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Abstract –Differential sampling is a powerful tool that allows Monte Carlo to compute derivatives of
responses with respect to certain problem parameters. This capability has been implemented within an
in-house Monte Carlo code that simulates detailed mammographic images from two new digital systems.
Differential sampling allows for the calculation of the first and all second derivatives of all of the different
tallies computed by the code as well as the first and second derivatives of the mammographic image itself
with respect to material parameters, such as density and cross sections. The theory behind differential
sampling is explained, the methodology for implementation into the imaging code is discussed, and two
problems are used to demonstrate the power of differential sampling.

I. INTRODUCTION

Mammography is the X-ray radiographic technique
that is designed for breast imaging. The lifetime risk of
developing breast cancer is one out of nine for women in
the United States, and the earlier the tumor is detected,
the better is the prognosis for survival. X-ray mammog-
raphy has enabled early detection of tumors and has led
to a large increase in survivability. At present, annual
mammograms are indicated for all women more than 50 yr
~postmenopausal! and for high-risk women in younger
age groups. Contrast in the images is greater in the higher
age groups because of the higher adipose tissue content
of their breasts, as compared to premenopausal women
who have more glandular tissue than adipose. Although

advances in mammography have resulted in image con-
trast enhancement, the goal of mammography is to im-
prove the detection of smaller tumors in premenopausal
women without increasing the radiation dose. Methods
that do not use radiation, such as ultrasound and mag-
netic resonance imaging, are at present not competitive
with X-ray mammography for routine cancer screening.

Mammogram images are formed just like standard
X-ray images. A beam of X rays is passed through the
tissue and then strikes a film. Areas of higher density
will absorb more X rays~transmitting less!, resulting in
a lower exposure to the film. If X rays were only either
transmitted or absorbed, the image captured by the film
would perfectly show which areas of the tissue ab-
sorbed more photons. Unfortunately, X rays can also
scatter in the tissue. Scattered X rays can strike the film
in any location, adding a constant level of exposure to
the entire image.*E-mail: peplowde@ornl.gov
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Standard clinical mammography systems use an
X-ray tube bremsstrahlung spectrum that is filtered to re-
move very low energy photons. A conical X-ray beam is
transmitted through the breast that is compressed be-
tween two flat plastic paddles. The transmitted beam
passes through an antiscatter grid to a phosphor screen,
and the image is recorded on photographic film. The grid
removes some of the scattered X rays but increases the
amount of source photons needed and increases the ab-
sorbed dose in the breast. The tube anode potential is ad-
justed to suit the breast thickness.

Image contrast is degraded by scattered radiation
striking the detector and geometric blurring by nonpoint
sources and diverging beams, and by detection systems
themselves. The high-energy portion of a tube anode spec-
trum does not add much information to the image be-
cause of low-interaction cross sections. The low-energy
portion of the spectrum only increases dose to the breast
since low-energy photons have a very high interaction
cross section and are rarely transmitted. Only the mid-
range of photon energies contributes to the contrast seen
in the images. The optimum photon energy range for com-
pressed breast thicknesses of 3 to 6 cm is;17 to 25 keV.

There have been both evolutionary and revolution-
ary responses to the need to enhance mammography to
the point of detecting smaller tumor masses earlier. Im-
provements in film quality, scatter rejection grids, bet-
ter digital detectors, and better computer image
enhancements are all leading to clearer mammograms
in this country. Many manufacturers of current mam-
mography machines are developing new systems that
have digital data acquisition and scanning slots to fur-
ther decrease the amount of scattered radiation—all with
the goal of an improved image. These systems still use
the tube anode and a bremsstrahlung spectrum of X rays
but are improvements over the conventional film0
screen systems.

Research groups in this country and abroad are work-
ing on completely new mammography technologies using
intense monoenergetic beams of X-ray radiation from syn-
chrotron sources.1–3 Images produced from the monoen-
ergetic, parallel, polarized synchrotron radiation show
better contrast than conventional images, approaching the
theoretical limit for an X-ray attenuation image. With the
tunable monoenergetic beam, a clear optimization can be
made for contrast and dose. The parallel aspect of syn-
chrotron radiation allows for large air gaps between the
patient and detector, greatly reducing the effect of scatter
without any magnification or geometric blurring.

This work stems from a collaboration with the group
that started research in synchrotron mammography.4 The
goal of the project is to develop a set of modeling tools
that could be used to compare the performance of
the new synchrotron system to the next generation of
scanning-slot mammography systems that are being tested
in clinics and hospitals. Sensitivities to various material
parameters and perturbation calculations are of interest

to this group and others in medical physics. The longer
range goal is to use these modeling tools to optimize new
mammography systems.

The best way to quantify the effects of scattered ra-
diation in the images from different systems and also com-
pare other system effects is to create a Monte Carlo tool
capable of simulating the complete image. Digital mam-
mograms are typically 20483 2048 pixels in size as a
minimum. Tallying photons into more than four million
pixels poses some challenges to any Monte Carlo code
because of the potentially high variance in each of the
pixels. A combination of variance-reduction methods
made it possible to simulate accurate images using real
pixel dimensions within reasonable computation times.
The complete method of image simulation, including the
application of noise and the modulation transfer function
~MTF!, both of which tend to smear images, has been
presented by the authors elsewhere.5 Simulated images
of two common mammography phantoms on both the
digital Fischer Senoscan scanning-slot system and the
synchrotron-based mammography system showed excel-
lent agreement with actual digital images taken on the
two systems.

This paper will focus on differential sampling and
how it was applied to the image simulation problem. Using
differential sampling, Monte Carlo can calculate not only
the desired response but also the derivative of that re-
sponse to some parameter. These derivatives can be used
to determine sensitivities of dose-to-material param-
eters or sensitivity of image contrast to tumor density.
They can also be used to propagate uncertainties in the
material data to find the final dose uncertainty. With a
truncated Taylor series, the derivatives can be used in per-
turbation studies. A demonstration of how differential
sampling can be used to provide more~and useful! in-
formation for imaging problems appears in Sec. V.

II. THE MCMIS MONTE CARLO IMAGING CODE

The Monte Carlo Mammography Image Simula-
tion5 ~MCMIS! is a detailed code specifically for the sim-
ulation of digital mammography systems, including
scanning-slot systems. This code was written so that three
variance-reduction techniques can be used together to cre-
ate images with realistic pixel sizes. These are source ras-
tering, the separation of the scattered and unscattered
image, and the point-detector scheme.6 The source ras-
tering is just a form of stratified sampling and ensures
that the images do not suffer from mottle caused by ran-
dom source sampling. The point-detector method forces
a score to every pixel in the image at each photon inter-
action, thus decreasing the variance of the final scattered
image. Since the scattered image does not show the de-
tail that the unscattered images show, it can be calcu-
lated on a coarse mesh, saving computation time.
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In the energy range of medical imaging, the coher-
ent scattering distribution from amorphous materials, such
as tissues and plastics, differs a great deal from the
scattering distributions predicted by the free-gas model.7

One example is shown in Fig. 1. Both of the mammog-
raphy systems studied here are well collimated, which
eliminates photon scatter through more than a few de-
grees from the image. In the small-angle range, the dif-
ference between the measured and predicted coherent
scatter distributions is very large, and the amount of in-
coherent scatter is small. To make the simulation of mam-
mography systems as complete as possible, we measured
the molecular coherent scattering form factors of mam-
mography related materials.8 These measurements used
a unique two-step approach that accurately accounted for
incoherent scatter and multiple scatter. The measure-
ments were performed using monoenergetic synchrotron
radiation, which makes the final form factors for these
materials the most accurate and detailed that are cur-
rently available.

MCMIS uses four problem description input decks
and various cross-section tables, and it outputs several
image files and their associated stochastic uncertainties.
The code contains four source models, three detector
geometries, and three digital detector types. These mod-
els and all of their parameters are listed in one of the
input decks. The geometry of the object being imaged
and a list of materials are listed in other input decks.
The last input deck contains information for the Monte
Carlo run, i.e., the number of histories, variance-
reduction methods to use, etc. In addition to the image,
this code also calculates for each geometry region four

tallies: the energy deposited, the total flux, the expo-
sure, and the dose.

The models include both a parallel synchrotron
source and a divergent point source for the Senoscan.
The synchrotron system uses a Fuji imaging plate
~BaFBr0.85I0.15! detector, and the Senoscan uses a CsI
charge-coupled-device detector. The photon interaction
types are coherent scatter, incoherent scatter, and the
photoelectric effect. Cross sections include elements up
to calcium and are tabulated for energies between 1 and
300 keV, appropriate for medical imaging. Implicit cap-
ture and the last-flight estimator variance-reduction tech-
niques are available as options. The code does model
polarization effects in the scattering interactions, which
is required to simulate the synchrotron-based mammog-
raphy system. Extensive comparisons with other calcu-
lations of scattering, dose, and scanning-slot responses
were made5 to verify the accuracy of MCMIS.

A series of steps are taken to simulate the actual im-
age. First, the fine-mesh unscattered image and the coarse-
mesh scattered image are added together. Then, noise, in
an amount corresponding to actual noise seen in real im-
ages, is added to the image, and the MTF is applied. The
MTF of the synchrotron system accounts for the smear-
ing that occurs when the image plate is read by the laser
scanner and converted into a digital image. The MTF of
the Senoscan accounts for the blur caused by the focal
spot size and blur introduced by the detector system. For
polyenergetic sources, multiple monoenergetic runs of the
code are made and then added together using the source
spectrum as the weighting function. A comparison of im-
ages of the American College of Radiography~ACR!
phantom created by MCMIS and taken on the real syn-
chrotron imaging system is shown in Fig. 2. The image
taken with the synchrotron shows vertical streaks caused
by slight deformities in the crystal used to select the sin-
gle energy of the beam. Measured contrast for items in
real digital images and the Monte Carlo simulations
matched very well. A more complete description of the
methods, testing, and verification of both images and dose
calculations made by MCMIS have been presented in an
earlier paper.5

III. DIFFERENTIAL SAMPLING

Monte Carlo has the ability to calculate derivatives
of responses with respect to certain input parameters at
the same time it calculates the response itself. This is
called differential sampling, and some uses of such de-
rivatives include

1. Perturbation studies: Instead of running the Monte
Carlo code multiple times, a base responser can be cal-
culated as a function of the set of input parametersp. If
this code also calculates the derivatives of the response

Fig. 1. Coherent scattering distributions in water for 18-
keV photons using atomic form factors~dashed line! and using
Narten’s7 measured molecular form factor~full line!. The in-
coherent scattering~dash-dot line! is also displayed.
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with respect to each parameter]r0]pi , and the second
derivatives]2r0]pi ]pj , and so on, then the value of
the response for a small perturbation ofp can be found
for any set of parameters by a Taylor series expansion.
Thus,

r ~p 1 dp! 5 r ~p! 1 (
i
S ]r

]pi
Ddpi

1
1

2 (
i
(

j
S ]2r

]pi ]pj
Ddpi dpj 1 {{{ . ~1!

In practice, the series has to be truncated after a few terms
~usually after the second-order terms!, and therefore, it
is only applicable for values of~p 1 dp! close top. Cor-
related sampling calculates all of the perturbed cases along
with the reference case; differential sampling calculates
the perturbed cases outside of the Monte Carlo code. If a
new perturbation case is to be investigated, no more code
runs would be required once the reference case and its
derivatives had been found.

2. Sensitivity studies: The derivatives]r0]pi can also
be used to find the sensitivity of the response to uncer-
tainties in the input parameters. For example, which cross
sections affect the response the most and need to be known
with the highest accuracy? Differential sampling can re-
veal this.

3. Total error: The uncertainty expressed in most
Monte Carlo studies is only the stochastic uncertainty
from the calculation. This does not represent the propa-
gated uncertainties from any of the input parameters. With
the sensitivities found by differential sampling, the total
uncertainty can be stated for a Monte Carlo response.

Differential sampling can be applied to many problems,
even reactor problems, and can also be used in conjunc-
tion with variance-reduction techniques.

This section will describe the system used to calcu-
late the derivatives of Monte Carlo–calculated responses
and how they were implemented in the image simulation
code. The descriptions in this paper start with the Monte
Carlo games as they are practiced, as opposed to starting
with the Boltzmann transport equation as in the pioneer-
ing papers by Rief.9–12 The approach presented here is
written with the Monte Carlo practitioner in mind.

III.A. Monte Carlo Game Description

The response calculated by a Monte Carlo game is
simply the average of the individual responses resulting
from the many histories. For a game where multiple con-
tributions to the response tally are made during a history,
the final averageSr has the form

Sr 5
1

N (
i51

N

(
j51

J

cij )
k51

j

Pik , ~2!

where each segmentj of history i 5 1 to N makes some
contributioncij to the response tally, weighted by the
product of segment probability densities)k51

j Pik up to

Fig. 2. Images of the ACR phantom:~a! image measured
with the synchrotron system at 18 keV with a 5-mm slot size
and~b! MCMIS Monte Carlo simulation.
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that point in the history. The notation used here is similar
to that used by Perel, Wagschal, and Yeivin.13 As pointed
out by of Rief,9 these probability densities are either trans-
port T or collisionC probabilities. Thus,

)
k51

j

Pik 5 Ti1Ci1Ti 2Ci 2{{{ , ~3!

ending in either an absorption or escape in theJ’th seg-
ment. Of course, the quantitiesPik are not explicitly cal-
culated and multiplied together to form the product but
are instead the result of the various stochastic choices
made during the history ofJ segments.

An example of a game like this would be the calcu-
lation of flux by the path-length estimator. Each time the
particle crosses a region, the path length~the contribu-
tion cij ! multiplied by the product of the segment prob-
abilities up to this point)k51

j Pik is added to a subtally.
The product is equal tow, the current weighta of the par-
ticle ~or 1 if no variance-reduction methods have been
employed!. As the history continues, if the particle again
crosses the same region, the new path length multiplied
by the current weight is added to the subtally. At the end
of the history, the subtally value is added to the main re-
sponse tally, and the square of the subtally is added to
the variance tally.

The foregoing game description can also be used for
games where splitting or point detectors are being used.
When a particle is at a given point in the history, the con-
tribution to a point detector or other tally is made, and
then the history continues on. The methods to calculate
derivatives for these biased Monte Carlo games are the
same as for the basic games.

III.B. First Derivatives

The derivative of the final Monte Carlo response with
respect to a problem parametera is

]

]a
Sr 5

]

]aF 1

N (
i51

N

(
j51

J

cij )
k51

j

PikG ~4!

5
1

N (
i51

N

(
j51

J Scij )
k51

j

PikD
3 H 1

cij

]

]a
cij 1 (

k51

j 1

Pik

]

]a
PikJ . ~5!

This form contains the score made to the response sub-
tally cij )k51

j Pik , multiplied by a term containing the rel-
ative derivative of the contribution and the sum of the
relative derivatives of the segment probability densities.
With each path segment, the response for the segment
rij 5 cij )k51

j Pik ~computed asrij 5 wcij , wherew is the
weight! is added to the response subtally. At the same
time, the subtallyqa

i for the derivative is also updated
with

qa
i 5 (

j51

J

~rij ! H 1

cij

]

]a
cij 1 taijJ , ~6!

where taij is the current value of the relative segment
probability derivative accumulator, up to this segment,

taij 5 (
k51

j 1

Pik

]

]a
Pik . ~7!

The real key is then finding the expressions for relative
derivatives~10Pik!~]0]a!Pik for both the collision and
transport kernels for every parametera and the relative
derivative of the contributions~10cij !~]0]a!cij .

At the end of the history, when the response subtally
is added to the main response tally and its square is added
to its associated variance tally, each derivative subtally
is added to the main derivative tally, and its square is
added to a variance tally for the derivative. Let

Aa 5 ( qa
i ~8!

and

Ba 5 (~qa
i !2 . ~9!

At the end of the Monte Carlo calculation,Aa is used
for finding the derivative~the sensitivity! with respect to
parametera, andBa is used for finding the standard de-
viation of the derivative:

]

]a
Sr 5

1

N
Aa ~10!

and

s] Sr0]a 5 ! 1

N F 1

N
Ba 2 S ]

]a
SrD2G . ~11!

III.C. Double Derivatives

Derivatives with respect to any combination of two
parameters~including second derivatives! of the Monte
Carlo responseSr can also be calculated. The double par-
tial derivative of the response for the game described ear-
lier with respect to the parametersa andb is

aThe photon weight is the probability of the photon being
at this point in the simulation had the simulation been an ana-
log one. It is the ratio of the true probability distribution to the
biased probability distribution~each evaluated at the value of
the sampled quantity!.
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]

]b

]

]a
Sr 5

]

]b

]

]aF 1

N (
i51

N

(
j51

J

cij )
k51

j

PikG ~12!

5
1

N (
i51

N

(
j51

J FScij )
k51

j

PikDH(
k51

j 1

Pik

]2

]a]b
Pik 2 (

k51

j S 1

Pik

]Pik

]a DS 1

Pik

]Pik

]b D
1 S(

k51

j 1

Pik

]

]a
PikDS(

k51

j 1

Pik

]

]b
PikD1

1

cij

]2

]a]b
cij

1 S 1

cij

]

]a
cijDS(

k51

j 1

Pik

]

]b
PikD 1 S 1

cij

]

]b
cijDS(

k51

j 1

Pik

]

]a
PikDJG . ~13!

This can be more conveniently expressed as

]

]b

]

]a
Sr 5

1

N (
i51

N

(
j51

J F~rij ! Ht1,a,b
ij 2 t2,a,b

ij 1 taij tbij 1
1

cij

]2

]a]b
cij 1 taij

1

cij

]

]b
cij 1 tbij

1

cij

]

]a
cij JG , ~14!

where the two new accumulators~types 1 and 2! are

t1,a,b
ij 5 (

k51

j 1

Pik

]2

]a]b
Pik , ~15!

t2,a,b
ij 5 (

k51

j S 1

Pik

]Pik

]a DS 1

Pik

]Pik

]b D , ~16!

andtaij andtbij are already being kept for the calculation of
the first derivative. During the history, every time the re-
sponse subtally is updated, the subtally for each double
partial derivative is updated:

qa,b
i 5 (

j51

J F~rij ! Ht1,a,b
ij 2 t2,a,b

ij 1 taij tbij 1
1

cij

]2

]a]b
cij

1 taij
1

cij

]

]b
cij 1 tbij

1

cij

]

]a
cij JG ~17!

using the current values of thet1,a,b
ij , t2,a,b

ij , taij , and tbij

accumulators.
At the end of the history, when the response subtally

is added to the main response tally, each double partial
derivative subtally is added to the main double partial
derivative tally, and its square is added to the derivative
variance tally:

Aa,b 5 ( qa,b
i ~18!

and

Ba,b 5 (~qa,b
i !2 . ~19!

Then, at the end of the game,Aa,b is used for finding the
double derivative, andBa,b is used for calculating the vari-
ance of the double derivative.

The relative derivatives of the contributions and of
the transport0collision kernels have not been discussed
yet since they are problem dependent. The easiest way

to understand these is through an example. Most prob-
lems will have similarT andC kernels and the contri-
butions depend on what responses~tallies! one is trying
to determine.

More details on the foregoing differential sampling
methods and more examples of implementation into sim-
ple problems are available elsewhere.14

IV. APPLICATION TO THE IMAGING CODE

MCMIS-DS, an extension of MCMIS for differential
sampling, provides the same four tallies~responses! for
each geometry region, namely, the energy depositedEd, the
total fluxf, the exposureX, and the doseD. Of course, ex-
posure is reported only when the region happens to con-
sist of air. The parameters that one might be interested in
investigating include the densityr of a region and its par-
tial or total cross sectionsm 5 m phot1 mcoh1 minc.

Because cross sections are actually energy-dependent,
trying to find the derivative of a response, such as energy
deposited in a region, with respect to a particular cross
section could only be done at exactly one specific en-
ergy. Another way to look at this problem is this: Sup-
pose one did calculate the derivative of responser with
respect to cross sectionp. In calculating a truncated Tay-
lor series to do a perturbation study,

r ~ p 1 dp! 5 r ~ p! 1 S ]r

]p
Ddp 1

1

2
S ]2r

]p2D~dp!2

1 {{{ , ~20!

one would find that describingdp would be difficult since
it is a function of energy and the responser is only a
scalar.

The way MCMIS-DS overcomes this problem is by
defining the total macroscopic cross section of a region
as the weighted sum of the three interaction cross sections
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for photoelectric effect, coherent scatter, and incoherent
scatter. That is,

m~E! 5 aphotm phot~E! 1 acohmcoh~E! 1 aincm inc~E! ,

~21!

where the constantsai are all equal to 1 for an unper-
turbed case. The code then finds the derivative of the re-
sponses with respect to one of theai constants. This way,
the energy dependence problem is avoided, and pertur-
bations can be cast in a form of one partial cross sec-
tion’s increasing~aphot going from 1 to 1.1! and another
partial cross section’s decreasing~acoh going from 1 to
0.9!. This system is also somewhat easier for the user
compared to finding derivatives with respect to relative
cross sections~mi0m! as others do,9 since there is no am-
biguity about how the other cross sections are changing
when a study of one of the interaction cross sections is
changing. With the foregoing system, it is obvious that
the total cross section does change. So, MCMIS-DS has
four parameters for derivatives: the density and the three
reaction-type multipliers—aphot, acoh, andainc—for each
region.

MCNP ~Ref. 15! has the ability to calculate pertur-
bations on the weight fraction of a certain element in a
compound. Since MCMIS-DS evaluates cross sections
by region at the beginning, this type of perturbation could
not be included. Also, the code uses measured molecular
form factors for coherent scatter, so the effect of a weight
fraction change for a given element in a molecular ma-
terial could not be found since the form factor could be
measured only at the nominal weight fraction values. One
should also be careful here since increasing one weight
fraction implies that the others are also decreasing. It is
not clear from the MCNP manual how this is taken into
consideration.

For a problem ofR regions, four tallies in each re-
gion ~the energy deposited, the total flux, the exposure,
and the dose!, and four parameters in each region to
vary, there are 4R responses, 16R2 first derivatives, and
8R2~4R1 1! double derivatives. For a small problem of
ten regions, this works out to more than thirty thousand
values, with thirty thousand associated uncertainties. This
amount of information would be too much for any user,
so MCMIS-DS does not keep track of every derivative.

MCMIS-DS allows the user to select one region
where the four tallies are the only four responses inves-
tigated. Derivatives and double derivatives are found with
respect to the four variables in one or two regions~four
or eight total parameters!. This way, only the derivatives
of interest are calculated and stored by the program, which
saves time and disk space. These regions are listed in a
separate input file that is read by the program with the
other input decks for geometry, cross section, etc.

The unscattered image is a matrix of tallies that could
number in the millions, depending on the number of pix-
els. The coarse-mesh unscattered image can also be

viewed as a large matrix of tallies. Again, for time and
storage reasons, only a single first derivative and a sin-
gle second derivative of the image are found with re-
spect to only one of four parameters of one region. The
derivatives of the unscattered images are calculated with
the analytic calculation of the unscattered image. The de-
rivatives of the scattered images are calculated by the
Monte Carlo differential-sampling methods described in
the this paper.

IV.A. Derivatives of the Kernels

The Monte Carlo game consists of two kernels: trans-
port T and collisionC. These are expressed as probabil-
ity densities and are sampled by the Monte Carlo game.

The transport kernel is expressed as

T 5 rM mM expS2( rmmmsmD ~22!

for a particle that crosses many regionsm with a path
length of sm in each and finally interacts in regionM.
Using the notation from Sec. IV for the energy-dependent
mass attenuation coefficients, the total mass attenuation
coefficient in each region is

mm 5 am
photmm

phot1 am
cohmm

coh1 am
inc mm

inc , ~23!

where the values of theam
i ’s are 1.

The relative derivative of the transport kernel is then
found to be

1

T

]T

]rm

5 H2mmsm mÞ M

2mmsm 1 10rm m5 M ,
~24!

with respect to any of the region densities. With respect
to one of the cross-section coefficientsam

i , where the in-
teraction typei is photoelectric, coherent, or incoherent,
the relative derivative of the transport kernel is

1

T

]T

]am
i 5 H2rmmm

i sm mÞ M

2rmmm
i sm 1 mm

i 0mm m5 M .
~25!

The collision kernels for interaction typei is ~in the
material where the reaction is taking place!

Cphot 5
aphotm phot

m
~26!

Ccoh 5
acohmcoh

m
Pcoh~V r V' ! ~27!

Cinc 5
aincm inc

m
Pinc~V, E r V', E ' ! , ~28!

where thePi terms represent the scattering distributions for
photons of direction and energy ofV, E to scatter to di-
rection and energy ofV', E ' . The relative derivative of the
collision kernel for reaction typekwith respect to the cross-
section multiplierai is ~suppressing the subscriptm!

1

Ck

]Ck

]ai 5 H2m i0m i Þ k

2m i0m 1 10ai i 5 k .
~29!
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Since none of the collision kernels depend on the density of the material,~10Ck!~]Ck0]r! 5 0. Derivatives of the
collision kernels in one region with respect to a parameter in another region are also 0.

The double partial derivatives of the transport kernel can also be found to be
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and
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and the double partial derivatives of the collision kernels are~again, suppressing the subscriptm!
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Any double derivative of any of the collision kernels with
respect to density is zero.

IV.B. Derivatives of the Tally Contributions

The relative derivatives of the tally contributions must
also be found with respect to each of the parameters. Each
of the four responses and the point-detector contribution
for the scattered image calculation will be considered in
turn.

IV.B.1. Energy Deposited

The first response is the energy deposited in a re-
gion. In an analog game, the contribution is justc 5 E,
the current energy of the particle for a photoelectric ef-
fect orc5 Ee, the energy of the Compton electron for an

incoherent scatter. The relative derivatives of these with
respect to the density of a region or any of the cross-
section coefficients are zero. If implicit capture is being
used, the contribution at each interaction is thenc 5
Eaphotm phot0m. The relative derivatives are then similar
to that of the photoelectric collision kernel:

1

c

]

]r
c 5 0 ~34!

and

1

c

]

]ai c 5 H2m i0m i [ @coh, inc#

2m i0m 1 10ai i 5 phot .
~35!
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The relative double derivatives are then
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~36!

IV.B.2. Total Flux

For flux computed by the path-length estimator, the
contribution to the tally isc 5 s0V, wheres is the path
length through the region. This is not dependent on any
of the parameters used in this study, so the derivatives
and double derivatives are all zero.

IV.B.3. Exposure

For exposure in a region, the path-length estimator
is also used. The contribution to the tally is the product
of the path lengths, the current energyE, and the mass
attenuation of air~at STP! at that energy~men~E!0r!air ,
giving c 5 ~e0w!~sE0V !~men~E!0r!air , wheree is the
electron charge andw is the amount of energy needed
to ionize air. This is not dependent on any of the param-
eters used in this study, so like with the total flux con-
tribution, the derivatives and double derivatives are all
zero.

IV.B.4. Dose

Because of the low X-ray energies, secondary elec-
trons are not tracked. For the calculation of dose in a re-
gion~energy deposited divided by the mass of the region!
in an analog game, the contribution to the response tally
is simply c 5 Ed 0rV, whereEd is the energy deposited
~currentE for photoelectric orEe for incoherent scatter!
andV is the volume of the region. The derivatives of the
contribution with respect to parameters of the same re-
gion are

1

c
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]r
c 5 2 10r ~37!
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1
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]

]ai c 5 0 . ~38!

The relative second derivative with respect to the den-
sity of the region is

1

c

]2

]r2 c 5 20r2 . ~39!

If implicit capture is being used, at each interaction,
the contribution of

c 5
E

rV

aphotm phot

m
~40!

is scored to the dose tally. The derivatives of this contri-
bution with respect to parameters of the same region are
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The relative double derivatives are
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and
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IV.B.5. Point Detector

For creating the scattered image, at each interaction point, the code computes the probability of both a coherent
and incoherent scatter to each pixel in the image. This is very similar to the point-detector scheme used in many
codes. The contribution to a pixel of areaA and normal vector[n, and located in direction<V' from the interaction site
and interaction typej ~coherent or incoherent scatter! occurring in regionM is

cj 5
aM

j mM
j

mM

P j ~V, E r V', E ' !expS2( rmmm
' smD AV'{ [n

S( smD2 , ~46!

wheresm is the distance traveled through the various regions between the interaction site and the image pixel. After
the scatter, the energy may change, and the new mass attenuation coefficientsmm

' ~and each of their component cross
sections! are evaluated at the new energy.

The derivatives of the contribution are
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The second derivatives are
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The point-detector algorithm was only used in calculating the scattered image. Because of space limitations, only
the derivative and second derivative of the image with respect to one parameter is found by MCMIS-DS. With this
limitation, cross derivatives such as~]0]am

j !~]0]rm!ck are not needed.
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IV.C. Implementation

Implementing thedifferential-samplingscheme for the
responses~four tallies and the images! of the MCMIS code
is fairly simple. For every responser, a subtallyq~r ! is kept.
At the end of each history, the subtallies are added to the
main tallies, and the squares of the subtallies are added to
the main variance tallies. For each combination of re-
sponser and parametera, a derivative subtallyq~r,a!
is kept. Similarly, for every combination of response,
parametera and parameterb, a second derivative sub-
tally q~r,a,b! is kept.At the end of each history, these sub-
tallies are added to the main derivative tallies, and their
squares are added to the derivative variance tallies.

Independent of the responses, other accumulators are
kept. For every parametera, the accumulatorta is kept as
an element of an arrayt~a! for the current sum of the rel-
ative derivatives of the kernels. For every pair of param-
eters, the two types of second derivative accumulatorst1,a,b
andt2,a,b are kept in two other arrays,t1~a,b! andt2~a,b!.
These accumulators follow the photon path, similar to the
weight of the photon.~Here we have dropped thei super-
script denoting thei ’th history. It is clear that the same ac-
cumulatorscanbeclearedand reusedwitheachhistory.The
j superscript has also been dropped since these accumu-
late over each segment for the history.!

During a history, the accumulatorsta, t1,a,b, andt2,a,b
are updated at every transport step and collision for every
parametera andb. The subtally for a particular response
derivative is updated only when the subtally for that re-
sponse is updated. In general, whenever a subtally for a re-
sponse is about to be updated, the following also occur:

1. Calculate the segment contribution to the tally~tally
numberZ! ascij and set the tally score as the photon weight
multiplied by the segment contributionscore5 wcij .

2. Calculate all relative derivatives and double de-
rivatives ofcij .

3. Update the response subtallyq~Z!5q~Z!1score.

4. Update every derivative subtally with respect to
every parametera

q~Z,a! 5 q~Z,a! 1 score3 S 1

cij

]

]a
cij 1 t~a!D .

5. Update every second derivative subtally

q~Z,a,b! 5 q~Z,a,b! 1 score

3 St1~a,b! 2 t2~a,b! 1 t~a!t~b!

1
1

cij

]2

]a]b
cij 1 t~b!

1

cij

]

]a
cij

1 t~a!
1

cij

]

]b
cijD .

Note that the current values up to this segment ofw, t~a!,
t~b!, t1~a,b!, andt2~a,b! are used here.

At the end of a history, the response subtallies are
added to the main tallies, and the squares of the subtal-
lies are added to the variance tallies. The same procedure
is used for the first derivative subtallies and the double-
derivative subtallies.

After all N histories of the simulation are complete,
the final calculations can be performed. First, the final
responses are found by dividing the tally by the number
of histories, and the associated standard deviation is found.
Then, the derivatives of the responses are found by di-
viding the derivative tallies by the number of histories,
and then their standard deviations are calculated.

IV.D. Results

A simple test can be used to demonstrate that this
differential-sampling scheme is calculating the right val-
ues of the derivatives. Simulations of a 1.5-cm-thick piece
ofLucite ina20-keVsynchrotron imagingbeamweremade
at a set of values of the Lucite density or the values of the
coefficients in the cross sectionm5aphotmphot1acohmcoh1
aincminc. Within each set, the other parameters were kept
constant at their nominal values. Each simulation calcu-
lated the four responses~Ed , f, X, andD! in the Lucite
slab—the derivatives with respect to each parameter and
the second derivatives with respect to each parameter.

By comparing the derivatives calculated by differen-
tial sampling to the derivatives estimated from the re-
sponses calculated by the separate runs of a set, the validity
of the differential sampling can be shown. This is done in
Fig. 3 for the dose with respect to the Lucite density and in
Fig. 4 for the energy deposited with respect to the coeffi-
cient for photoelectric absorption. Figures 3a and 4a show
the response at the various values of the parameter. Fig-
ures 3b and 4b show the derivative of the response with re-
spect to the parameter calculated by differential sampling
~the points! and the estimate of the derivative~line! by tak-
ing the derivative of a polynomial fitted to the Monte Carlo
responses. Figures 3c and 4c show the second derivative
of the response with respect to the parameter calculated by
differential sampling~the points! and the estimate of the
derivative~line! by taking the derivative of a polynomial
fitted to the Monte Carlo first derivatives.

The variance of the derivatives calculated by the
differential-sampling method outlined in this paper were
also checked to see if they correctly predicted the sto-
chastic variance. The variance found in one hundred sep-
arate Monte Carlo runs using different random seeds did
indeed match the average of the variances predicted by
differential sampling for those runs.

V. MCMIS-DS WITH A BREASTLIKE PHANTOM

To show how differential sampling can be applied
to mammography problems, a series of simulations and
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calculations were carried out for a 4-cm-thick com-
pressed breast in the Fischer Senoscan imaging system.
The two questions that will be answered by the code are
as follows. First, what is the sensitivity of the dose to the
breast tissue with respect to the parameters of the breast
tissue and the tumor tissue? Second, what density in-
crease must a tumor have over that of ordinary breast
tissue to be visible in the image? Both of these questions
are important in medical physics, and they can be an-
swered by using MCMIS-DS.

The reference model for the simulations included a
compressed breast, consisting of ICRU 50050 water0
lipid whole breast material,16 with a spherical tumor of
the same material in the center. The breast is covered with
a 0.4-cm-thick skin layer that is also made of this mate-
rial. A cross section of this geometry is shown in Fig. 5,
which also shows very thick skin on the sides of the breast.
This was done so that doses reported for the simulations
include only the breast material in the center portion of

Fig. 3. ~a! Dose~rad0photon! in a slab of Lucite for dif-
ferent values of the density,~b! ]D0]r, and~c! ]2D0]r2. The
points with error bars are from independent Monte Carlo cal-
culations. The lines in~b! and ~c! are the derivatives of the
curve fit of the Monte Carlo data points from~a! and ~b!,
respectively.

Fig. 4. ~a! Energy deposited~keV0photon! in a slab of Lu-
cite for different values of the photoelectric cross-section co-
efficient, ~b! ]Ed 0]aphot, and~c! ]2Ed 0]~aphot!2. The points
with error bars are from independent Monte Carlo calcula-
tions. The lines in~b! and~c! are the derivatives of the curve
fit of the Monte Carlo data points from graphs~a! and ~b!,
respectively.
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the breast. Skin dose tolerance limits are much higher
than for the breast tissue.

In addition to the geometry shown in Fig. 5, the Fis-
cher scanning-slot detector system was used in the sim-
ulation. The measured coherent scattering form factor of
human breast tissue8 was used for the breast, skin, and
tumor regions. For the images, a pixel size of 100mm
was used for the fine-mesh images~unscattered, first de-
rivative, and second derivative!, and a pixel size of 0.5 cm
was used for the coarse-mesh images~scatter and its
derivatives!.

To simulate a 25-kVp mammogram on the Seno-
scan, 20 monoenergetic simulations were made from 6
to 25 keV, at every 1 keV. The X-ray spectrum for a tung-
sten anode tube was taken from Boone, Fewell, and Jen-
nings17 and used as a weighting function to add together
the monoenergetic images, the dose information, and the
sensitivity information.

For each monoenergetic code run, an average of
6.5 min on a Sun Ultra 60 was required to create the three
fine-mesh unscattered images. For the coarse-mesh scat-
tered images, an average of 2.25 h was required. The
scattered-to-primary~S0P! ratio for this simulation of a
4-cm compressed breast was 20% for most of the breast,
with lower values toward the edges of the irradiation field.
With this large anS0P ratio, the times for the scattered
image calculations were selected to reduce the uncer-
tainty in the polyenergetic scattered image to,2% over
most of the image. In total, for one polyenergetic Seno-
scan simulation, 48 h of computer time on a Sun Ultra 60
were required.

V.A. Sensitivity of Breast Region Dose

To answer the first question about the sensitivity of
the dose in the breast tissue, each monoenergetic run of
MCMIS-DS found the derivatives of all of the tallies for
the breast region with respect to all of the parameters of
the breast region and the tumor region. The results of these
runs were then added together with the same source spec-
trum weighting function to find the sensitivities for the
polyenergetic spectrum. In addition to the tallies for the
breast region, 32 first derivatives and 256 double deriv-
atives were found. A few of the quantities calculated by

MCMIS-DS for the combined 25-kVp spectrum are listed
in Table 1.

From these values, the sensitivities of the breast dose
to the different parameters were found. These sensitivi-
ties are displayed in Table II, and from them, it is clear
that the dose in the breast region is much more sensitive
to the parameters of itself than to the parameters of the
tumor region. Further analysis shows that the dose is more
sensitive to the breast tissue density~or its total cross
section! and the photoelectric cross section than to either
of the scattering cross sections.

The foregoing information can also be used in prop-
agating errors. The 0.15% relative uncertainty reported
in Table I for the dose to the central portion of the breast
is the stochastic error only. Using the value for~ r0D!~]D0
]rbreast!, one could determine that a 1% uncertainty in
the breast tissue density gives an;0.64% uncertainty in
the dose value. A similar 1% uncertainty in the tumor
density gives only a 0.00067% uncertainty in the dose,
which makes sense considering how little the density of
a small tumor should affect the absorbed dose in the breast.
These uncertainties could then be combined with the sto-
chastic uncertainty to give the total uncertainty in the dose
value.

V.B. Tumor Density and Visibility

For the second question of what density difference a
certain size tumor must have in order to be visible in the
image, the code was instructed to find the derivatives of
the images with respect to the density of the tumor re-
gion. These were calculated at the same time as the fore-
going sensitivity figures.

The runs computed the images from a breast that con-
tained a tumor of the same density, which is referred to

Fig. 5. Geometry of the compressed breast simulation
using the Fischer Senoscan. The breast support and compres-
sion paddle hold the breast tissue to a 4-cm thickness. Only the
center portion is used for the dose calculations; the rest is con-
sidered skin.

TABLE I

A Few of the Tallies and Derivatives for the Breast Region
at 25-kVp Calculated by MCMIS-DS

Quantity~per source photon! Value

Energy deposited,E ~keV! 3.6436 0.15%
Total flux, f ~cm22! 0.0013036 0.16%
Dose,D ~rad! 1.975E213a 6 0.15%

]D0]r ~cm30g! 21.372E2136 0.24%
]D0]aphot ~rad! 6.401E2146 0.3%
]D0]acoh ~rad! 2.288E2176 270%
]D0]ainc ~rad! 1.776E2156 4.2%

]2D0]r2 ~cm60g2! 28.584E2146 0.18%
]2D0]aphot

2 ~rad! 27.188E2146 0.18%
]2D0]acoh

2 ~rad! 3.93E2156 0.54%
]2D0]ainc

2 ~rad! 6.76E215 6 0.6%

aRead as 1.9753 10213.
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here as the reference case. Obviously, a tumor of the same
composition and density as the surrounding tissue would
not be visible in the images. But, MCMIS-DS also com-
puted the first and second derivatives of the image with
respect to tumor density. For a 1-cm tumor, both sets of
Monte Carlo unscattered and scattered images are shown
in Fig. 6. From these images, an image can be created
from a Taylor series expansion for a tumor of any den-
sity close to the reference case. Of course, real clinical
images would not have such a smooth background as
the tissue structure of glands, and fat would be visible
and would somewhat hide the tumor. Ignoring this fact
for the moment, this example is still useful in showing
an application of differential sampling and in providing
useful information for system designers and medical
physicists.

For a 1-cm-diam tumor, the images shown in Fig. 6
were combined in a truncated Taylor series for six dif-
ferent tumor densities:

I ~ r 1 dr! 5 I ~ r0! 1 S ]I

]r
Ddr 1

1

2
S ]2I

]r2D~dr!2 ,

~51!

r0 5 0.92 g0cm3 , ~52!

and

dr [ r0 3 @0.01, 0.015, 0.02, 0.025, 0.03, 0.05# .

~53!

These images were then processed by adding 0.5%
relative noise~typical in Senoscan images! and applying
the MTF. The final six images are shown in Fig. 7. From
this series of images, one can judge what level of density
difference is required before the tumor is visible. Clearly,

at a 2.0% density increase over that of the surrounding
tissue, the tumor is visible, and different observers may
argue about visibility at the lower-density increases.

Series of images for smaller tumor sizes, 0.5 cm and
0.25 cm diameter, are shown in Figs. 8 and 9. The 0.5-cm
tumor is not visible until at least a 2.5% increase in tu-
mor density over tissue density~again, other observers
may argue!. The smallest tumor~0.25 cm! is not visible
until a density increase of 5% over that of normal tissue.
This kind of information is very useful in comparing dif-
ferent mammography systems or in optimizing the spec-
trum or other system parameters for a single system.

The real benefit of the differential sampling and Tay-
lor series approach is the ability to return to the problem
later and add another value ofdr without running any
more Monte Carlo calculations. Once the reference case
image and its derivatives have been calculated, any num-
ber of images can be made with different tumor densi-
ties. This is one big advantage of differential sampling
over correlated sampling. In fact, since the polyenergetic
spectrum was made of the weighted sum of monoener-
getic spectra, the spectrum could be changed, and the
study could be repeated without running any more Monte
Carlos.

Similar perturbation calculations can be made for
the tallies in the breast region with the output from
MCMIS-DS that was shown in Tables I and II. For any
change in the parameters of either the breast tissue or
the tumor~or both simultaneously!, one could calculate
the new quantities.

VI. SUMMARY

We have formulated and implemented differential
sampling in a Monte Carlo code specifically written to

TABLE II

Sensitivities for the Breast Region Calculated from the Doses and Derivatives Found Using MCMIS-DS

Parameters in the

Quantity m5 breast m5 tumor

rm

D

]D

]rm

20.63906 0.28% 26.708E24a 6 5.8%

am
phot

D

]D

]am
phot 0.32416 0.33% 28.066E24 6 3.4%

am
coh

D

]D

]am
coh 1.158E24 6 270% 2.508E2056 50%

am
inc

D

]D

]am
inc 8.993E23 6 4.2% 8.15E2056 23%

aRead as26.7083 1024.
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Fig. 6. Monte Carlo images created by MCMIS-DS for the breast0tumor problem:~a! The unscattered image,~b! the scat-
tered image~c! and~d! the first derivative with respect to tumor density~unscattered and scattered!. The second derivatives are
also shown in panels~e! and~f !.
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Fig. 7. Six images created by a truncated Taylor series for a 1-cm tumor. Each panel is labeled with the percentage increase
in tumor density over that of the breast tissue. Noise and the system MTF have been added to these images, simulating what the
Fischer Senoscan would see for a 4-cm compressed breast.
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Fig. 8. Six images created by a truncated Taylor series for a 0.5-cm tumor. Each panel is labeled with the percentage increase
in tumor density over that of the breast tissue. Noise and the system MTF have been added to these images.
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Fig. 9. Six images created by a truncated Taylor series for a 0.25-cm tumor. Each panel is labeled with the percentage
increase in tumor density over that of the breast tissue. Noise and the system MTF have been added to these images.
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simulate two new and advanced digital mammography
systems. The code uses experimentally measured coher-
ent scattering angular distributions of X rays in mammo-
graphically relevant materials8 and simulates images on
20483 2048 pixels and also calculates the exposure and
the absorbed dose to the sample.5 A variety of variance-
reduction schemes were used to make the image simula-
tion possible on standard computing platforms. The
simulated results showed good fidelity in their compar-
ison to experimental benchmarks on both systems.

Since it is a perturbation technique, differential sam-
pling can reveal a great deal of information without add-
ing much computational cost. Its application to Monte
Carlo problems with variance-reduction methods is no
more difficult than to analog Monte Carlo simulations.
Also, responses to perturbations of several system pa-
rameters can be calculated simultaneously. Since the de-
rivatives of responses and their variances are tallied, the
responses for other variations in the parameter values can
be computed at a later time without having to re-run the
code. This is a considerable advantage over the method
of correlated sampling. The methods presented in this pa-
per make the implementation of differential sampling
much easier for a Monte Carlo code developer when com-
pared to the descriptions presented in the past in literature.

Our code, MCMIS-DS, gives the user considerably
greater flexibility in exploring mammography images that
can be expected for parameter changes than any standard
code could give. Two examples are shown as demonstra-
tions of the implementation of differential sampling. In
the first example, we have shown how to formulate dif-
ferential sampling for a dose-related problem involving
four dose-related tallies for perturbations in sample den-
sity and cross sections. The main thrust here has been to
demonstrate that the response derivatives calculated by
differential sampling and their variance agree exactly with
the numerical derivatives of the response and their sto-
chastic variance. In the second example problem, we in-
vestigated two medically relevant questions, namely, the
sensitivity of the X-ray dose to the breast as a function of
tumor and normal tissue parameters and the discernibil-
ity of tumors of different sizes in an image of the breast
as a function of tumor density in the case of one of the
two mammography modalities~Fischer Senoscan!.

It should be stressed that the MCMIS-DS code itself
is not as important a part of this paper as the ideas used
in its development. The description of differential sam-
pling and its application to the mammography image sim-
ulation package are expected to provide others with the
ability to adapt and implement differential sampling for
their own applications.

Concerning mammography studies, it has been shown
that a tool with the capabilities of MCMIS-DS can pro-
vide useful information. In sensitivity analysis and per-
turbation studies, these tools are very useful in comparing
imaging systems and in designing and optimizing single
systems. In the future, the concepts of the MCMIS and

MCMIS-DS package will be refined and built into a tool
for the mammographic imaging community.

Basic research into differential sampling also needs
to continue. Two parameters were not explored in this
project, and they are very important to medical imaging:
the source energy of the photonsE0 and the physical di-
mensionssof regions. Similar types of parameters as these
two are also important in many other areas, and it would
be of great benefit if differential sampling could be used
for perturbations of these parameters. More research is
required to do one of the following: either show how dif-
ferential sampling can calculate]0]s and]0]E0 or show
conclusively that these derivatives cannot be calculated.
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