empty()) tleft = 3.0;

// Put the order into the back of the queue

q.push_back(*iter);

}

}

void delta_conf(const adevs::Bag<int>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

void output_func(adevs::Bag<int>& yb)

{

// Expel the completed order

yb.insert(q.front());

}

double ta()

{

return tleft;

}

// The model transition function returns true if another order can not

// be accommodated or if the machine is idle.

bool model_transition()

{

// Check that the queue size is legal

assert(q.size() <= 2);

// Return the idle or full status

return (q.size() == 0 || q.size() == 2);

}

53

// Get the number of orders in the queue

unsigned int getQueueSize() const { return q.size(); }

// No garbage collection

void gc_output(adevs::Bag<int>&){}

private:

// Queue for orders that are waiting to be processed

std::deque<int> q;

// Time remaining on the order at the front of the queue

double tleft;

};

The number of Machine models contained in the Factory model at any time is determined by the
current demand for gizmos. The real factory, of course, will have a fixed number of machines on the factory
floor, but the planners do not know how many machines are needed. A variable structure model that creates
and destroys machines as needed is a good way to accommodate this uncertainty.

The Custom Widget and Gizmo Company has built its reputation on a guaranteed time of service, from
order to delivery, of 15 days. This leaves only 6 days for the manufacturing process, the remaining time
being consumed by order processing, delivery, etc.

A single machine can meet this schedule if it has at most one order waiting in its queue at any time.
However, it costs a dollar a day to operate a machine and so the factory engineers want to minimize the
number of machines working at any time. To accomplish this goal, the factory’s operating policy has two
rules:

1. Assign incoming orders to the active machine that can provide the shortest turn around time and

2. keep just enough active machines to have capacity for one additional order.

The Factory model implements this policy in the following way. If a Machine becomes idle or if its
queue is full (i.e., the machine is working on one order and has another order waiting in its queue), then that
machine’s model transition method returns true. This causes the Factory’s model transition method
to be invoked. The Factory first looks for and removes machines that have no work. Then it examines each
remaining machine to determine if the required one unit of additional capacity is available. If the required
unit of additional capacity is not available then the Factory creates a new machine.

This is an example of the first approach to building a variable structure model. With this design, the
simulator’s structure calculations are done only when the Factory’s model transition method is invoked,
and these calculations are therefore limited to instants when Machine models are likely to be created or
destroyed. Our design, however, is complicated somewhat by the need for Machine and Factory objects to
communicate; i.e., the Machine models must watch their own status and inform the Factory when there
is a potential shortage of capacity.

If we had used the second approached to build our variable structure model, then the Machines’
model transition method could have simply returned true: no need for a status check. The Factory
would iterate through its list of Machines, adding and deleting Machines as needed. This is more compu-
tationally expensive: the simulator looks for changes in the Factory’s set of components at each simulation
cycle. However, the design of the model is simpler, albeit only marginally so in this instance.

The Factory is a Network model and must implement all of the Network’s virtual methods: route ,
getComponents, and model transition . The route method is responsible for assigning orders to ma-
chines. When an order arrives, it is sent to the machine that will most quickly satisfy the order. The get-
Components method puts the current set of machines into the Set c of components. Themodel transition
method examines the status of each machine, deleting idle machines and adding new machines if they are
needed to maintain reserve capacity. The Factory implementation is shown below.

#include "adevs.h"

#include "Machine.h"

#include <list>

54

class Factory: public adevs::Network<int> {

public:

Factory();

void getComponents(adevs::Set<adevs::Devs<int>*>& c);

void route(const int& order, adevs::Devs<int>* src,

adevs::Bag<adevs::Event<int> >& r);

bool model_transition();

~Factory();

// Get the number of machines

int getMachineCount();

private:

// This is the machine set

std::list<Machine*> machines;

// Method for adding a machine to the factory

void add_machine();

// Compute time needed for a machine to finish a new job

double compute_service_time(Machine* m);

};

#include "Factory.h"

using namespace adevs;

using namespace std;

Factory::Factory():

Network<int>() { // call the parent constructor

add_machine(); // Add the first machine the the machine set

}

void Factory::getComponents(Set<Devs<int>*>& c) {

// Copy the machine set to c

list<Machine*>::iterator iter;

for (iter = machines.begin(); iter != machines.end(); iter++)

c.insert(*iter);

}

void Factory::route(const int& order, Devs<int>* src, Bag<Event<int> >& r) {

// If this is a machine output, then it leaves the factory

if (src != this) {

r.insert(Event<int>(this,order));

return;

}

// Otherwise, use the machine that can most quickly fill the order

Machine* pick = NULL; // No machine

double pick_time = DBL_MAX; // Infinite time for service

list<Machine*>::iterator iter;

for (iter = machines.begin(); iter != machines.end(); iter++) {

// If the machine is available

if ((*iter)->getQueueSize() <= 1) {

double candidate_time = compute_service_time(*iter);

// If the candidate service time is smaller than the pick service time

if (candidate_time < pick_time) {

55

pick_time = candidate_time;

pick = *iter;

}

}

}

// Make sure we found a machine with a small enough service time

assert(pick != NULL && pick_time <= 6.0);

// Use this machine to process the order

r.insert(Event<int>(pick,order));

}

bool Factory::model_transition() {

// Remove idle machines

list<Machine*>::iterator iter = machines.begin();

while (iter != machines.end()) {

if ((*iter)->getQueueSize() == 0) iter = machines.erase(iter);

else iter++;

}

// Add the new machine if we need it

int spare_cap = 0;

for (iter = machines.begin(); iter != machines.end(); iter++)

spare_cap += 2 - (*iter)->getQueueSize();

if (spare_cap == 0) add_machine();

return false;

}

void Factory::add_machine() {

machines.push_back(new Machine());

machines.back()->setParent(this);

}

double Factory::compute_service_time(Machine* m) {

// If the machine is already working

if (m->ta() < DBL_MAX) return 3.0+(m->getQueueSize()-1)*3.0+m->ta();

// Otherwise it is idle

else return 3.0;

}

int Factory::getMachineCount() {

return machines.size();

}

Factory::~Factory() {

// Delete all of the machines

list<Machine*>::iterator iter;

for (iter = machines.begin(); iter != machines.end(); iter++)

delete *iter;

}

To illustrate how the model transition method works, let us manually simulate the processing of a few
orders. The first order arrives at day zero, the second order at day one, and the third order at day three. At
the start, on day zero, there is one idle machine. When the first order arrives, the Factory’s route method

56

is invoked, and it sends the order to the idle machine. The Machine’s delta ext method is invoked, and
the machine begins processing the order. Next the Machine’s model transition method is invoked. It
discovers that the machine is working and has space in its queue, and so the model transition method
returns false.

When the second order arrives on day one, the Factory’s route method is called again. There is only
one Machine and it has space in its queue so the order is sent to that Machine. The Machine’s delta ext
method is invoked and it queues the order. The Machine’s model transition method is invoked next, and
because the queue is full the method returns true. This causes the the Factory’s model transition method
to be invoked. It examines the Machine’s status, sees that it is overloaded, and creates a new Machine.

At this time, the working Machine needs two more days to finish the first order, and it will not complete
its second order until a total of five days have elapsed.

There is a great deal of activity when the third order arrives on day three. First, the working Machine’s
output func method is called, and it produces the first completed order (i.e., the order begun on day zero).
Next the Factory’s route method is called twice. The first call converts the Machine’s output into an
output from the Factory. The second call routes the new order to the idle Machine.

Now the state transition methods for the two Machines are invoked. The working Machine’s delta int
method is called and it starts work on its queued order. The idle Machine’s delta ext method is called and
it begins processing the new order. Lastly, the model transition methods of both Machines are invoked.
Both Machine’s have room in their queue and so both return false.

Suppose no orders arrive in the next three days. At day six, both machines finish their work. The
Machines’ output func methods are invoked, producing the finished orders. These become output from
the Factory via the Factory’s route method.

Next, the Machines’ delta int methods are called and both Machines become idle. After this, the
Machines’ model transition methods are invoked and these return true because the machines are idle.
This causes the Factory’s model transition method to be called. It examines each Machine, sees that
they are idle, and deletes both of them. Lastly the Factory computes its available capacity, which is
now zero, and creates a new machine. This returns the Factory to its initial configuration with one idle
Machine.

The factory engineers have two questions: how many machines are needed and what is the factory’s
annual operating cost. These questions can be answered with a plot of the count of active machines versus
time. The required number of machines is the maximum value of the active machine count. Each machine
costs a dollar per day to operate, and so the operating cost is the one year time integral of the active machine
count. A plot of the active machine count versus time is shown in Fig. 6.3. The maximum count of active
machines is four and the annual operating cost is $944 (this plot is from the first simulation run listed in
Table 6.1).

Because new orders arrive at random, the annual operating cost and maximum machine count are them-
selves random numbers. Consequently, data from several simulation runs are needed to make an informed
decision. Table 6.1 shows the outcomes of ten simulation runs. Each uses a different sequence of random
numbers and therefore produces a different result (i.e., another sample of the maximum active machine count
and annual operating cost). From this data, the factory engineers conclude that 4 machines are required
and the average annual operating cost will be $961.

Random number seed Maximum machine count Annual operating cost
1 4 $944.05
234 4 $968.58
15667 4 $980.96
999 3 $933.13
9090133 4 $961.65
6113 4 $977.33

Table 6.1: Outcomes of ten factory simulations.

57

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350

m
ac

hi
ne

 c
ou

nt

time (days)

Figure 6.3: Active machine count over one year.

58

Chapter 7

Continuous Models

Many engineered systems comprise computers, communications networks, and other digital systems to mon-
itor and control physical (electrical, mechanical, thermodynamic, etc.) processes. Models of these systems
have some parts modeled as discrete event systems, other parts modeled with continuous (differential or
differential-algebraic) equations, and the interaction of these parts is crucial to understanding the system’s
behavior.

The interaction of continuous and discrete event models is necessarily discrete. For example, a digital
thermometer reports temperature in discrete increments, electrical switches are either open or closed, a
threshold sensor is either tripped or it is not. Discrete interactions in a combined continuous-discrete event
simulation are managed just as before: the models interact by producing output events and reacting to input
events.

If, on the other hand, two systems interact continuously, then those interacting parts are modeled with
continuous equations. In this case, accurate simulation is greatly facilitated by lumping the two systems into
a single assembly. In Adevs this assembly is an Atomic model that encapsulates the system’s continuous
dynamics. The essence of this approach to combined simulation in Adevs consists therefore of building
atomic models that i) approximate the behavior of the continuous systems and ii) generates and consumes
events at the instants when the continuous system interacts with a discrete event one.

There are three possibly outcomes of this lumping process. One possibility is that we end up with a single
assembly. In this case our model is essentially continuous and we are probably better off using a simulation
tool for continuous systems. At the other extreme, we find that the continuous parts of our model are
very simple, yielding to analytical solutions that are easily transformed into discrete event models. Between
these extremes are models with continuous dynamics that are not simple but do not dominate the modeling
problem. The continuous system simulation part of Adevs is aimed at this type of model.

7.1 Differential equation modeling with the ode system class

Models described by ordinary differential equations are implemented by sub-classing the ode system class.
This class has two sets of methods: the first is for the model’s continuous dynamics and the second is for
the model’s discrete event dynamics. I’ll illustrate both with the simple, if somewhat contrived, example of
a cherry bomb1. This bomb is dropped from a height of 1 meter and bounces until it explodes or is doused
with water. We’ll assume that the cherry bomb only bounces up and down and is perfectly elastic. The
cherry bomb explodes 2 seconds from the time it is lit unless doused first. Dousing the cherry bomb puts
out the fuse2. Dousing is a discrete input event and the cherry bomb produces a discrete output event if it
explodes.

1A cherry bomb is a small red firecracker. They are dangerous, and illegal in the United States. Nonetheless, every school

seems to have at least one obnoxious kid who likes to put them into toilets.
2Cherry bomb fuses are frequently water proofed.

59

This model has two continuous state variables: the height and the velocity of the cherry bomb. Between
events, these variables are governed by the pair of differential equations

v̇ = −9.8 (7.1)

ḣ = v (7.2)

where 9.8 meters per second per second is acceleration due to gravity, v is velocity, and h is height. In this
example, it is also useful to know the current time. We keep track of this by adding one more differential
equation

ṫ = 1 (7.3)

whose solution is t0 + t or just t if we set t0 = 0. The ball bounces when it hits the floor, and bouncing
causes the ball’s velocity to change sign. Specifically

h = 0 & v < 0 =⇒ v ← −v (7.4)

where =⇒ is logical implication and ← indicates an assignment.
Equations 7.1, 7.2, and 7.3 are the state variable derivatives, and these equations are implemented in the

der func method of the ode system class. The signature for this method is

void der_func(const double* q, double* dq)

The q pointer is the array of state variable values: h, v, and t. The dq pointer is the array of state variable
derivatives: ḣ, v̇, and ṫ. When the simulator calls der func, it supplies q. In response, the method computes
the values of ḣ, q̇, and ṫ and stores them in the dq array.

Equation 7.4 is a state event condition and it is implemented in two parts. The state event func
method implements the ‘if’ part (left hand side) of the condition. The signature of this method is

void state_event_func(const double *q, double *z)

Again, the supplied q array contains the current state variable values. These are used to evaluate the state
event condition and store the result in the z array. The simulator detects state events by looking for changes
in the sign of the z array entries. Note that the event condition should be continuous in the state variables
on which it depends. In the case of the cherry bomb this is simple to do. We simply use z = h if v < 0 and
z = 1 if v >= 0.

The ‘then’ part (right hand side) is implemented with the internal event method, which the simulator
invokes when the state event condition is true. The signature of this method is

void internal_event(double *q, const bool *state_event)

where the q array contains the value of the state variables at the event. The entries of the array state event
are true for each z in the state event condition array that evaluates to zero. This array therefore has one entry
for each state event condition, and it has one additional entry to indicate time events, which are described
below.

The cherry bomb has one discrete state variable with three possible values: the fuse is lit, the fuse is not
lit, and the bomb is exploded. This variable changes in response to two events. The first event is when the
bomb explodes. This is a time event that we know will occur 2 seconds from the time that the fuse it lit.
The time event func method is used to schedule the explosion by returning the time remaining until the
fuse burns out. The signature of the of this method is

double time_event_func(const double* q)

As before, the q array has the current value of the state variables. The time event func is similar to the ta
method. It is used to schedule autonomous events based on the current value of the model’s state variables.
When this time expires, the simulator calls the internal event method with the last flag in the state event
array set to true.

The second event that can change the state of the fuse is dousing with water. This an external event.
External events occur when input arrives at the model. The external event method implements the
response of the cherry bomb to dousing with water. Its signature is

60

void external_event(double *q, double e, const Bag<X> &xb)

The array q contains the values of the continuous state variables, e is the time since the last discrete event,
and xb is the bag of input. The douse event is an input and it appears in the input bag xb when and if the
event occurs.

As before, it is possible for an external and internal event to coincide. When this happens, the simulator
calls the method confluent event . Its signature is

void confluent_event (double *q, const bool *state_event, const Bag<X> &xb)

and its arguments are as described for the internal and external methods.
The cherry bomb produces an output event when it explodes, and the output func method is used for

this purpose. Its signature is

void output_func(const double *q, const bool *state_event, Bag<X> &yb)

The q and state event arguments are as described for the internal event method, and the bag yb is to be
filled with the model’s output. As with an Atomic model, the output func is always invoked immediately
prior to the internal event and confluent event methods.

All that remains in the implementation is the gc output for collecting garbage, a constructor, and a
method for initializing the continuous state variables. The gc output method works identically to that of
the Atomic class. The constructor for the cherry bomb must call the constructor of its ode system base
class. The signature of this method is

ode_system (int N_vars, int M_event_funcs)

where N vars is the number of entries in the q and dq arrays (i.e., the number of continuous state variables)
and M event funcs is the number of entries in the z and state event arrays (plus one for the time event). For
the cherry bomb, N vars is three and M event funcs is one.

The constructor for the cherry bomb does not initialize the continuous state variables. Instead, the
simulator calls its init method whose signature is

void init(double* q)

where q is an array that should be filled with the initial values for the continuous variables h, v, and t. The
complete implementation of the CherryBomb is listed below.

#include "adevs.h"

#include <iostream>

using namespace std;

using namespace adevs;

// Array indices for the CherryBomb state variables

#define H 0

#define V 1

#define T 2

// Discrete variable enumeration for the CherryBomb

typedef enum { FUSE_LIT, DOUSE, EXPLODE } Phase;

class CherryBomb: public ode_system<string> {

public:

CherryBomb():ode_system<string>(

3, // three state variables including time

1 // 1 state event condition

) {

phase = FUSE_LIT; // Light the fuse!

61

}

void init(double *q) {

q[H] = 1.0; // Initial height

q[V] = 0.0; // Initial velocity

q[T] = 0.0; // Start time at zero

}

void der_func(const double* q, double* dq) {

dq[V] = -9.8;

dq[H] = q[V];

dq[T] = 1.0;

}

void state_event_func(const double* q, double *z) {

// Test for hitting the ground.

if (q[V] < 0.0) z[0] = q[H];

else z[0] = 1.0;

}

double time_event_func(const double* q) {

if (q[T] < 2.0) return 2.0 - q[T]; // Explode at time 2

else return DBL_MAX; // Don’t do anything after that

}

void external_event(double* q, double e, const Bag<string>& xb) {

phase = DOUSE; // Any input is a douse event

}

void internal_event(double* q, const bool* state_event) {

if (state_event[0]) q[V] = -q[V]; // Bounce!

if (state_event[1]) phase = EXPLODE;

}

void confluent_event(double* q, const bool* state_event,

const Bag<string>& xb) {

internal_event(q,state_event);

external_event(q,0.0,xb);

}

void output_func(const double *q, const bool* state_event,

Bag<string>& yb) {

if (state_event[1] && phase == FUSE_LIT)

yb.insert("BOOM!"); // Explode!

}

void postStep(const double* q) {

// Write the current state to std out

cout << q[T] << " " << q[H] << " " << q[V] << " " << phase << endl;

}

// No garbage collection is needed

void gc_output(Bag<string>&){}

// Get the current value of the discrete variable

Phase getPhase() { return phase; }

private:

Phase phase;

};

The CherryBomb itself is not derived from Atomic and so cannot be simulated directly. Rather, it
is given to a Hybrid object, which is a kind of Atomic, that generators the trajectories for the model.
This Hybrid object is used just like any other Atomic model. Input to this Hybrid object triggers an

62

input event for the ode system that is contains. Likewise, output from the ode system becomes output
from the Hybrid object. Most importantly, the hybrid model can be part of any network of discrete event
models.

A Hybrid object is provided with three things when it is constructed. First is the ode system it-
self. Second is an ode solver that produces the model’s continuous trajectories. Adevs has two types of
ode solvers: a corrected euler solver that uses the corrected Euler method and a rk 45 solver that uses a
fourth/fifth order Runge-Kutta method. Third is an event locator that finds the location of state events as
the simulation progresses. Adevs has two these: the linear event locator and bisection event locator.
The code below shows how these are used to create and simulate a Hybrid object.

int main() {

// Create the model

CherryBomb* bomb = new CherryBomb();

// Create the ODE solver for this model. Maximum error

// tolerance at each step is 1E-4 and the maximum

// size of an integration step is 0.01.

ode_solver<string>* ode_solve =

new corrected_euler<string>(bomb,1E-4,0.01);

// Create the event locator for this model. Maximum

// error tolerance for the location of an event in

// the state space is 1E-8.

event_locator<string>* event_find =

new linear_event_locator<string>(bomb,1E-8);

// Create an atomic model that puts all of these

// together to simulate the continuous system.

Hybrid<string>* model =

new Hybrid<string>(bomb,ode_solve,event_find);

// Create and run a simulator for this model

Simulator<string>* sim = new Simulator<string>(model);

while (bomb->getPhase() == FUSE_LIT)

sim->execNextEvent();

delete sim; delete bomb;

return 0;

}

Figure 7.1 shows the cherry bomb’s trajectory from t = 0 to its explosion at t = 2. This plot was
produced using the simulation program listed above. There are two bounce events at t ≈ 0.45 and t ≈ 1.4.
The cherry bomb explodes abruptly at the start of its third descent.

7.2 Modeling hybrid systems with adevs and OpenModelica

The Modelica simulation language and OpenModelica compiler can be used to automatically generate models
in the form described. This has several advantages, among them are:

1. You may be able to reuse large numbers of model components from the Modelica standard library.

2. For very complicated models, the OpenModelica compiler will create code to initialize the system, sort
its equations, generate solutions to algebraic sub-systems, and perform other essential tasks.

3. Modification of the continuous model will be much simpler because the model description is separated
from the problem of its simulation (the latter being handled automatically by the OpenModelica
compiler and runtime system).

63

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

he
ig

ht
 (

m
et

er
s)

time (seconds)

BOOM !

Figure 7.1: A simulation of the cherry bomb model that terminates when the cherry bomb explodes.

To take advantage of the Modelica language, you will need to get and install from source the OpenMod-
elica compiler, which is hosted at http://www.openmodelica.org/. Instructions for building the compiler,
source code for the compiler, and other information on the Modelica language are available from the Open
Modelica group and at the Modelica Associate website https://www.modelica.org/. Instructions for build-
ing the adevs runtime environment for OpenModelica may be found in the README file in the top level of
directory of the adevs package.

The adevs runtime environment for OpenModelica is relatively new, but aims to support most of the
functionality of the standard OpenModelica runtime system with the following important caveats:

1. You may only solve ordinary systems of equations in the form ẋ = f(x, t) or semi-explicit differential-
algebraic equations in the form ẋ = f(x, y, t) subject to g(x, y, t) = 0.

2. Many types of discrete behaviors are not supported. There is explicit support for if and when clauses,
but other discrete functions (e.g., sample statements) should not be relied upon unless they appear in
examples shipped with adevs.

Assuming you have a working compiler, you may generate an adevs model with the command ’omc +s
+simCodeTarget=Adevs myModel.mo’ where myModel.mo is the name of your Modelica model file. The
adevs/examples/modelica directory has several examples of Modelica models and instructions for compiling
them. One such model is shown here to demonstrate the general approach to hybrid modeling with adevs
and OpenModelica. The code and makefiles for this example can be found in the adevs/examples/modelica
directory.

Consider a simple circuit that consists of a voltage source connected to a resistor with its other terminal
grounded (i.e., Voltage source – resistor – ground). The voltage source has a set point Vref that is controlled
discretely. The equation governing the behavior of the voltage source is

v̇ = (Vref − v)1/3

and the current through the resistor is i = v/R. Our Modelica model has Vref as an input. The source of
Vref will be a discrete event model implemented in adevs. The Modelica model ’Circuit.mo’ that describes
this circuit is shown below.

connector Pin

flow Real i;

Real v;

end Pin;

64

http://www.openmodelica.org/
https://www.modelica.org/

partial model OnePin

Pin T;

end OnePin;

partial model TwoPin

Pin T1;

Pin T2;

end TwoPin;

class Resistor extends TwoPin;

parameter Real R(start=1);

equation

T1.v-T2.v = T1.i*R;

T1.i + T2.i = 0;

end Resistor;

class Ground extends OnePin;

equation

T.v = 0;

end Ground;

class VoltageSource extends OnePin;

parameter Real Vref(start=0);

equation

der(T.v) =

if Vref > T.v then (abs(Vref-T.v))^(1.0/3.0)

else -(abs(Vref-T.v))^(1.0/3.0);

initial equation

der(T.v) = 0;

end VoltageSource;

class Circuit

VoltageSource V;

Resistor R;

Ground Gnd;

equation

connect(V.T,R.T1);

connect(R.T2,Gnd.T);

end Circuit;

To compile this model, issue the command ’omc +s +simCodeTarget=Adevs Circuit.mo’. This creates
a C++ class called Circuit. Two files are created that implement this class: Circuit.h and Circuit.cpp. The
header file is the most informative, and an abbreviated listing is shown below.

#ifndef __omc_Circuit_h_

#define __omc_Circuit_h_

#include "adevs.h"

/**

* Define the input and output type of the adevs models.

*/

#ifndef OMC_ADEVS_IO_TYPE

65

#define OMC_ADEVS_IO_TYPE double

#endif

/**

* Simulation code for Circuit

* generated by the OpenModelica Compiler.

*/

class Circuit:

public adevs::ode_system<OMC_ADEVS_IO_TYPE>

{

public:

/**

* Constructor. New state events can be added to the model by

* passing the number of new event conditions to the constructor

* and then extending the state_event_func method. Your state

* events will begin at the index returned by numStateEvents().

*/

Circuit(int extra_state_events = 0);

/// Destructor

~Circuit();

/// Index of the first extra state event

int numStateEvents() const { return 1; }

/**

* These methods are generated by the OpenModelica compiler.

*/

void init(double* q);

void der_func(const double* q, double* dq);

void postStep(const double* q);

void state_event_func(const double* q, double* z);

/**

* These methods may be overridden by any derived class.

*/

virtual void extra_state_event_funcs(double* z){}

double time_event_func(const double* q) { return DBL_MAX; }

void internal_event(double* q, const bool* state_event);

void external_event(double* q, double e,

const adevs::Bag<OMC_ADEVS_IO_TYPE>& xb){}

void confluent_event(double *q, const bool* state_event,

const adevs::Bag<OMC_ADEVS_IO_TYPE>& xb){}

void output_func(const double *q, const bool* state_event,

adevs::Bag<OMC_ADEVS_IO_TYPE>& yb){}

void gc_output(adevs::Bag<OMC_ADEVS_IO_TYPE>& gb){}

/**

* These methods are used to access variables and

* parameters in the modelica model by name.

*/

double get_time() const { return timeValue; }

double get_PVPT$Pv() const { return PVPT$Pv; }

double get_PDERPVPT$Pv() const { return PDERPVPT$Pv; }

double get_$PGnd$PT$Pi() const { return $PGnd$PT$Pi; }

double get_PRPT2$Pv() const { return PRPT2$Pv; }

double get_$PGnd$PT$Pv() const { return $PGnd$PT$Pv; }

66

double get_PVPVref() const { return PVPVref; }

double get_PRPR() const { return PRPR; }

protected:

/**

* Calculate the values of the state and algebraic variables.

* State variables will be initialized to q if provided,

* or left unchanged if not.

*/

void update_vars(const double* q = NULL, bool doReinit = false);

/**

* These methods may be used to change parameters

* and state variables at events. Remember to call

* update_vars(q,true) if you change anything.

*/

void set_PVPT$Pv(double* q, double val) { q[0] = PVPT$Pv=val; }

void set_PVPVref(double val) { PVPVref=val; }

void set_PRPR(double val) { PRPR=val; }

};

#endif

This Circuit class can be used as is or (as I will soon show) be extended to add new, discrete event
dynamics to it. The major features of this class are as follows:

1. The constructor, which lets you add state event functions to the model.

2. The extra state event method that lets you implement the extra state events indicated to the con-
structor.

3. The numStateEvents method that tells you where in the event array your extra state events begin.

4. The set and get methods, which let you read and write the continuous variables and parameters of the
model.

5. The update vars method, which lets you reinitialize the modelica model at discrete events.

6. The event functions (internal, external, etc.) which can be extended to add new discrete event dynam-
ics.

For this example, the circuit class is extended to accept as input discrete changes to Vref and to produce
as output the voltage when Vref is reached. These new behaviors are implemented in a derived class called
CircuitExt, which adds the following:

1. A state event function that triggers on v reaching Vref.

2. An output function that generates v when the state event occurs.

3. An external event function that changes Vref to the value received.

The complete code listing for the derived class is shown below.

/**

* This class extends the Modelica Circuit model to

* add an output when v = Vref and to adjust Vref

* on receiving discrete input.

67

*/

class CircuitExt:

public Circuit

{

public:

CircuitExt():

Circuit(1), // Add one state event to the base class

atVref(false) // Flag to indicate when Vref is reached

{

}

/**

* Compute the extra state event.

*/

void extra_state_event_funcs(double* z)

{

if (!atVref)

z[0] = get_PVPT$Pv()-get_$PV$PVref();

else

z[0] = 1.0;

}

/**

* Indicate that Vref has been reached when that event

* occurs.

*/

void internal_event(double* q, const bool* event_flags)

{

// Apply the internal event function of the base class

Circuit::internal_event(q,event_flags);

// If this is the extra state event, then set atVref to true

if (event_flags[numStateEvents()]) atVref = true;

}

/**

* Change Vref on receiving input.

*/

void external_event(double* q, double e, const Bag<double>& xb)

{

// Apply the external event function of the base class

Circuit::external_event(q,e,xb);

// Set the reference voltage and indicate that we are no longer

// at the reference.

set_PVPVref(*(xb.begin()));

atVref = false;

// Reinitialize the continuous model. This is really only necessary

// if your discrete event may result in new values for the

// state variables (discrete or continuous) of the modelica model.

update_vars(q,true);

}

void confluent_event(double* q, const bool * event_flags,

const Bag<double>& xb)

{

internal_event(q,event_flags);

external_event(q,0.0,xb);

68

}

void output_func(const double* q, const bool* event_flags,

Bag<double>& yb)

{

// If this was the reference being reached, then

// output the current value of the voltage.

if (event_flags[numStateEvents()])

{

yb.insert(get_PVPT$Pv());

cerr << "Reached Vref=" << get_PVPT$Pv()

<< " @ t=" << get_time() << endl;

}

}

void print_state()

{

cout <<

get_time() << " " << // Print the time

get_PVPT$Pv() << " " << // The voltage

get_$PGnd$PT$Pi() << " " << // Current through the resistor

endl;

}

private:

bool atVref;

};

The main function for a simulation of this model is shown below. The main simulation routine injects
an event at t = 1 and runs the simulation for another two seconds to t = 3. A plot of the trajectory for this
model and its input and output events are shown in Fig. 7.2 below.

int main()

{

// Create the circuit

CircuitExt* model = new CircuitExt();

// Create an atomic model to simulate it

Hybrid<OMC_ADEVS_IO_TYPE>* hybrid_model =

new Hybrid<OMC_ADEVS_IO_TYPE>(

model,

new corrected_euler<OMC_ADEVS_IO_TYPE>(model,1E-5,0.01),

new linear_event_locator<OMC_ADEVS_IO_TYPE>(model,1E-5));

// Create the simulator

Simulator<OMC_ADEVS_IO_TYPE>* sim =

new Simulator<OMC_ADEVS_IO_TYPE>(hybrid_model);

model->print_state();

// Simulate to t = 1

while (sim->nextEventTime() <= 1.0)

{

sim->execNextEvent();

model->print_state();

}

// Inject an input

Bag<Event<double> > input_bag;

input_bag.insert(Event<double>(hybrid_model,0.5));

sim->computeNextState(input_bag,1.0);

69

// Simulate from t=1 to t=5

while (sim->nextEventTime() <= 3.0)

{

sim->execNextEvent();

model->print_state();

}

// Done, cleanup

delete sim;

delete hybrid_model;

return 0;

}

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5 3

vo
lts

time

Vref=0.5 Vref reached

Figure 7.2: A simulation of the circuit model.

70

Chapter 8

The Simulator Class

The Simulator class has four functions: to determining the model’s time of next event, to extract output
from the model, to inject input into the model, and to advance the simulation clock. The first function is
implemented by the nextEventTime method with which we are already familiar. I’ll address the other
three functions in turn.

There are two essential steps for extracting output from your model. The first step is to register an
EventListener with the simulator. This is done by creating a subclass of the EventListener and then
passing this object to the Simulator’s addEventListener method. When the EventListener is registered
with the simulator, its outputEvent method intercepts output originating from Atomic and Network
models.

The second step is to invoke the Simulator’s computeNextOutput method, which performs the output
calculations and provides the results to registered EventListeners. The signature of computeNextOutput
is

void computeNextOutput()

and it computes the model output at the time given by the nextEventTime method. The computeNextOut-
put method invokes the output func method of every imminent Atomic model, maps outputs to inputs by
calling the route method of Network models, and calls the outputEvent method of every EventListener
registered with the Simulator. The computeNextOutput method anticipates the output of your model
from its current state assuming that no input events will intervene between now and the time returned by
nextEventTime .

The computeNextState method is used to inject events into a model and advance the simulation clock.
The method signature is

void computeNextState(Bag<Event<X> >& input, double t)

where the Event class is the same one that the EventListener accepts to its outputEvent method. The
Event class has two fields: a pointer to a model of type Devs<X> (i.e., a Network or Atomic model)
and a value of type X.

The computeNextState method applies a bag of Event objects to the model at time t. If the input bag
is empty and t is equal to the next event time, then this method has the same effect as execNextEvent : it
calculates the output values at time t using the computeNextOutput method, computes the next state of
all models undergoing internal and external events, computes structure changes, and advances the simulation
clock.

If the input bag is not empty then the value of each Event is applied as an input to the model pointed
to by that Event. If, in this case, t is equal to the next event time then the method also follows the usual
steps of invoking the computeNextOutput method and calculating state and structure changes. However,
if t is less than the Simulator’s next event time, then the procedure is nearly identical excepting that the

71

computeNextOutput method is not invoked. In this case, the only input events for any model are those
provided in the input bag.

The Simulator’s execNextEvent method does its job using computeNextOutput and computeNextState .
The implementation of execNextEvent has only two lines; the Bag bogus input is empty.

void execNextEvent() {

computeNextOutput();

computeNextState(bogus_input,nextEventTime());

}

The computeNextOutput , computeNextState , and execNextEvent methods throw an exception if
a model violates either of two constraints: i) the time advance is negative and ii) the coupling constraints
described in section 5.1 and illustrated in Figure 5.4 are violated. The Adevs exception class is derived
from the standard C++ exception class. Its method what returns a string that describes the exception
condition and the method who returns a pointer to the model that caused the exception.

The Adevs exception class is intended to assist with debugging simulations. There isn’t much you can
do at run-time to fix a time advance method or reorganize a model’s structure (or fix the structure change
logic), but the simulator tries to identify problems before they become obscure and difficult to find bugs.

72

Chapter 9

Simulation on multi-core computers

Adevs has a ParSimulator class that is designed specifically to take advantage of processors with multiple
cores and shared memory machines with several processors. The parallel simulator is in most respects
identical to the sequential simulator, and this section of the manual therefore focuses on where it is different.

The ParSimulator class is designed specifically for symmetric, shared memory multiprocessors (SMPs).
The multi-core processors that have become ubiquitous in recent years are an important instance of this class
of machines. The software technology that underlies theParSimulator is OpenMP (see http://www.openmp.org),
which is an extension of the C and C++ compilers and runtime systems to support multi-threaded com-
puting. The OpenMP standard is now supported by most (probably all) major compilers: the GNU C++
Compiler and professional editions of Microsoft Visual Studio are important examples (important to me,
that is, because those are what I use for most of my simulation work).

The critical first step, therefore, to using the ParSimulator is to enable the OpenMP extensions for
your compiler. For the GNU C++ compiler, simply add the flag ’-fopenmp’ to your linker and compiler
arguments. For MS Visual Studio, this is a build option. For other compilers and development environments,
see your documentation. Prior to executing a simulation, the maximum number of threads that will be used
by OpenMP (and, therefore, the simulator) can be set with the OMP NUM THREADS environment variable
(this works for the GNU compilers, at least). The default in most cases is to use a number of threads equal
to the number of processors or cores in your computer.

Having enabled the OpenMP options for your compiler, you are ready to start preparing your model to
work with the parallel simulator. As a first step, you can do the following. This example assumes that your
main simulation routine looks something like this:

...

Simulator<IO_Type>* sim = new Simulator<IO_Type>(my_model);

/**

* Register listeners with the Simulator to collect statistics

*

*/

while (sim->nextEventTime() < t_end)

sim->execNextEvent();

...

or this

...

Simulator<IO_Type>* sim = new Simulator<IO_Type>(my_model);

/**

* Register listeners with the Simulator to collect statistics

*

73

http://www.openmp.org

*/

sim->execUntil(t_end);

...

which does the same thing. The reason for this assumption is described in the section on limitations. Note,
however, that any Listeners you have registered with your Simulator instance will work normally (almost,
I’ll get to that).

Assuming you have code like the above, replace it with code like the following:

...

ParSimulator<IO_Type>* sim = new ParSimulator<IO_Type>(my_model);

/**

* Register listeners with the ParSimulator to collect statistics

*

*/

sim->execUntil(t_end);

...

This should work just like your previous code with the following caveats.
First, your models must not share variables. All information exchanged between models must occur via

events at their input and output. Moreover, the order of items in the bags of input received by your model
may change from run to run, though the contents are guaranteed to be the same. Therefore, the repeatability
of your simulation runs depends on your models being insensitive to the order of elements in their input
bags.

Second, reports produced by your listeners may be formatted in ways you do not expect. For any
individual atomic model, the listing of state transitions and output events will be in time order. Across
models, however, this may not be the case. For example, suppose that you have two atomic models arranged
as follows: A-¿B. You may see all state transitions and output for A listed first, followed by all state
transitions and outputs for B. Most likely, these will be intermingled. Note too that the output reported for
network models may not be in its proper time order, though the output reported for its atomic components
will be.

The reason for these orderings is that, though the simulation of each model is done in the proper time
order of its events, the ParSimulator overlaps simulation of models whenever this is possible. In the above
example, it is possible to simulate model A without worrying about what B is doing because B never provides
input to A. The simulator (if properly configured) will take advantage of this to simulate A and B in parallel.
Hence, we may see all of the output from A before we see anything for B. Once again, however, all callbacks
to registered Listeners for any particular atomic model will be in the proper time order.

Note too that this implies that callbacks to your listeners may occur in parallel. In the above example, it
may be that the same listener receives concurrent notifications about a state change for model A and state
change for model B, or output from A and state change of B, or any such combination. It is imperative
therefore that the callbacks in your listeners be thread safe.

This implies also that your network models must have routing methods that are thread safe. This is true
for the network models that are included with Adevs. If you have implemented your own network models,
be sure that their route methods are thread safe.

Third, and most critical, your atomic components must implement the new lookahead method, which
is inherited from the Devs base class. This method must return a positive value subject to the guarantees
described in section 9.2. For the purposes of getting your code to compile and run, your lookahead methods
can simply return a very small value (i.e., something positive but close to zero; say 1E-8 or 1E-9). In this
case, your simulator should compile and (very slowly) execute. Even if you have the patience to wait for it
to complete, however, the outcome will likely be wrong. Nonetheless, such a test will determine if your build
environment is setup properly.

The above changes are sufficient in most cases to make your existing, sequential simulator execute with
the parallel simulator. In summary, these mandatory steps are:

74

1. Replace your Simulator with a ParSimulator.

2. Use the ParSimulator’s execUntil method to advance time.

3. Make sure your Listeners are thread safe.

4. Make sure your Network route methods are thread safe.

5. Implement the lookahead method for your Atomic models.

These steps alone are unlikely to yield an improvement in performance (or, indeed, correct results). As
a general rule, correctly speeding up your simulation requires giving the ParSimulator specific information
about your model; information that only you can provide. Without this information, the synchronization
overhead incurred by the parallel simulation algorithm is staggeringly huge. The majority of this document
deals with the problem of creating parallel simulations that are fast and execute correctly.

9.1 Limits of the parallel simulator

Before continuing any effort to make your simulator work with the algorithms used by the ParSimulator,
you should be aware of specific capabilities of the sequential simulator that the parallel simulator does not
support. These are:

1. The execNextEvent , computeNextState , and computeNextOutput methods are not provided.
Only the execUntil method is provided for advancing the simulation.

2. As noted above, callbacks to a Listener object for each individual atomic model will be given in the
proper time order, but these may be arbitrarily interleaved with the callbacks for other atomic models.

3. Listener callbacks must be made thread safe using the OpenMP synchronization features.

4. The parallel simulator does not support models that change structure. If your models implement their
model transition method, then you cannot use the parallel simulator.

Beyond these purely technical limits, also note that making effective use of this (or any) parallel discrete
event simulator is difficult. Applications of practical interest require the identification of lookahead for the
model’s atomic components, partitioning of the model among the available processors, and implementing
code to enable the parallel simulator to take advantage of your model’s lookahead and partitioning.

So while this guide addresses issues specific to using the ParSimulator class, I strongly recommend
that, if you are not already intimately familiar with parallel simulation, that you obtain a book on the topic.
“Building Software for Simulation”, authored by James Nutaro (the author of this manual) and published
by Wiley in 2010, contains a chapter on conservative discrete event simulation with DEVS in general and
Adevs in particular. You may find this book to be a useful introduction, though there are other excellent
texts on the subject.

9.2 Modifying your models to exploit lookahead

The ParSimulator takes advantage of a property intrinsic to many models: their strong causality. A model,
network or atomic, is strongly causal if its output can be predicted with certainty to some future time without
knowledge of its input. The length of time into the future for which this prediction can be made is called
lookahead.

To illustrate, consider a very simple, atomic model that acts as a transcriber. In the absence of input,
the model neither changes state nor produces output: its time advance is infinite. Upon receiving an input,
the model retains it for exactly one unit of time and then expels it. So, for example, if the input to the
system is the series of letters ’A’, ’B’, and ’C’ at times 1, 2, and 3 respectively, then its output is ’A’, ’B’,

75

and ’C’ at times 2, 3, and 4 respectively. If the model receives an input while transcribing, then that input is
discarded. So, for example, if ’A’, ’B’, and ’C’ arrive at times 2, 2.5, and 3 then the output from the model
is ’A’ and ’C’ at times 3 and 4.

If I know the input to this model until some time t, then I can determine its output until time t+1.
Significantly, I do not need to know its input in the interval from t to t+1. For instance, suppose I know
that the input at time zero is ’A’. Clearly, the only output of the model in the interval 0 to 1 (inclusive) is
the value ’A’ at time 1. Moreover, suppose I know that the input at t=0 is ’A’ and that there is no other
input until at least time 0.5. In this case, I know that the output until (but not including) time 1.5 consists
only of ’A’ at time 1. Any input following time 0.5 cannot occur until, at its earliest, time 1.5. This model
has a lookahead of 1. Given its input to time t, its output is fixed to time t+1. Output in this interval does
not depend on input in the same interval.

In network models, lookahead may accumulate. As an example, suppose that two transcribers are con-
nected in series. In this case, the lookahead of the composite is two; i.e., the sum of the lookaheads of the
components. If, however, a network model comprises two transcribers in parallel, then the lookahead of the
network is only one. Generally speaking, however, larger networks tend to have larger lookaheads, and large
lookahead is essential for getting good performance from the simulator.

To take advantage of lookahead in a model, the simulator must be told that it exists. This is done by
overriding the lookahead method of the Devs class. All atomic and network models inherit this method
from the Devs base class, and its default implementation is to return zero.

Lookahead is most useful to the simulator if it is coupled with a capability to actually calculate the
model’s outputs to this time. To calculate those outputs, however, requires knowledge of the intervening
states. An atomic model enables the simulator to project its output into the future by implementing two
method: beginLookahead and endLookahead .

The beginLookahead method is called to notify the model that further calculations of its outputs and
state transitions are speculative. The default behavior of the beginLookahead method is to throw an
exception, which notifies the simulator that this model does not support projecting its output into the
future. An atomic model overriding this method must be capable of restoring its state variables to the
instant that beginLookahead was called. The endLookahead method is called by the simulator when it is
done projecting that model’s output. This method must restore the model to the same state it was in when
the beginLookahead method was called.

These methods are demonstrated by the Transcribe class shown below. This atomic model implements
the transcriber described above.

/**

* This model copies its input to its output following a

* delay.

*/

class Transcribe:

public adevs::Atomic<char>

{

public:

Transcribe():adevs::Atomic<char>(),ttg(DBL_MAX),to_transcribe(’ ’){}

void delta_int() { ttg = DBL_MAX; }

void delta_ext(double e, const adevs::Bag<char>& xb)

{

if (ttg == DBL_MAX)

{

ttg = 1.0;

// Find the largest input value

adevs::Bag<char>::const_iterator iter = xb.begin();

to_transcribe = *iter;

for (; iter != xb.end(); iter++)

76

{

if (to_transcribe < *iter) to_transcribe = *iter;

}

}

else ttg -= e;

}

void delta_conf(const adevs::Bag<char>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

void output_func(adevs::Bag<char>& yb)

{

yb.insert(to_transcribe);

}

double ta() { return ttg; }

void gc_output(adevs::Bag<char>&){}

double lookahead() { return 1.0; }

void beginLookahead()

{

// Save the state

chkpt.ttg = ttg;

chkpt.to_transcribe = to_transcribe;

}

void endLookahead()

{

// Restore the state

ttg = chkpt.ttg;

to_transcribe = chkpt.to_transcribe;

}

char getMemory() const { return to_transcribe; }

private:

double ttg;

char to_transcribe;

struct checkpoint_t { double ttg; char to_transcribe; };

checkpoint_t chkpt;

};

A model comprising two transcribers connected in series is defined as follows.

/**

* This model defines a pair of transcribers connected

* in series as shown: -> t1 -> t2 ->.

*/

class Series:

public adevs::Network<char>

{

public:

Series():

Network<char>(),

t1(),t2()

{

t1.setParent(this);

77

t2.setParent(this);

}

void getComponents(adevs::Set<adevs::Devs<char>*>& c)

{

c.insert(&t1);

c.insert(&t2);

}

void route(const char& x, adevs::Devs<char>* model,

adevs::Bag<adevs::Event<char> >& r)

{

adevs::Event<char> e;

e.value = x;

if (model == this) e.model = &t1;

else if (model == &t1) e.model = &t2;

else if (model == &t2) e.model = this;

}

double lookahead()

{

return t1.lookahead()+t2.lookahead();

}

private:

Transcribe t1, t2;

};

The above code examples illustrate all possible changes to your models - network and atomic - that might
be needed to facilitate parallel simulation. Of these changes, only the lookahead method of the atomic model
is actually required. The ParSimulator calculates default (and very conservative) lookaheads for the Net-
work models if these are required. Atomic models that provide the endLookahead and beginLookahead
methods may improve the execution time of the simulation. But only the lookahead values of the atomic
models (or their parent if the model is partitioned by hand; see the next section) are actually required for
correct execution.

9.3 Partitioning your model

Each thread in your simulator is assigned to the execution of a subset of the atomic components of your
model. Models within a thread are executed sequentially. This simulation proceeds just as with the sequential
Simulator class. The threads execute in parallel, each stopping to synchronize with its neighbors only as
necessary to exchange essential information.

In an ideal partitioning of the model, each thread is assigned roughly the same number of models, each
model requires roughly the same amount of computational effort, and models assigned to separate threads
rarely exchange inputs and outputs. This is the ideal that you should strive for in assigning your models to
threads.

The actual assignment of a model to a thread is straightforward. Network and Atomic objects inherit
the setProc method from their Devs base class. To assign the model to a particular thread, pass the
number of that thread to the setProc method before the ParSimulator is created. Threads are numbered
from 0 to the maximum number of threads (i.e., OMP NUM THREADS) minus one.

As the ParSimulator setups the simulation, it examines the thread to which each model is assigned and
take the following actions:

1. If the model’s parent is assigned to thread k, then the model is also assigned to thread k, regardless of
the argument passed to its setProc method.

78

2. If the model’s parent was not assigned to specific thread, then the model will be assigned to the thread
indicated by argument to its setProc method.

3. If neither the model nor its parent were assigned to a thread by calling the setProc method, then the
model is assigned to a thread selected at random.

This partitioning of the model tells the simulator how to distribute its computational workload. It does
not tell the simulator which parts of the workload communicate with each other. For example, if half of
your model is assigned to thread 0 and the other half to thread 1, the simulator does not yet know if the
models in 0 send input to the models in 1, vice versa, or both. Without further information, the simulator
assumes that every thread contains models that must communicate with all other threads. This is the most
conservative assumption, and it imposes a substantial synchronization overhead.

If you know something about how the models assigned to the threads communicate, then you can provide
this information to the simulator. This is done by passing a LpGraph object to the constructor of the
ParSimulator. The LpGraph is a directed graph and the presence of an edge from node k to node j
indicates that the models in thread k send input to the models in thread j. Absence of an edge indicates no
flow of information along the missing edge. An edge is added to the LpGraph by calling its addEdge(A,B)
method. This creates an edge from thread A to thread B.

The following snippet of code illustrates the partitioning procedure. This segment of code creates the
block diagram model shown in Fig. 9.1. This model consists of two atomic components, A and B, and a
network with two components C1 and C2. The model A is assigned to thread 0, B to thread 1, and the
network C with its components C1 and C2 to thread 2. With this partition, thread 0 sends input to thread
1, thread 1 sends input to thread 2, and thread 2 to thread 0.

ModelA* A = new ModelA();

ModelB* B = new ModelB();

NetworkModelC* C = new NetworkModelC();

SimpleDigraph<IO_Type>* model = new SimpleDigraph<IO_Type>();

model.add(A);

model.add(C);

model.add(B);

model.couple(A,B);

model.couple(B,C);

model.couple(C,A);

A.setProc(0);

B.setProc(1);

C.setProc(2);

LpGraph lpg;

lpg.addEdge(0,1);

lpg.addEdge(1,2);

lpg.addEdge(2,3);

ParSimulator<IO_Type> sim(model,lpg);

9.4 Partitioning and lookahead

In a large model with an explicit partitioning, it is not required that every model provide a lookahead value.
The following rules dictate which models must provide positive lookahead.

1. An atomic model whose parent is not assigned to a specific thread must provide a positive lookahead.

2. A network that is assigned to a specific thread, but whose parent is not, must provide a positive
lookahead.

79

C2

C1

BA

C

Thread 0 Thread 1 Thread 2

Figure 9.1: Partitioning a model for simulation on three processors.

3. No other model is required to provide a positive lookahead, or indeed any lookahead at all. The
simulator will not use lookahead values provided by models except as indicated in cases 1 and 2 above.

9.5 A complete example

This example builds and simulates the network shown in Fig. 9.1 using the Transcribe model for compo-
nents B, C1, and C2 and a SimpleDigraph for the network C. The network that is component A has two
sub-components: a generator and a transcriber. Input to the network goes to the generator. Output from
the generator goes to the transcriber, and output from the transcriber becomes an output from the network.

The generator operates as follows. It produces output at regular intervals of 1/2 units of time until it
receives an input. At that time it stops. Note that the lookahead of the generator is zero because its pending
output may be canceled at any time. The lookahead of the network, however, is one. That is, the lookahead
of the network is the sum of its series components.

A Listener is constructed for this model to record the state and output trajectories of every component.
This listener is made thread safe by the critical section placed around writes to standard output. It reports
state and output trajectories for each atomic model in proper time order, but interleaves the trajectories of
these models with each other.

The complete implementation of the model, listener, and simulator are shown below.

#include "Transcribe.h"

#include "Genr.h"

#include "adevs.h"

#include <iostream>

using namespace adevs;

using namespace std;

/**

* Extend the SimpleDigraph class to allow its lookahead

* to be set manually.

*/

class SimpleDigraphWithLookahead:

public SimpleDigraph<char>

{

80

public:

SimpleDigraphWithLookahead():

SimpleDigraph<char>(),

look_ahead(0.0)

{

}

void setLookahead(double look_ahead)

{

this->look_ahead = look_ahead;

}

double lookahead() { return look_ahead; }

private:

double look_ahead;

};

/**

* Listener to record the output and state trajectories of the

* component models.

*/

Genr* A_g;

Transcribe *A_t, *B, *C1, *C2;

SimpleDigraphWithLookahead *A, *C;

class Listener:

public EventListener<char>

{

public:

Listener(){}

void outputEvent(Event<char> y, double t)

{

string which = which_model(y.model);

#pragma omp critical

cout << which << " @ t = " << t << ", y(t)= " << y.value << endl;

}

void stateChange(Atomic<char>* model, double t)

{

if (model == A_g)

#pragma omp critical

cout << which_model(A_g) << " @ t = " << t << ", running= "

<< A_g->isRunning() << ", next output= " <<

A_g->getNextOutput() << endl;

else if (model == A_t)

#pragma omp critical

cout << which_model(A_t) << " @ t = " << t << ", memory= "

<< A_t->getMemory() << ", ta()= " <<

A_t->ta() << endl;

else if (model == C1)

#pragma omp critical

cout << which_model(C1) << " @ t = " << t << ", memory= "

<< C1->getMemory() << ", ta()= " <<

C1->ta() << endl;

else if (model == C2)

81

#pragma omp critical

cout << which_model(C2) << " @ t = " << t << ", memory= "

<< C2->getMemory() << ", ta()= " <<

C2->ta() << endl;

else if (model == B)

#pragma omp critical

cout << which_model(B) << " @ t = " << t << ", memory= "

<< B->getMemory() << ", ta()= " <<

B->ta() << endl;

else assert(false);

}

private:

string which_model(Devs<char>* model)

{

if (model == A_g) return "A.A_g";

if (model == A_t) return "A.A_t";

if (model == A) return "A";

if (model == B) return "B";

if (model == C1) return "C.C1";

if (model == C2) return "C.C2";

if (model == C) return "C";

assert(false);

return "";

}

};

int main(int argc, char** argv)

{

// Component A

A_g = new Genr();

A_t = new Transcribe();

A = new SimpleDigraphWithLookahead();

A->setLookahead(A_t->lookahead()+A_g->lookahead());

A->add(A_g);

A->add(A_t);

A->couple(A,A_g); // A -> A_g

A->couple(A_g,A_t); // A_g -> A_t

A->couple(A_t,A); // A_t -> A

A->setProc(0); // Assign to thread zero

// Component B

B = new Transcribe();

B->setProc(1); // Assign to thread one

// Component C

C1 = new Transcribe();

C2 = new Transcribe();

C = new SimpleDigraphWithLookahead();

C->setLookahead(C1->lookahead()+C2->lookahead());

C->add(C1);

C->add(C2);

C->couple(C,C1); // C -> C1

C->couple(C2,C); // C2 -> C

C->couple(C1,C2); // C1 -> C2

82

C->couple(C2,C1); // C2 -> C1

C->setProc(2); // Assign to thread two

// Create the overarching model

SimpleDigraph<char>* model = new SimpleDigraph<char>();

model->add(A);

model->add(B);

model->add(C);

model->couple(A,B);

model->couple(B,C);

model->couple(C,A);

// Create the corresponding LPGraph

LpGraph lpg;

lpg.addEdge(0,1);

lpg.addEdge(1,2);

lpg.addEdge(2,0);

// Create the simulator

ParSimulator<char>* sim = new ParSimulator<char>(model,lpg);

// Register the listener

Listener* listener = new Listener();

sim->addEventListener(listener);

// Run the simulation until t=10

sim->execUntil(10.0);

// Cleanup and exit

delete sim;

delete listener;

delete model;

return 0;

}

A subset of the output produced by this simulation is shown below. The intermingling of reported events
in time is immediately apparent.

...

C.C2 @ t = 7.5, y(t)= G

C @ t = 7.5, y(t)= G

C.C1 @ t = 7.5, y(t)= I

C.C2 @ t = 7.5, memory= I, ta()= 1

C.C1 @ t = 7.5, memory= G, ta()= 1

C.C1 @ t = 8.5, y(t)= G

C.C2 @ t = 8.5, y(t)= I

C @ t = 8.5, y(t)= I

C.C1 @ t = 8.5, memory= I, ta()= 1

C.C2 @ t = 8.5, memory= G, ta()= 1

A.A_g @ t = 7.5, running= 0, next output= I

A.A_g @ t = 8.5, running= 0, next output= I

A.A_g @ t = 9.5, running= 0, next output= I

C.C1 @ t = 9.5, y(t)= I

C.C2 @ t = 9.5, y(t)= G

C @ t = 9.5, y(t)= G

C.C1 @ t = 9.5, memory= G, ta()= 1

C.C2 @ t = 9.5, memory= I, ta()= 1

...

However, a search for just the events for model C1 gives the expected result: all of its events are listed

83

in their proper time order. Specifically, the command ’grep C2 output’, where ’output’ is the file with the
results of the simulation, yields the following:

C.C2 @ t = 3.5, memory= A, ta()= 1

C.C2 @ t = 4.5, y(t)= A

C.C2 @ t = 4.5, memory= C, ta()= 1

C.C2 @ t = 5.5, y(t)= C

C.C2 @ t = 5.5, memory= E, ta()= 1

C.C2 @ t = 6.5, y(t)= E

C.C2 @ t = 6.5, memory= G, ta()= 1

C.C2 @ t = 7.5, y(t)= G

C.C2 @ t = 7.5, memory= I, ta()= 1

C.C2 @ t = 8.5, y(t)= I

C.C2 @ t = 8.5, memory= G, ta()= 1

C.C2 @ t = 9.5, y(t)= G

C.C2 @ t = 9.5, memory= I, ta()= 1

So too for the output of model ’A g’, which is shown below:

A.A_g @ t = 0.5, y(t)= A

A.A_g @ t = 0.5, running= 1, next output= B

A.A_g @ t = 1, y(t)= B

A.A_g @ t = 1, running= 1, next output= C

A.A_g @ t = 1.5, y(t)= C

A.A_g @ t = 1.5, running= 1, next output= D

A.A_g @ t = 2, y(t)= D

A.A_g @ t = 2, running= 1, next output= E

A.A_g @ t = 2.5, y(t)= E

A.A_g @ t = 2.5, running= 1, next output= F

A.A_g @ t = 3, y(t)= F

A.A_g @ t = 3, running= 1, next output= G

A.A_g @ t = 3.5, y(t)= G

A.A_g @ t = 3.5, running= 1, next output= H

A.A_g @ t = 4, y(t)= H

A.A_g @ t = 4, running= 1, next output= I

A.A_g @ t = 4.5, y(t)= I

A.A_g @ t = 4.5, running= 0, next output= I

A.A_g @ t = 5.5, running= 0, next output= I

A.A_g @ t = 6.5, running= 0, next output= I

A.A_g @ t = 7.5, running= 0, next output= I

A.A_g @ t = 8.5, running= 0, next output= I

A.A_g @ t = 9.5, running= 0, next output= I

So the individual traces for these components appear in the proper order in the output, but they are
intermingled in an arbitrary way.

9.6 Managing memory across thread boundaries

Because the atomic models in a simulator are executed at different rates, it often happens that an output
object produced by a model in one thread will be used at some later time by models in another thread. To
manage the memory associated with these output objects, it is necessary for the simulator to be able to
determine when any such object can be safely deleted. This is done most easily when every thread has its
own copy of the object, and the MessageManager interface is used by the simulator for this purpose.

84

If your input and output types are primitive objects (ints, chars, etc.) or simple structure, then the
default approach to memory management is sufficient. Indeed, the default memory manager should be
sufficient for any types of objects for which the compiler’s default copy constructor and assignment operator
produce deep copies. If you are passing pointers to complex objects or objects that use their own internal
scheme for managing memory (e.g., that use copy on write semantics, reference counting, etc.), then you will
need to build a custom memory manager. The MessageManager interface is used for this purpose, and
your custom MessageManager is provided to the ParSimulator as the final argument to its constructor.

The MessageManager has two virtual methods that must be overridden by any derived class. The first
is the clone method, which has the signature

X clone(X& value)

where X is the type of object that your simulator uses for input and output. This method must create and
return a deep copy of the value. The second method is destroy , and it has the signature

void destroy(X& value)

where X is as before. This method must free the memory associated with the value.

The implementation of the default memory manager is as follows:

template <typename X> class NullMessageManager:

public MessageManager<X>

{

public:

/// Uses the objects default copy constructor

X clone(X& value) { return value; }

/// Takes no action on the value

void destroy(X& value){}

};

To illustrate the construction of a new MessageManager, the implementation below is for a model that
uses C style strings (i.e., null terminate arrays of characters) for input and output. The clone method
allocates memory for a string and then copies to it the contents of the value. The destroy method frees the
memory allocated for the string.

class CStringMessageManager:

public adevs::MessageManager<char*>

{

public:

char* clone(char* & value)

{

char* new_string = new char[strlen(value)];

strcpy(new_string,value);

return new_string;

}

void destroy(char* & value)

{

delete [] value;

}

};

If this message manager were supplied to the simulator in the example of the previous section, then the
ParSimulator would be constructed as follows:

85

. . .

CStringMessageManager* msg_mngr = new CStringMessageManager();

ParSimulator<char*>* sim = new ParSimulator<char*>(model,lpg,msg_mngr);

. . .

The simulator would then use the supplied message manager for handling input and output objects that
exist simultaneously in the simulator’s many threads.

9.7 Notes on repeatability and performance

If your model and simulator have been setup properly then the outcomes produced by the parallel and
sequential simulators will be identical. To this end, keep the following rules in mind:

1. Models must not shared variables.

2. The state transition functions of your models must not depend on the order of items in their input
bag.

3. Listeners must be thread safe.

4. Listeners must not expect events to be reported in a global time order. Only the events associated with
individual atomic models will be reported in their proper order. All other events will be interleaved in
time.

In general you should not expect to speedup relatively small simulations by use of the parallel simulator.
Rather, its purpose is chiefly to enable your model to grow in its size, complexity, or both without a
corresponding increase in execution time. With this in mind, to achieve good execution times requires the
following.

1. The size of the model must be sufficient to keep all of your processors busy all of the time with useful
work. Moreover, the amount of useful work to be done by each processor must substantially exceed
the overhead of parallel simulation algorithm.

2. Your model must have parallelism that the parallel algorithm can exploit. In practice, this means
that your model must be partitioned to both maximize the lookahead of the network assigned to each
processor and to minimize the communication between processors.

86

Chapter 10

Models with Many Input/Output
Types

It would be surprising if every component in a large model had the same input and output requirements.
Some models can be satisfactorily constructed with a single type of input/output object and, if this is the
case, it will simplify the design of your simulator. If not, you’ll need to address this problem when you design
your simulation program.

One solution to this problem is to establish a base class for all input and output types, and then to derive
specific types from the common base. The simulator and all of its components exchange pointers to the
base class and downcast objects as needed. The C++ dynamic cast operator is particularly useful for this
purpose. Although it is not without its problems, I have used this solution in many designs and it works
well.

It is not always possible for every component in a model to share a common base class for its input
and output type. This can happen if different sub-model have very different input and output needs or
when models from earlier projects are reused. For example, to use a CellSpace model as a component of
a Digraph model requires some means of converting CellEvent objects into the PortValue objects. A
solution to this problem is to use the Simulator and EventListener classes to wrap a model with one
input and output type inside of an atomic model with a different input and output type.

The ModelWrapper class is an Atomic model that encapsulates another model. The encapsulated
model can be a Network or Atomic model. The ModelWrapper uses input/output objects of type
ExternalType while the encapsulated class uses input/output objects of type InternalType. Two abstract
methods are provided for converting objects with one type into objects with the other type. These methods
are

void translateInput(const Bag<ExternalType>& external_input, Bag<Event<InternalType> >& internal_input)

void translateOutput(const Bag<Event<InternalType> >& internal_output, Bag<ExternalType>& external_output)

The cleanup of converted objects is managed with the gc output method, which is inherited from the
ModelWrapper’s Atomic base class, plus a new gc input method to cleanup objects created by the
translateInput method: its signature is

void gc_input(Bag<Event<InternalType> >& g)

The model to encapsulate is passed to the constructor of the ModelWrapper. The ModelWrapper
creates a Simulator for the model that is used to control its evolution. The ModelWrapper is a simulator
inside of a model inside of a simulator! The ModelWrapper keeps track of the wrapped model’s last event
time, and it uses this information and the Simulator’s nextEventTime method to compute its own time
advance. Internal, external, and confluent events cause the WrappedModel to invoke its Simulator’s
computeNextState method and thereby advance the state of the wrapped model. Internal events are

87

simplest. The computeNextState method is invoked with the wrapped model’s next event time and an
empty input bag.

The delta conf and delta ext methods must convert the incoming input events, which have the type
ExternalType, into input events for the wrapped model, which have the type InternalEvent. This is accom-
plished with the translateInput method. The first argument to this method is the input bag passed to
the ModelWrapper’s delta ext or delta conf method. The second argument is an empty bag that the
method implementation must fill. When the translateInput method returns this bag will be passed to the
computeNextState method of the ModelWrapper’s simulator. Notice that the internal input argument
is a Bag filled with Event objects. If the wrapped model is a Network then the translated events can be
targeted at any of the network’s components. The ModelWrapper invokes the gc input method when it
is done with the events in the internal input bag. This gives you the opportunity to delete objects that you
created when translateInput was called.

A similar process occurs when the ModelWrapper’s output func method is invoked, but in this case
it is necessary to convert output objects from the wrapped model, which have type InternalType, to output
objects from the ModelWrapper, which have type ExternalType. This is accomplished by invoking the
translateOutput method. The method’s first argument is the bag of output events produced collectively
by all of the wrapped model’s components. Notice that the contents of the internal output bag are Event
objects. The model field points to the component of the wrapped model (or the wrapped model itself) that
produced the event and the value field contains an output object produced by that model. These Event
objects must be converted to objects of type ExternalType and stored in the external output bag. The
external output bag is, in fact, the bag passed to the wrapper’s output func, and so its contents become
the output objects produced by the wrapper. The gc output method is used in the usual way to clean up
any objects created by this process.

The Wrapper class shown below illustrates how to use the WrapperModel class. The Wrapper is
derived from the WrapperModel and implements its four virtual methods: translateInput , translate-
Output , gc input , and gc output . This class wraps an Atomic model that uses int* objects for input and
output. The Wrapper uses C strings for its input and output. The translation methods convert integers
to strings and vice versa. The Wrapper can be used just like any Atomic model: it can be a component
in a network model or simulated by itself. The behavior of the Wrapper is identical to the model it wraps.
The only change is in the interface.

// This class converts between char* and int* event types.

class Wrapper: public adevs::ModelWrapper<char*,int*> {

public:

Wrapper(adevs::Atomic<int*>* model):

// Pass the model to the base class constructor

adevs::ModelWrapper<char*,int*>(model){}

void translateInput(const adevs::Bag<char*>& external,

adevs::Bag<adevs::Event<int*> >& internal) {

// Iterate through the incoming events

adevs::Bag<char*>::const_iterator iter;

for (iter = external.begin(); iter != external.end(); iter++) {

// Convert each one into an int* and send it to the

// wrapped model

adevs::Event<int*> event;

// Set the event value

event.value = new int(atoi(*iter));

// Set the event target

event.model = getWrappedModel();

// Put it into the bag of translated objects

internal.insert(event);

}

88

}

void translateOutput(const adevs::Bag<adevs::Event<int*> >& internal,

adevs::Bag<char*>& external) {

// Iterate through the incoming events

adevs::Bag<adevs::Event<int*> >::const_iterator iter;

for (iter = internal.begin(); iter != internal.end(); iter++) {

// Convert the incoming event value to a string

char* str = new char[100];

sprintf(str,"%d",*((*iter).value));

// Put it into the bag of translated objects

external.insert(str);

}

}

void gc_output(adevs::Bag<char*>& g) {

// Delete strings allocated in the translateOutput method

adevs::Bag<char*>::iterator iter;

for (iter = g.begin(); iter != g.end(); iter++)

delete [] *iter;

}

void gc_input(adevs::Bag<adevs::Event<int*> >& g) {

// Delete integers allocated in the translateInput method

adevs::Bag<adevs::Event<int*> >::iterator iter;;

for (iter = g.begin(); iter != g.end(); iter++)

delete (*iter).value;

}

};

89

90

Chapter 11

Alternate types for time

The second template argument for the simulator and model classes is used to select an alternate represen-
tation of time for your simulation. The default type for time is double. This may be replaced with the
primitive types int or the Adevs class double fcmp by supplying those as the second template argument.
If you want to use your own class for time, it must support the following:

1. Default constructor, copy constructor, and assignment operator.

2. All addition and subtraction operators.

3. All comparison operators.

4. A method adevs inf that returns a value for infinity.

5. A method adevs zero that returns a value for zero.

6. A method adevs sentinel that returns a value less than zero.

The three methods adevs inf , adevs zero, and adevs sentinel must be template functions defined as
follows (these examples are for using the int primitive for time).

template <> inline int adevs_inf() {

return std::numeric_limits<double>::max(); }

template <> inline int adevs_zero() { return 0; }

template <> inline int adevs_sentinel() { return -1; }

91

92

Chapter 12

Random Numbers

Adevs has two classes that work together to generate random numbers. These classes are the random seq
class and the rv class. The random seq class provides uniformly distributed random numbers to the rv
class. The rv class transforms these uniform random numbers into a variety of random number distributions.

The random seq class is the interface for a random number generator. Its derived classes produce
uniformly distributed pseudo-random numbers. The underlying random number stream is accessed with two
methods. The method next long returns a random number as an unsigned long. The method next dlb
refines the next long method by reducing that random number to a double precision number in the interval
[0, 1]. The random number sequence is initialized with the set seed method, and the entire random number
generator can be copied with the copy method. To summarize, the random seq class has four virtual
methods

void set_seed(unsigned long seed)

double next_dbl()

random_seq* copy() const

unsigned long next_long()

that must be implemented by any derived class.
Adevs comes with two implementations of the random seq class: the crand class and the mtrand class.

The crand class uses the rand function from the standard C library to implement the required methods. Its
implementation is trivial. I’ve listed it below as an example of how to implement the random seq interface.

class crand: public random_seq {

public:

/// Create a generator with the default seed

crand(){}

/// Create a generator with the given seed

crand(unsigned long seed) { srand (seed); }

/// Set the seed for the random number generator

void set_seed(unsigned long seed) { srand (seed); }

/// Get the next double uniformly distributed in [0, 1]

double next_dbl() { return (double)rand()/(double)RAND_MAX; }

/// Copy the random number generator

unsigned long next_long() { return (unsigned long)rand(); }

random_seq* copy() const { return new crand (); }

/// Destructor

~crand(){}

};

93

The mtrand class implements the Mersenne Twister random number generator1. This code is based on
their open source implementation of the Mersenne Twister. Aside from its potential advantages as a random
number generator, the mtrand class differs from the crand class by its ability to make deep copies. Every
instance of the mtrand class has its own random number stream.

The rv class uses the uniform random numbers provided by a random seq object to produce several dif-
ferent random number distributions: triangular, uniform, normal, exponential, lognormal, Poisson, Weibull,
binomial, and many others. Every instance of the rv class is created with a random seq. The default is
an mtrand object, but any type of random seq object can be passed to the rv constructor. The different
random distributions are sampled by calling the appropriate method: triangular for a triangular distribu-
tion, exponential for an exponential distribution, poisson for a Poisson distribution, etc. Because Adevs
is open source software, if a new distribution is needed then you can add a method that implements it to
the rv class (and, I hope, contribute the expansion to the Adevs project).

1M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random

Number Generator”, ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pgs. 3-30.

94

Chapter 13

Interpolation

Data is often made available as a set of tabulated points. Hourly temperature data, millisecond samples of
voltage in an electric circuit, and the minute by minute record of a radar track are examples of continuous
signals recorded at discrete points in time. But if you need temperate data every half hour, the circuit
voltage a fractions of a millisecond, or radar tracks at quarter minutes then a method for approximating
values between tabulated points is very useful. The InterPoly class exists for this purpose.

The InterPoly class approximates a continuous signal by fitting a polynomial to the available data
points. The approximating polynomial passes through every available data point, and in many cases it
provides a reasonable approximation to the original signal between the available data points. The most
familiar example of an interpolating polynomial is a line that connects two data points (t1, x1) and (t2, x2).
The connecting line is

p(t) =
t− t2
t1 − t2

x1 +
t− t1
t2 − t1

x2

and it is easy to check that p(t1) = x1 and p(t2) = x2. If more data points are available then quadratic, cubic,
quartic, and even higher degree polynomials can be used to obtain (in principle) a better approximation.

An interpolating polynomial can be constructed with the InterPoly class in three ways. The first way
is to provide the sample data to the InterPoly constructor

InterPoly(const double* u, const double* t, unsigned int n)

where u is the array of data values, t is the array of time points, and n is the number of points (i.e., the size
of the u and t array). The constructor builds an n− 1 degree polynomial that fits the supplied data.

The second way is to supply just the data values, a time step, the first time value, and number of data
points to the constructor

InterPoly(const double* u, double dt, unsigned int n, double t0 = 0.0)

where u is the array of data values, dt is the time spacing of the data points, n is the number of data points,
and t0 is the time instant of the first data point (i.e., the data point i is at time t0 + i · dt). Both of these
constructors make copies of the supplied arrays, and changes to the array values will not be reflected by the
InterPoly object.

The third way is to assign new data point values to an existing polynomial by calling the InterPoly
method

void setData(const double* u, const double* t = NULL)

where u is the new set of data values and the optional t array is the new set of time points. This method
requires that the number of data points in u (and t if used) be equal to the number of points supplied to
the InterPoly constructor.

There are three methods for computing interpolated values: the interpolate method, the overloaded
operator(), and the derivative method. The method signatures are

95

double interpolate(double t) const

double operator()(double t) const

double derivative(double t) const

The interpolate method and operator() method give the value of the interpolating polynomial at the time
point t. The derivative method gives the value of the first time derivative of the interpolating polynomial,
which may be used as an approximation of the first time derivative of the original function. For example, if
the data describes the position of an object through time then the derivative method gives an approximation
of the object’s velocity.

To demonstrate the InterPoly class and give you a sense of what the interpolating polynomials look like,
I’ve listed below a program that computes sin(t), its time derivative cos(t), and interpolated approximations
of both. Interpolating polynomials built with 4, 5, and 6 data point in the interval [0, 2π] are illustrated in
Figs. 13.1 and 13.2. The quality of the approximation generally improves as more data points are added,
but the function and interpolating polynomial diverge significantly outside of the interval spanned by the
data points. Be careful if you extrapolate!

#include "adevs.h"

#include <cmath>

#include <iostream>

using namespace std;

int main(int argc, char** argv) {

// Get the number of data points to use and allocate

// memory for the data points arrays

int N = atoi(argv[1]);

double* t = new double[N];

double* u = new double[N];

// Compute data points using the sin function

for (int i = 0; i < N; i++) {

t[i] = i*(2.0*3.14159/(N-1));

u[i] = sin(t[i]);

}

// Create the interpolating polynomial

adevs::InterPoly p(u,t,N);

// The data arrays can be deleted now

delete [] t; delete [] u;

// Compute several points with sin, its derivative, and the polynomial

// inside and a little beyond the interval spanned by the data

for (double t = 0; t < 2.0*3.14159+0.5; t += 0.01)

cout << t

<< " " << sin(t) << " " << p(t)

<< " " << cos(t) << " " << p.derivative(t)

<< endl;

// Done

return 0;

}

96

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

t

sin(t)
4 points
5 points
6 points

Figure 13.1: The function sin(t) and some interpolating polynomials with data spanning the interval [0, 2π].

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

t

cos(t)
4 points
5 points
6 points

Figure 13.2: The time derivative of sin(t) and the time derivative of some interpolating polynomials with
data spanning the interval [0, 2π].

97

	About this manual
	Building and Installing
	Modeling and simulation with Adevs
	Atomic Models
	Network Models
	Parts of a Network Model
	The route method
	The getComponents method
	Illegal networks

	Simulating a Network Model
	A complete example of a network model
	Digraph Models
	Cell Space Models

	Variable Structure Models
	Building and Simulating Variable Structure Models
	A Variable Structure Example

	Continuous Models
	Differential equation modeling with the ode_system class
	Modeling hybrid systems with adevs and OpenModelica

	The Simulator Class
	Simulation on multi-core computers
	Limits of the parallel simulator
	Modifying your models to exploit lookahead
	Partitioning your model
	Partitioning and lookahead
	A complete example
	Managing memory across thread boundaries
	Notes on repeatability and performance

	Models with Many Input/Output Types
	Alternate types for time
	Random Numbers
	Interpolation

