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Abstract
Migration of vascular smooth muscle cells is a fundamental
process in the development of intimal hyperplasia, a precur-
sor to development of cardiovascular disease and a potential
response to injury of an arterial wall. Boyden chamber exper-
iments are used to quantify the motion of cell populations in
response to a chemoattractant gradient (i.e., cell chemotaxis).
We are developing a mathematical model of cell migration
within the Boyden chamber, while simultaneously conduct-
ing experiments to obtain parameter values for the migration
process. In the future, the model and parameters will be used
as building blocks for a detailed model of the process that
causes intimal hyperplasia. The cell migration model pre-
sented in this paper is based on the notion of a cell as a mov-
ing sensor that responds to an evolving chemoattractant gra-
dient. We compare the results of our three-dimensional hybrid
model with results from a one-dimensional continuum model.
Some preliminary experimental data that is being used to re-
fine the model is also presented.

1 INTRODUCTION
This paper introduces an individual cell migration model

that is based on the notion of a cell as a moving sensor. In
this model, each cell is assumed to move constantly at a fixed
speed. The cells live in a solution that contains a chemical
attractant, and cells tend to move towards stronger attrac-
tant concentrations. This is accomplished by sensing the local
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concentration gradient.
A relatively simple and very intuitive sensor model is used

to reproduce several essential features of observed cell migra-
tion paths (see, e.g., (Maheshwari and Lauffenburger 1998;
Tranquillo 1990)). The cell sensor apparatus is described by
two parameters; sampling frequency and filter gain. A cell
can change direction when it acquires a new sample, and it
moves in a constant direction between sampling instants. The
filter gain amplifies the perceived gradient at the cell location,
in effect boosting the gradient signal to noise ratio. The cell
always moves in the direction of the perceived gradient.

New locations for individual cells are calculated at the sam-
pling instants. Cell positions in between sampling events can
be easily determined by following the cell’s velocity vector
from its last computed position. The diffusion of the chemoat-
tractant is simulated in tandem with the discrete event migra-
tion model using the approach described in (Nutaro, Kuru-
ganti, and Shankar 2007). New concentrations are computed
as needed using a variable time step finite difference approx-
imation of the diffusion process. Concentration and gradient
values at points not on the spatial finite difference grid are
computed with an interpolating polynomial.

The motion model described in this paper shares two im-
portant features with the discrete cell migration model de-
scribed in (Jabbarzadeh and Abrams 2005). The first is an
explicit tendency for cells to persist in a particular direction
of motion. The second is a gain that amplifies the perceived
chemoattractant gradient and helps the cell to stay oriented
even when the gradient is very small.

Our proposed model achieves the first effect by assuming
constant motion between sensor sampling instants. At each
sampling instant, the cell selects a new direction of motion
based on the current value of the gradient at the sample loca-
tion.

In contrast to our approach, the model presented in (Jab-
barzadeh and Abrams 2005) uses a cell memory parameter
to determine how much of the previous direction is retained
when determining a new direction. With their model, direc-
tion changes are computed at each step of the chemoattractant



diffusion simulation. Because of this, the time that a single
cell persists in one direction is not controlled directly. Rather,
the memory parameter ensures a persistence time that is cor-
rect on average, but may not reflect a valid cell behavior over
short time intervals.

The two models are nearly identical in their use of a gain
parameter. However, the gain is described explicitly in our
proposed model, and it can be linked directly to more funda-
mental cellular features through the cell’s chemotactic index.
The signal gain described in (Jabbarzadeh and Abrams 2005),
on the other hand, is specified indirectly by a combination of
chemoattract sensitivity and memory terms. Moreover, these
model parameters are not linked explicitly to more fundamen-
tal cellular processes.

The major deviation of our proposed model from the one
presented in (Jabbarzadeh and Abrams 2005) is the simula-
tion protocol. In that model, the description of the migration
process is closely intertwined with the time stepping numeri-
cal scheme that is used to simulate the diffusing chemoattrac-
tant. The chemoattractant diffusion process is solved using
an integration time step∆tconc. The chance that a new posi-
tion is computed for any cell at each integration time step
is ∆tconc/∆tcell, where∆tcell is the average time between cell
motion calculations. When a new position is calculated, the
cell is moved a distance that is determined by sampling a nor-
mally distributed random variable.

This probabilistic approach to cell motion allows for non-
physical behaviors by individual cells. In particular, there is
no restriction on the instantaneous speed of a cell. A large
sample from the random variable that determines distance can
catapult the cell through space. Similarly, it is possible for a
cell to move very rapidly by taking a step in space at each
simulation step in time. So, while the average speed of a cell,
and the average speed of the cell population, looks right, in-
dividual cell behaviors can be quite arbitrary.

Our model solves this problem by modeling the connected
diffusion/migration processes as a hybrid system. The cell
motion is simulated as a discrete event system, with events
taking place at the sampling instants. The diffusing chemoat-
tractant can be sampled by a cell at any instant. This is accom-
plished by encapsulating a suitable numerical scheme within
a discrete event process (see (Zeigler, Praehofer, and Kim
2000)).

This formulation of the model has three immediate advan-
tages (Nutaro, Kuruganti, and Shankar 2007);

1. The description of cell behaviors is self-contained; in-
fluencing variables are modeled as input to the cell and
observable cell properties as output from the cell,

2. The numerical algorithm used to simulate the diffusion
process is encapsulated; the process is sampled by indi-
vidual cells as required, and

3. The model can be easily extended to include dynamic in-
teractions between the individual cells and the chemical
environment in which they live.

The simplifications in the sensor model and relative deter-
minism of the cell motion model are aimed at producing a
simple, functional model of the migration process. The need
for functional, as opposed to mechanistic or phenomenolog-
ically detailed, models for the study of biological systemsis
discussed in (Hartwell, Hopfield, Leibler, and Murray 1999;
Pronk, Polstra, Pimentel, and Breit 2007). Our model de-
scribes cell migration behaviors in a minimalistic way while
preserving two specific features of the system; 1) physical
viability of individual trajectories and 2) statistical agree-
ment with continuum migration models. Specifically omit-
ted are observed variability in cell turning frequencies and
speeds (see, e.g., (Alt 1980; Rivero, T, Tranquillo, Buettner,
and Lauffenburger 1989)).

Our proposed migration model is described in Section 2.
In Section 3, our discrete cell migration model is related
to a common diffusion-advection type continuum migration
model. Simulation experiments conducted with the model are
described in Section 4. Section 5 discusses planned model
extensions and some initial experimental data that supports
it. Section 6 concludes the paper with a discussion of several
planned validation experiments and extensions to the model
that may be required in that context.

2 DISCRETE CELL MIGRATION MODEL
The model describes the migration of individual cells in the

presence of an evolving chemoattractant gradient. The distri-
butionc(t, x̄) of the chemoattractant in time and space is de-
scribed by the diffusion process

∂c
∂t

= Dc∇2c (1)

with boundary conditions that represent a closed container.
Cells will tend to migrate up the chemoattractant gradient∇c.

The cell trajectory model is built from three basic assump-
tions. First, a cell’s gradient detection mechanism can be
modeled by a sensor with sampling frequencyf and signal
gain G. The cell moves at a constant speed, and it changes
direction only when a change in its environment is detected.
That is, it can only alter its direction of travel at a rate 1/ f .
Between sensor samples, the cell moves in a constant direc-
tion.

The migration trajectory of each cell is described by

γn = G∇c+ λn (2)

pn+1 = pn +
s
f

γn

‖γn‖2
(3)

wherepn is the location of the cell at thenth sampling instant,
c is the chemoattractant quantity at the sampling time,λn is a



randomly oriented unit vector,s is the cell speed,G is the sen-
sor gain, andf is the sensor sampling frequency. Equation 2
determines the cell’s direction of travelγ as a function of the
amplified chemoattractant gradient and noise termλ. Equa-
tion 3 moves the cell in the selected direction with a speed
s.

The parameters for this discrete cell model are summarized
in Table 1.

Symbol Use
Dc Chemoattractant diffusivity
c Chemoattractant
p Position of the cell
f Cell sampling frequency
s Cell speed
G Cell sensor gain
λ Cell sensor noise direction
n Sampling instant for the cell,t = n/ f

Table 1. Discrete migration model parameters and variables.

3 CONTINUUM MODELS
A three dimensional version of the discrete cell migra-

tion model can be related to a one dimensional, advection-
diffusion type continuum migration model. The continuum
model describes cell concentrationu in time t and space by

∂u
∂t

=
∂
∂x

(

µ
∂u
∂x

−χu
∂c
∂x

)

Here,χ is a the chemotactic coefficient andµ is the random
motility (i.e., cell diffusion) coefficient. In what follows, µ
andχ are taken to be constant about the valuesc and∂c/∂x
that are considered.

To obtain a one dimensional continuum model from
the discrete three dimensional model, we assume that the
chemoattractant gradient in they andz directions is negligi-
ble. Denoting vector components with subscripts, and noting
that ∂c/∂y = ∂c/∂z= 0, we can write the cell velocityvx in
thex direction as

vx =

s

(

G
∂c

∂x
+ λx

)

√

(

G
∂c

∂x
+ λx

)2

+ λ2
y + λ2

z

(4)

wherec is the concentration given by Eqn. 1. Motion of the
cell in thex direction is then given by

pn+1 = pn +
vx

f

Notice that the cell velocity in thex direction will vary even
though the cell is moving with constant speed in three dimen-
sions. The maximum speed of the cell in thex direction is

s, with vx < s indicating random motion in they andz direc-
tions.

The continuum model’s chemotactic and random motility
coefficients are related to the cell gain, sampling frequency,
speed, and spatial dimensionalityd of the continuum model
by (see (Rivero, T, Tranquillo, Buettner, and Lauffenburger
1989; Maheshwari and Lauffenburger 1998; Alt 1980))

µ=
1
d

s2

f
(5)

χ = E[vx] (6)

whereE[vx] is the expected value ofvx.
It is apparent from Eqn. 4 thatχ is a function of the gain

G and the chemoattractant gradient∂c/∂x. This observation
can be used to relateG and the cell chemotactic indexφ (de-
noted CI in some papers). The chemotactic index is related
to E[vx] ands by (see, e.g., (Rivero, T, Tranquillo, Buettner,
and Lauffenburger 1989; Farrell, Daniele, and Lauffenburger
1990; Maheshwari and Lauffenburger 1998))

E[vx] = φs (7)

DenotingE[vx] by Ex(G) to emphasize its dependence on the
sensor gain and substituting this expression into Eqn. 7 gives

φ =
Ex(G)

s

Givensandφ, the gainG is a real, positive root of

Ex(G)

s
−φ = 0 (8)

which can be found numerically.

4 NUMERICAL EXPERIMENTS
The relationship between the discrete and continuum mi-

gration models can be illustrated with a simple numerical ex-
periment. For this experiment, the chemoattractant gradient
along thex axis is fixed at∂c/∂x = 1.0×10−7 M/mm. The
individual cell parameters are taken to be

s= 2.0×10−3 mm/min,

f = 3.3×10−2 1/min,

and usingφ = 0.2 gives

G = 3.0×106

These parameters are representative of a alveolar
macrophage’s response to the chemoattractant C5a (see
(Farrell, Daniele, and Lauffenburger 1990); the approximate
values from (Maheshwari and Lauffenburger 1998) are used



in this experiment). The continuum model parameters that
correspond to these values are

µ≈ 1.2×10−4 mm2/min, and

χ ≈ 4.0×10−4 mm2/min · M

Using these parameters, the discrete migration model was
exercised in a box with dimensions 7 mm× 7 mm× 7 mm.
The corresponding continuum experiment took place on a line
7 mm in length. The cells were initially located about the
1 mm mark. The chemoattractant concentration was fixed at
c(t,x) = 1.0×10−7x.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  500  1000  1500  2000  2500  3000

x

t

Figure 1. Trajectories produced by the discrete migration
model for three cells. Each line traces the motion of a sin-
gle cell along thex axis.

Figure 2. Comparison of cell densities produced by the con-
tinuum and discrete migration models.

Figure 1 shows thex position of several cells as a function
of time when their trajectories are computed with the discrete
migration model. The corresponding cell densities given by

the continuum and discrete models as a function of time and
space are shown in Fig. 2. In both figures, the cell densities are
normalized. Cell density for the discrete model is computed
as the number of cells in anx-band 0.05 mm in width; a total
of 100,000 cells were used in the experiment.

The difference in the width of the discrete and continu-
ous cell density profiles is due to the relatively small cell
population in the discrete migration model. In particular,the
largest distance traveled by any of the 100,000 cells is about
2.4 mm, corresponding to an end position of about 3.4 mm
at 2880 minutes. However, if 1,000,000 cells are used, the
maximum distance traveled by any one cell is about 2.6 mm,
corresponding to an end position of 3.6 mm. Similarly, with
only 10,000 cells, the distance traveled shrinks to about 2.2
mm.

To actually observe values near the theoretical maximum
travel distance of 5.76 mm would require a tremendous num-
ber of cells, which is infeasible without correspondingly
tremendous computing resources. The continuum model,
however, with its assumption of a massive population, pre-
dicts a density profile that includes measurable numbers of
the rare travel distances, and hence the apparent discrepancy
in the density profiles.

Table 2 summarizes the difference in the cell density pro-
files calculated with the continuum and discrete models. As
the number of cells increases, the difference between the two
models shrinks. This supports our hypothesis that the discrete
model converges on the continuum model as the cell count
becomes large.

Number of cells Total Difference Average Difference
106 4.68 0.0538
105 4.87 0.0560
104 5.39 0.0620
103 7.87 0.0905

Table 2. Total and average difference between the discrete
and continuum models when computed with data points at
0.05 mm intervals.

5 CELL ATTACHMENT
It is our intention to validate the migration model with a

series of Boyden chamber experiments. The Boyden chamber
experiment requires placing a solution with suspended cells
above a disc of material through which they will migrate. The
chemoattractant diffuses from the bottom well, through the
disk, and into the cell solution. This sets up a concentration
gradient that motivates the cells to move through the barrier.
The experimental setup is sketched in Fig. 3.

A cell can not begin to migrate until it has attached itself to
the disc. Because the cells are initially suspended in solution,
each cell will require some time to settle and attach before



Figure 3. The basic elements of a Boyden chamber experi-
ment.

it begins to move of its own accord. This process is not ac-
counted for in the model as described above, which assumes
instead that cells begin migrating immediately. The observ-
able effect of this deficiency on the model will be less cell
diffusivity and greater cell speed with respect to the experi-
mental data.

We have begun to conduct a series of attachment experi-
ments to quantify this effect. The experimental data will be
used to construct a function that models the cell attachment
time. Individual cells will use this function to select statisti-
cally valid attachment times.

Figure 4 shows the mean of the results obtained in two
replicates of attachment experiments conducted for rat aor-
tic smooth muscle cells. These experiments were carried out
using subcultures of rat aortic smooth muscle cells (RASMC)
derived from a male rat donor and obtained from Dominion
Pharmakine, S.L. (Spain).

The cells were cultured in 2 T-75 cm2 culture plates (Corn-
ing, Inc.; Corning, NY) in DMEM (Gibco, Invitrogen Corp.;
Carlsbad, CA) supplemented with 10% fetal bovine serum
(FBS), 10µg/ml gentamicin, and 0.25µg/ml amphotericin
B, (Cascade Biologics, Inc; Portland, OR), and incubated at
37◦C in 5% CO2. After cells reached confluency, one flask
was changed to DMEM media with 0.1% bovine serum al-
bumin (BSA) while the other flask remained in DMEM me-
dia with 10% FBS. Both sets of cells were incubated for
an additional 18 hours. The confluent cultures were subse-
quently lifted with a treatment of trypsin/EDTA (0.05% /
0.53mM in HBSS, Gibco) and seeded into a six-well cul-
ture plate (9.4 cm2 per well) (Sarstedt, Inc.; Newton, NC) for
a total of 3 wells with DMEM+10% FBS and 3 wells with
DMEM+0.1%BSA. The plate was incubated at 37◦C in 5%
CO2.

At 30 minutes the plate was observed under a microscope
and the percentage of cells attached to the plate surface was

noted. This observation was repeated at 1, 1.5, 2, 3, 4, and
6 hours. The data shown come from two independent exper-
iments. Also shown is the best fit of this data to an S-Curve
function in the form

atc

1+btc
.

For the experiments using 0.1% BSA, the best-fit parameters,
as computed with Mathematica’s NonlinearFit algorithm, are

a = 25.6297 ,

b = 0.260103 , and

c = 4.43234 .

For the experiments using 10% FBS, these parameters are

a = 18.3788 ,

b = 0.186569 , and

c = 4.8316 .

The data and the results of the above empirical model are
shown in Fig. 4.
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Figure 4. Attachment percentage as a function of time for
rat aortic smooth muscle cells using two different media con-
ditions.

6 CONCLUSIONS
In this paper, we have introduced a model that describes

the migration of individual cells in the presence of a chemoat-
tractant gradient. Our model is distinct from earlier, individu-
ally based cell migration models in three important ways (see,
e.g., (Jabbarzadeh and Abrams 2005; Chaplain, McDougall,
and Anderson 2006)):

1. The proposed model admits only feasible migration
paths for individual cells. This is apparent in the explicit
limit on cell speed, and the absence of long migration



trajectories for the small population simulation in Sec-
tion 4. This contrasts sharply with the model described
in (Jabbarzadeh and Abrams 2005), where the simula-
tion protocol acts to control just the average speed of a
cell, but places no limit on its instantaneous speed.

2. The model parameters are directly related to measurable
cell attributes. The cell signal gain parameter in partic-
ular can be calculated if the cell speed and chemotactic
index are known.

3. The simulation can be readily implemented using avail-
able hybrid system simulation techniques. This per-
mits the cell migration model and numerical algorithm
used to simulate continuous sub-processes to be de-
scribed separately. In contrast to this, these two aspects
are closely connected in the models described by (Jab-
barzadeh and Abrams 2005; Chaplain, McDougall, and
Anderson 2006).

We are planning Boyden chamber experiments that will
provide data for validating the migration model. The exper-
imental data will show cell density as a function of time on
the chemoattractant side of the migration barrier. This data
will be compared with density profiles, like those shown in
Fig. 2, computed with the migration model.

As was noted in Section 5, the cell attachment process is
expected to have a measurable impact on the experimental
outcome. Because of this, we plan to add this process to our
migration model prior to conducting the validation study. As
part of the validation process, the we will determine the sensi-
tivity of the model sensitivity to the attachment process. No-
tably, cell attachment is absent from continuum models that
have been validated against Boyden chamber experiments. To
our knowledge, Boyden chamber based validation studies of
individual cell models have not been previously attempted.
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