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Abstract –New ways to calculate the direction cosines and polarization vectors for Monte Carlo photon
scattering are developed and presented. The new approach for direction cosines is more physical, easier to
understand, straightforward to implement, and—for simulations involving polarized photons—slightly faster
than the traditional approach. The polarization vector after scatter is also presented.

I. TRADITIONAL METHOD FOR DIRECTION COSINES

Carter and Cashwell1 presented a scheme, which is used in many Monte Carlo codes, for finding the direction
cosines of a photon after a scatter. For a photon with unit direction vectorV 5 ^u,v,w& that is then scattered with polar
angleu and azimuthal anglef, the scattered direction vector is
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usingm 5 cosu and%12 m2 5 sinu. These relationships come from a transformation of coordinates so that the
original photon direction is on thez axis, scattering with anglesu andf, and then the coordinates are transformed
back to the laboratory frame. These expressions were originally derived from rotations through angles expressed as
complex numbers by Cashwell and Everett.2

The same result can be found without a coordinate transformation. The directionf 5 0 is defined to be a unit
vector lying on the plane perpendicular toV and also lying in a plane that contains the projection ofV on the
x-y plane, pointing downward. This vector in thef 5 0 direction,q1, is then 10%12 w2 ^uw, vw, w2 2 1&. To define
the direction of increasingf, the direction off 5 p02, q2, can be chosen such thatq2 5 V 3 q1. This gives
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q2 5 10%12 w2 ^2v, u, 0& and completely definesf for the original photonV. This is shown in Fig. 1. For the
special case of6w6; 1, q1 can be defined aŝ1,0,0& andq2 as^0,1,0&.

From the foregoing definitions, the new directionV' can be expressed as a linear combination of the three or-
thogonal vectorsV, q1, andq2:

V' 5 V cosu 1 q1 cosf sinu 1 q2 sinf sinu . ~2!

By inserting the components ofq1, q2, andV, the scattered vector is found to be
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which is a result identical to that of Carter and Cashwell.
Using the components of the special case forq1 andq2

and takingV ; ^0,0,61& will then give the special case
of Carter and Cashwell.

For some routines~for example, biasing routines!,
the initial and scattered photon directions are known, and
the two scatter anglesu andf need to be found. This can
be done with

m 5 V{V' 5 uu' 1 vv ' 1 ww' , ~5!
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being careful of the special cases ofm 5 61 andw 5
61. Two equations are needed forf so that it may be
specified over the entire range of@2p,p# . In ForTran,
the dual argument arctangent functionf 5 atan 2@uv'2
vu', uwu' 1 vwv' 1 w'~w2 2 1!# will report f over the
whole range.

II. A SIMPLIFIED APPROACH

The Carter and Cashwell approach to finding the new
direction cosines works but is unnecessarily difficult to

comprehend physically and is somewhat arbitrary in its
definition of the azimuthal angle. Coordinate transfor-
mations or arbitrarily defining thef 5 0 direction based
on the laboratory coordinate system are not easy to un-
derstand, and they break down for some initial directions
~w5 61!, which forces the programmer to set up special
cases.

When the Carter and Cashwell technique is ap-
plied to polarized radiation, extra complications arise in

Fig. 1. Geometry of a scatter from directionV to V' sim-
ilar to the Carter and Cashwell approach. The azimuthal angle
is in the plane perpendicular to theV direction, which is shown
here by the circle.
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calculating the scattered azimuthal angle. Another rotation is required to find where the polarization vector is located
in relation to thef 5 0 direction. The scatter angle is then added to that angle.

An alternate approach is to recognize that a photon traveling in directionV with an electric field vectorp ~normal
to V! is really carrying around its own coordinate system. With the definition of the third vectort 5 V 3 p, an
orthogonal system of base vectors is complete. The scattered vectorV' can then be written in terms of these base
vectors, the polar scatter angleu, and the azimuthal anglef, measured in the plane perpendicular toV. This gives

V' 5 V cosu 1 p cosf sinu 1 t sinf sinu . ~8!

Note that thef 5 0 direction is aligned withp andf increases towardt. This is quite convenient since differential
scattering cross sections are given in terms off measured from the direction of the polarization vector. This is
illustrated in Fig. 2.

Using the notationV 5 ^u,v,w& andp 5 ^ pu, pv , pw&, t is easily found to bêvpw 2 wpv , wpu 2 upw, upv2 vpu&,
and the scattered direction cosines can be written as
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Comparing Eqs.~1! and~10!, one sees that this photon-
coordinate approach has a few more operations but does
not contain the “if” logic for the special case. The new
approach also has one less square root. When each method
was coded in ForTran 77 on a Sun Ultra 2 computer for
a polarized photon-slab penetration problem, the new ap-
proach was faster than the Carter and Cashwell method
by 6%. Of course, in a large code, this small difference
probably will not be noticed. Speed is not the attraction
of this new approach; its simplicity is.

Given the original photon vectorV and the scattered
photon vectorV' , the angles of scatter can be found by
the dot product of each component~V, p, t! with the scat-
tered photon vector giving

cosu 5 V{V' , ~11!

cosf 5
p{V'

%12 m2
, ~12!

and

sinf 5
t{V'

%12 m2
. ~13!

The only special case here is whenm 5 61, wheref can
be set to 0. In ForTran, again using the dual argument
arctangent function,f can be found over the entire range
of @2 p,p# with f 5 atan 2@t{V', p{V' # .

III. POLARIZATION

If the polarization of the photon is being considered,
the new electric field vectorp' of the scattered photon
must be found. Namito, Ban, and Hirayama3 and Vincze
et al.4 state thatp' lies in the plane defined by the elec-
tric field vector of the original photonp and the scattered
photon directionV' . Of course, the new polarization vec-
tor p' must also be perpendicular toV' . Since these three
vectors are all in one plane, the third can be expressed as
a combination of the first two:

p 5 p'~ p{p' ! 1 V' ~ p{V' ! . ~14!

Fig. 2. Geometry of a scatter from directionV to V' using
the photon-coordinate approach. The azimuthal angle is in the
plane perpendicular to theV direction.
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Since everything is in a plane, these are all unit vectors,
andp' ' V' , then~ p{p' !2 1 ~ p{V' !2 51. Inserting this
and solving forp' gives

p 5 p'%12 ~ p{V' !2 1 V' ~ p{V' ! ~15!

p' 5
p 2 V'~ p{V' !

%12 ~ p{V' !2
. ~16!

Both Namito, Ban, and Hirayama3 and Vincze et al.4 de-
scribe in words where the polarization vector is located
after scatter but neither state the direction mathemati-
cally, as is done here.

A coherent scatter maintains the polarization of the
photon. An incoherent scatter does not, with a depolar-
ization probability of3

~12 P! 5
E '0E 1 E0E ' 2 2

E '0E 1 E0E ' 2 2 sin2 u cos2 f
, ~17!

whereE is the original photon energy andE0E ' 5 1 1
~E0mc2! ~12 cosu!. Namito, Ban, and Hirayama3 state
that when a photon is depolarized, the direction of the
polarization vector should be sampled from eitherp' or
V' 3 p' ~which is equal toV' 3 p0%12 ~ p{V' !2 !.

Note that the new electric field direction becomes
undefined whenp 66 V' . This is not a problem since the
coherent scatter cross section is zero for scatter in those
directions~u 5 p02 andf 5 0 or p!. The incoherent
cross section for scatter in these directions is not zero,
but the depolarization probability is one. The new elec-
tric field vector direction can be picked as any direction
perpendicular toV' .

So, for coherent scatter, the new electric field direc-
tion is

p' 5
p 2 V'~ p{V' !

%12 ~ p{V' !2
. ~18!

For incoherent scatter, a determination by a random vari-
able for depolarization is made first. If the photon will
be depolarized, another random numberj is picked. Then,

p' 5 5
any unit vector'V' if p66V'

p 2 V'~ p{V' !

%12 ~ p{V' !2
not depolarized orj . 0.5

V' 3 p

%12 ~ p{V' !2
depolarized andj # 0.5 .

~19!

IV. UNPOLARIZED PHOTONS

This new approach can also be used in problems
involving unpolarized photons. Since there is no elec-
tric field vectorp, one has to be picked before the scat-
ter. Any vector perpendicular toV will suffice; p 5

10%12 w2 ^2v, u, 0& is a simple choice. Of course,
one has to check for6w6; 1 and put in some “if ” logic
to avoid a division by zero. If this is the case,p can be
defined aŝ 1,0,0&.

Now the new method has the problem of the special
case, just like the original Carter and Cashwell ap-
proach. With a few more operations of Eq.~10! over
Eq. ~1!, combined with the time of finding a new polar-
ization vector, the photon-coordinate approach takes;8%
more time than the Carter and Cashwell approach. How-
ever, in a large code, this slight time difference is likely
to be insignificant.

This new approach is still easy to understand and has
a physical basis: If the radiation is unpolarized, then the
electric field vector should be a random direction per-
pendicular toV at any given time. Since unpolarized pho-
ton scattering cross sections are uniform inf, the direction
of f 5 0 is not really important, as shown by the Carter
and Cashwell approach. As long asf can be sampled
over the entire 2p range for any given directionV, the
approach is consistent, and the results will be correct.

The best way to incorporate this new approach for
unpolarized radiation may be to pick a random polar-
ization direction~'V! after picking the source photon.
This p vector would be updated after each scatter,
never bothering to pick whether or not to depolarize.
Any code developed with this system for unpolarized
radiation would be very easy to upgrade to handle po-
larized radiation.

V. SUMMARY

This note has done three things. First, a simplified
derivation of the Carter and Cashwell formulas for di-
rection cosines showed how arbitrary the approach is. Sec-
ond, a new approach for direction cosines, which uses
the polarization vector and the original direction vector
as the base of a coordinate system, was developed and
presented. Finally, concise mathematical formulas were
presented for calculating the polarization vector after a
scatter.

Compared to the transformation of coordinate sys-
tems that is used by most Monte Carlo programmers, this
new approach for direction cosines is easy to under-
stand, easy to implement, and works very naturally with
the angular differential cross sections for polarized pho-
ton scattering. For codes that simulate polarized radia-
tion, this new approach offers a small speedup.
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