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Abstract

One of the two methods for performing a perturbation calculation using Monte
Carlo simulations is by differential sampling. The fundamental theory of differen-
tial sampling in Monte Carlo is well-presented in the literature but algorithms for
implementation of the theory are not well-documented. The development of a dif-
ferential sampling scheme and its implementation from the viewpoint of the Monte
Carlo practitioner are presented here. Simplified examples of radiation transport
and criticality of a multiplying system are used to illustrate the algorithms for im-
plementation. Notes on applying the same schemes to more complex problems are
also discussed. © Elsevier Science Ltd. All rights reserved.
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1 Introduction

In Monte Carlo simulation of neutral particle transport, there is often a need
to calculate the difference in responses between two cases of the same prob-
lem that differ only very slightly from each other. Applying the Monte Carlo
method independently to each case and calculating the difference in the two
responses is not feasible because the variance of the two calculations may
completely hide the actual difference. Hence, the need for Monte Carlo per-
turbation methods. There are two standard methods for determining the effect
of small perturbations in the parameter values on the response calculated by
Monte Carlo simulation: (i) correlated sampling and (ii) differential sampling.
These methods permit perturbations of only material parameters and not in
geometry or dimensions.

In correlated sampling, a Monte Carlo calculation is performed for one case
while the transport paths and interactions are assumed to be the same for the
second case. The weights of the particles for the second case are calculated at
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each transport step and each interaction and are then used to calculate the
response for the second case. Since the cases are fully correlated, the correct
difference between responses for the two cases can be calculated so long as
the second case is only a small perturbation of the first. The latter constraint
is a consequence of the result that correlated sampling can have unbounded

variance as shown by Rief (1986, 1996).

In differential sampling, the response for the perturbed case is calculated us-
ing a truncated Taylor series expansion around the unperturbed parameter
values, outside of the Monte Carlo calculation. The required derivatives of
the response with respect to the parameters are calculated during the Monte
Carlo calculation of the unperturbed case and hence the name “differential
sampling”.

By calculating the derivative of a response along with the response itself,
differential sampling offers certain benefits over correlated sampling, including:

— Perturbation studies — instead of running the Monte Carlo code multiple
times, a base response r can be calculated as a function of the set of input
parameters p. If this code also calculates the derivatives of the response
with respect to each parameter, 2 a , and the second derivatives, ap ap , and

so on, then the value of the response for a small perturbation of p can be

found for any set of parameters by a Taylor series expansion. Thus,

r(p + dp) = r( Z( )5}31-}- ZZ(ap, )5p15p] (1)

In practice, the series has to be truncated after a few terms (usually after
the second-order terms) and therefore it is only applicable for values of
(p + dp) close to p. Correlated sampling calculates all of the perturbed
cases along with the reference case - differential sampling calculates the
perturbed cases outside of the Monte Carlo code. If a new perturbation
case is to be investigated, no more code runs would be required once the
the reference case and its derivatives had been found.

— Sensitivity studies — the derivatives gp’ can also be used to find the sensitiv-
ity of the response to uncertainties in the input parameters. For example,
which cross sections affect the response the most and need to be known with
the highest accuracy? Differential sampling can reveal this.

— Total error — the uncertainty expressed in most Monte Carlo studies is only
the stochastic uncertainty from the calculation. This does not represent
the propagated uncertainties from any of the input parameters. With the
sensitivities found by differential sampling, the total uncertainty can be
stated for a Monte Carlo response.

Differential sampling can be applied to many problems, even eigenvalue prob-
lems and can also be used in conjunction with variance reduction techniques.
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1.1 The Work of Rief

Rief (1984) showed the mathematical basis of the two methods for perturba-
tion studies in Monte Carlo — one based on correlated sampling and the other
based on a second-order Taylor series calculation. For both methods, the anal-
ysis starts out by expressing the solution to the integral form of the transport
equation (where x and y are the position, energy and direction co-ordinates
in 6-D phase space, K is the scattering kernel, S is the source term, and p is
the parameter vector)

Ux;p) = [ U(yip)K(y - x;p)dy + S(x;p) @)
with an infinite Neumann series solution given by

\lep Z/ /I(Un"’xp)-[‘(unl"*ump)
n=lp

K(u; — uy;p)S(u; — ug; p)duy, - --dug

:Tg }{ Z (H I{idui) Soduo 3)

i=1

The scattering kernels K; can be expressed as a collision kernel multiplied by a
transport kernel, C;T;. For the Taylor series approach, Rief (1984) then showed
that the derivative of the solution to the transport equation with respect to
one parameter p; can be expressed as a similar infinite series.

d¥(x;p) Z / / { 3 I?g(p,} [H Kidu; - Soduo] (4)

ap] =1

This series differs from the original solution series by a term consisting of the
sum of the relative derivatives of the scattering kernels (the term in {}). So,
it is apparent that the derivative of a response can be tallied along with the
response itself.

Rief (1984) then gave some examples of derivatives with respect to different
parameters and some flow charts for the calculation of perturbed cases along
with the reference case. Rief’s descriptions were quite mathematical and did
not easily show how one would apply the method of differential sampling to
his own problem.

In a book on uncertainty analysis, Rief (1988) presented a chapter on using
the differential sampling to calculate sensitivities for Monte Carlo uncertainty
analysis. He showed that there are two sources of uncertainties that must
be considered in a Monte Carlo calculation, the uncertainties of the data
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combined with the stochastic uncertainty of the calculation itself. A Monte
Carlo response set, r, calculated as a function of a set of parameters p with
uncertainties §p (p = p® + ép), can be expressed as

r = f(p"+6p) + 6p (5)

where ép represents the stochastic error in the Monte Carlo simulation. A first
order Taylor series expansion of the function f for one of the above responses
r; in the set r would be

ofi
ri= fi(p%) + Y 8_;%

k

opr + 6pi (6)
pO

Letting r® = f(p°) and ér =r — 1%,

Spr + bp; (7)

6"'1’ = Z aﬂ
k p°

apx

The partial derivative of the function f; with respect to parameter py is the
sensitivity of the response to that parameter. So to calculate the uncertainty
ér; in r;, the sensitivities must be known. To compute sensitivities, differential
operator sampling can be used.

Sarkar and Rief (1996) extended the differential sampling schemes to find the
derivatives of the variance with respect to the biasing parameters used in a
non-analog game.

1.2 The Work of McKinney in MCNP™

MCNP™Version 4B (Briesmeister, 1997) computes perturbations using a first
or second order Taylor series approach. The description in the manual is brief
and mathematical, which does not give the reader an understanding of how
it is really applied to the code. The description follows the earlier work of
McKinney (1984; McKinney and Iverson, 1996).

In this version of MCNP™, users can calculate responses to perturbations in
to material density, material composition or reaction cross section data. Many
perturbations can be done at once. Limitations include the inability to work
with point detectors which is expected to be remedied in the next version
and a problem with tallies that are based on the parameter of interest. The
solution to the second problem has been fixed by a patch first (Densmore,
McKinney and Hendricks, 1997) and later as a correction to version 4C (Hess,
Hendricks, McKinney and Carter, 1998).
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1.8 Meeting the Needs of the Practitioner

The Monte Carlo practitioner needs a coherent description of a system of
accumulators and tallies used to determine the derivatives of the response
with respect to a parameter. The computational schemes must be described in
terms of the Monte Carlo game that is being played and not described in terms
of the transport equation. They must also be written out in an understandable
way. This paper attempts to do this and then illustrate the implementation
using two simple examples.

The notation and forms used in this article are similar to those used by Perel et
al. (1996) in their paper on applying differential sampling to a point detector
problem. Their work explained in more detail than the above references how
one would implement differential sampling in a code.

A clean approach is used in this paper to explain differential sampling in
general following some development by Perel et al. (1996). It first describes a
Monte Carlo game and then adds differential sampling to it. Hopefully, this
approach will serve other Monte Carlo practitioners as well as it did for us in
our applications.

2 Monte Carlo Games and Derivatives

For the purpose of differential sampling, Monte Carlo particle transport games
can be divided into two types:

- games with only one contribution to the response tally per history and
— games with multiple contributions to the response tally in one history.

Even though the first type is really a subset of the second type, it is useful to
describe it separately since it is so much simpler. Games are described by a
series of random walks, with each step in a history represented by a probability
P.

2.1 Simple Games

In a simple game, where only one score to the response tally is made during
a history, the response is an average over N histories of the contributions c;
from each history i, weighted by product of the probabilities for the particle
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to survive to the J** segment of the path, when that contribution is made.

L3 (eI

F=— C; P (8)
N =1 7=1 !

Of course, the probabilities P;; are not explicitly calculated and multiplied

together to form the product but are instead the result of the various stochastic

choices made during the history of J segments.

An example of this type of game is the determination of the amount of energy
escaping from a certain region, where the contribution is £ and the product of
the P,;’s is either 1 (particle escapes) or 0 (particles does not escape). Another
example is the determination of the number of particles absorbed in certain
region, where the contribution is 1 and the product is either 1 or 0. As each
history finishes, the response from that history, r; (the contribution multiplied
by the product of segment probabilities, r; = ¢; Hle P;;) is added to a tally
and the square of r; is added to another tally, for later use in determining the
variance of the response.

Most biasing schemes would not fall into this category of basic problems since
they tend to make multiple contributions to tallies during one history. In the
case of simple biasing games, such as implicit capture applied to the energy
escaping problem above, the contribution is the same but the product of the
segment probabilities, H;-le P;;, is now the current weight of the particle.

2.1.1 First Derivatives

For Monte Carlo games of the simple type, the derivative of the final response
with respect to any problem parameter a is

a_ o1 X I
557‘-—5& -]—V-;Cz‘j_lillpij} (9)
1 a .
:W?Z;crazj]_;‘[lpij (10)
1 4 7 19
—NZ:I (Cij:[___-'[l Pi]') {]gl —ﬁ;b—a‘ﬂ']‘} (1)

which is just the average of each score of the histories, r;, multiplied by the
sum of the relative derivatives from each segment. As pointed out by of Rief
(1984), these probabilities are either transport, T, or collision, C', probabilities.



Differential sampling 45
Thus,

J
Il P = TuCiaTaCiz - - - (12)

i=1

where the series is terminated in the J** segment by either an escape or an
absorption. The relative derivatives of the kernels with respect to parameter
a can be easily found. Here it is assumed that for simple games of this type,
the contribution ¢; does not depend on the parameter a. Examples of this
type of contribution are counting particles that leave a region or finding the
energy incident on a purely absorbing region. If the parameter of interest
was density then finding the derivative of dose would not fall into this simple
category, since the contribution of dose is related to E/pV, which depends on
the parameter of interest.

As the history progresses, an accumulator for the derivative of the segment
probabilities with respect to each parameter is kept

poyL2p (13)
" Pyda”
At the end of the history, when the history score r; = ¢; H]J=1 P;; (which is
just r; = we;, where w is the weight) is added to the response tally, the t;
accumulator is multiplied by the history score to get the derivative score,
q: = r;ti. This derivative score is added to the derivative tally and the square
of the derivative score is added the derivative variance tally.

7. (14)

o
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-
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B.=Y (&)’ (15)

M=

T
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-

At the end of the game, just like the response, the final value of the derivative
of the response with respect to a and its standard deviation can be found

0, 1
EZT_ NAa, (16)
1|1 d_\?
Oo7/0a = | 37 [‘N“Ba - (%7) } (17)

The real key to differential sampling is then finding the expressions for rela-

tive derivatives %%Pﬁ for both the collision and transport kernels for every
]

parameter a.



46 D. E. Peplow and K. Verghese

2.1.2 Double Derivatives

Derivatives with respect to any combination of two parameters (including
second derivatives) of the Monte Carlo response 7 can also be calculated. For
the simple Monte Carlo game, the double partial derivative of the response
with respect to parameters a and b is

J 0 _ 1 N9 g J
Cinr (18)
3bda ; dbda ;-
1 N
Ni:l =1 7=1

1
J J o* .1 9P; 1 OP;
Z(C’HPU) {;73“ Badb’ T 2P, 9a P, 9b

1
J
+ (]z::l P %Pij) o By b Y

M=
|H
|
)
N———
| —
/:
©

From above, it appears that four accumulators are needed for the history:

o= i sl (20)
té,a,ﬁg}%a;j PIU a(;j;j (21)
¢ :jé -f%a;;” (22)
t :]Z:; }i—ja;j" (23)

Notice that ¢ and ¢} are already being kept for the first derivative calculation,
so there are really only two additional accumulators that are needed for each
second derivative. The notation ¢} , , and ty .5 1s to indicate that two types of
sums need to be totaled in order to calculate a double derivative.

At the end of each history, these accumulators and the history score, r; =

Ci Hle P;; (computed as r; = wc;), are used to find the double derivative
score for this history as
Qoo = (1) { s = thas + 1t} (24)

When the response scores for the history are added to their tallies and the
derivative scores are added to theirs, each double derivative score is then added
to its two tallies,

N
Aap = Z q;,b (25)
1=1
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N

Buy=Y(dks)" (26)

=1

where the first tally is for the double derivative and the second tally is for
the variance of the double derivative. In addition to the relative derivative
expressions for the T and C kernels, the relative double derivatives must also
be found.

2.2 Multi-Contribution Games

The second type of Monte Carlo game is where multiple contributions to the
response tally are made during a history. Each segment j of history : makes
some contribution, c¢;;, weighted by the product of segment probabilities up
to that point.

1 N J
T = ]—V- Z Cij H P (27)

i=1 j=1 k=1

where J is the total number of segments in the history. Unlike the simple
Monte Carlo game strategy we have so far discussed, the contribution ¢;; here
is treated as being dependent on the parameter of interest. As the history
progresses, the contributions are added not to the main response tally, but to
a subtally. At the end of the history, the subtally value is added to the main
tally and the square of the subtally value is added to the variance tally.

An example of a game like this would be the calculation of flux by the path-
length estimator. Each time the particle crosses a region, the path length (the
contribution ¢;;) multiplied by the product of the segment probabilities up to
this point, [T}, Pi, is added to some subtally. The product is equal to w,
the current weight of the particle (or 1 if no variance reduction methods have
been employed). As the history continues, if the particle again crosses the
same region, the new path length multiplied by the current weight is added to
the subtally, At the end of the history, the subtally value is added to the main
response tally and the square of the subtally is added to the variance tally.

The game description above can also be used for games where splitting or point
detectors are being used. When a particle is at a given point in the history,
the contribution to a point detector or a last flight estimation is made, and
then the history continues on. The methods to calculate derivatives for these
biased Monte Carlo games are the same as for the basic games.
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2.2.1 First Derivatives

For a multi-contribution Monte Carlo game, the derivative of a response with
respect to parameter a is

1 N J J ]
=N§§(C’JU ){8 Laanp @

As mentioned earlier, the values of P, are not necessarily calculated but are
the result of the events that happen during the history. With each path seg-
ment, the response for the segment r;; = ¢;; [Ti=; Pi is calculated in the code
as 7;; = we;; and is added to the response subtally. At the same time, a sub-
tally ¢¢ for the derivative is also updated with the derivative score for that
segment

J 0
:Z T'z] { aaclj + tU} (30)

where 7 is the current value of the relative segment probability derivative
accumulator up to this segment,

td = ij 19y (31)
@ k=1 Pik 8@ Zk

In addition to the relative derivative of the kernels, the relative derivative of
the contribution ¢;; needs to be found.

At the end of the history, the response subtally is added to the main response
tally and its square is added to its associated variance tally. Also, each deriva-
tive subtally is added to the main derivative tally and its square is added to
a variance tally by calculating

N .
A=) 4, (32)

B.=Y(4) (33)

At the end of the game, A, is used for finding the first derivative (the sensi-
tivity) with respect to parameter a and B, is used for finding the variance of
the first derivative.
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2.2.2 Double Derivatives

The double partial derivative with respect to parameters a and b of the re-
sponse of a multi-contribution game is

80_ 00 |1& i
%Ez_r_ %5; [-}\7 ;;Cn’kr[ Pik:I (34)

1 LI : 1
=37 ) -Pz -pz
N i=1 j=1 E H ¢ k 1 zk aaab k

1 9Px 1 0Py
¢ Oa Py 0b

19 i1 9
+ Cij B i 35
(t]ab J) (kzzzlpikaa k)} (%)
which can be more conveniently expressed as
00_ 11X y 1 9
2 L= AP L ij =Y .
Fb3a ~ N 2 X [(’"”){tlva’b Bas + B0+ g
19 1 0
t'] ..
+ - FTAH + ty p aac,J}] (36)
where the two new accumulators (type 1 and type 2) are
Z L9 _p, (37)
Fas = * P aaab
3 1 9Py 1 9Py
ty - - 38
2,a,b kz:l zk da Rk ab ( )

and are used with their values up to the current segment. During the history,
every time the response subtally is updated with the response score, the sub-
tally for each double partial derivative is updated with the double derivative
score

J .
Gap=2_ (rij) {t;],a,b t s+ 108
J=1
1 o° 0 0
Lt e+t —c 39
+cij8aabcj+ ¢ iijCJ+ b ijaac]} (39)
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i and t} accumulators. The relative
double partial derivatives of the contributions must also be found.

using the current values of the t, ,, 5, , 1./

At the end of the history, when the main tally is updated by adding the
response subtally, each double partial derivative subtally is added to the main
double partial derivative tally and its square is added to the variance tally.

N
Aa,b = Z q;,b (40)
=1

N

Bup=Y" (%) (41)

1=1

Aqp is then used for finding the double derivative and B, is used for calcu-
lating the variance of the double derivative.

The relative derivatives of the contributions and of the transport/collision
kernels have not been discussed yet since they are problem-dependent. The
easiest way to understand these is through an example. Most problems will
have similar T and C kernels and the contributions depend on what responses
(tallies) one is trying to determine.

3 An Example Problem

We shall now implement the above procedure on a simple problem. Consider
a sphere with a point source of monoenergetic photons at its center. The
sphere is made of a material of density p, with mass attenuation coefficient
for scatter p,, and mass attenuation coefficient for absorption w,. The total
mass attenuation coefficient is y = y, + p,. For simplicity, we assume that the
mass attenuation coefficients are not energy-dependent and that scattering is
isotropic. We will also assume that a scatter reduces the energy of the photon
by 10%. None of these simplifications detract from the methodology we wish
to illustrate. For this problem, five responses will be investigated:

(i) the energy deposited in the sphere

(ii) the energy escaping the sphere

(iii) the average flux in the sphere, using the path-length estimator

(iv) the average flux in the sphere, using the collision density estimator

(v)

In addition to these five responses, their first derivatives with respect to s, fa
and p will be calculated (5 x 3 of them), as well as every combination of double

derivative (5 x 6 of them). (Note: For n parameters, there are n(1+(n—1)/2))
unique double derivatives.)

v) the energy arriving at a point detector outside of the sphere



Differential sampling 51

3.1 Derivatives of the Kernels

The first step in finding all the derivatives for the above quantities is finding
the relative derivatives for the transport, T', and collision kernels, C, for each
parameter. The kernels for this problem are defined as

pe~?#* interacts within sphere
=1’ P (42)

e rHe escapes from sphere

Cs= 4175‘;’ isotropic scatter to any direction (43)

Co= £2 absorption (44)

where s is the distance traveled in the sphere material. These are not explic-
itly calculated in the Monte Carlo code but are integrated into the sampling
routines.

The relative derivatives of the transport kernel are

1/p ~ ps interacts within sphere
10, _JYu=r P (45)
T Ouy —ps  escapes from sphere
1/p — pus interacts within sphere
10, _ [p—p p (46)
T op —pus  escapes from sphere

where i is either absorption or scatter. The relative derivative of the collision
kernel of type g with respect to mass attenuation of type f is

1 9 Vps—1/p f=g
——C, = 47
Co Ons “Yu  f#g o

The relative derivative of either collision kernel with respect to density is zero

(E.lggzcg = 0) since neither collision kernel depends on the density.

The relative double partial derivatives of the transport kernel are

1 8 —2ps/p + p?s? interacts within sphere (48)
T Ops0p, +p%s? escapes from sphere
1 8 1 —~3s 4+ pus? interacts within sphere
e /i pH (49)

T Ous0p pus® — s escapes from sphere
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2 —2s + 1%s? interacts within sphere
1o plo+u p (50)

urs? escapes from sphere

The relative double partial derivatives of the collision kernel of type h with
respect to the mass attenuation coefficients of type f and g are

-2 f=g=h

— =¢ 2 _ 1 f_ = 51
Ch OpsOpg C u2 o ppn f=hxorg=h (51)
= f#hand g#h

3.2 Derivatives of the Contributions

Even though the second response of the five responses in this example problem
can be calculated as a Monte Carlo problem of the basic type, all of the
responses in this example will be treated as problems of the multi-contribution
type. Each response has to be cast into the form of

F:NiZcuHRk (52)

For the five responses of this problem, the contributions, ¢;;, are

(i) energy being deposited (current energy E if absorption, 10% of current
energy F if a scatter reaction).

(ii) current energy E that escapes

(ii1) length of track, s, in the sphere, for each motion

(iv) 1, for every collision

(v) for the point detector, where D is the total distance to the point detector
from the current location, {2 is the direction of travel to the point detector
from the current location and 7 is the unit vector normal to the surface
containing the point detector

E—‘e=##sQen  source photons
o = irD? (53)

Ete —5re”?# Qi non-source photons

where F is the energy at the current interaction site.
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3.3 Algorithm

Implementing the differential sampling scheme for the five responses of this
sphere problem is fairly simple. For every response r, a subtally ¢(r) is kept.
At the end of each history, the subtallies are added to the main tallies and
the squares of the subtallies are added to the main variance tallies. For each
combination of response and parameter, a derivative subtally ¢(r,a) is kept.
Similarly, for every combination of response, parameter a and parameter b, a
second derivative subtally ¢(r,a,b) is kept. At the end of each history, these
subtallies are added to the main derivative tallies and their squares are added
to the derivative variance tallies.

Independent of the responses, other accumulators are kept. For every parame-
ter a, the accumulator ¢, is kept as an element of an array ¢(a) for the relative
derivative of the kernels. For every pair of parameters, the two types of second
derivative accumulators ¢ , 3 and t5 , 4 are kept in two other arrays, t1(a, b) and
t2(a,b). These accumulators follow the photon path, similar to the weight of
the photon. (Here we have dropped the ¢ superscript denoting the i*® history.
It is clear that the same accumulators can be cleared and reused with each
history.)

During a history, the accumulators ¢,, t1,5 and t2,, are updated at every
transport step and collision for every parameter a and b. The subtally for
a particular response derivative is updated only when the subtally for that
response is updated. In general, whenever a subtally for a response is about
to be updated, the following also occurs:

- Calculate the segment contribution to the tally (tally number Z) as ¢;;
and set the tally score as the photon weight multiplied by the segment
contribution, score = wc;;.

- Calculate all relative derivatives and double derivatives of c;;.

- Update the response subtally, ¢(Z) = ¢(Z) + score.

- Update every derivative subtally with respect to every parameter a
q(Z,a) = q(Z,a) + score * (%%CU + t(a)s

- Update every second derivative subtally,
q(Z,a,b) = ¢(Z,a,b) + score x (tl(a, b) — ta(a, b) + t(a)t(b) + i%ci]’—i—

t(b)é—é%c,']’ + t(a)é—_%c,‘j .
3 3

Note that the current values up to this segment of w, t(a), t(b), ti(a,b), and
t2(a,b) are used here.

A short code was written to demonstrate the implementation of differential
sampling for this example problem. Two common variance reduction tech-
niques, implicit capture and the last flight estimator, were also included to
show that differential sampling can be compatible with variance reduction



54 D. E. Peplow and K. Verghese

methods if implemented correctly. The full algorithm for one history of the
code is given at the end of this article as an appendix.

At the end of a history, the response subtallies are added to the main tallies
and the squares of the subtallies are added to the variance tallies. The same
procedure is used for the first derivative subtallies and the double derivative
subtallies.

After all N histories of the simulation are complete, the final calculations can
be performed. First, the final responses are found by dividing the tally by the
number of histories and the associated standard deviation is found. Then the
derivatives of the responses are found by dividing the derivative tallies by the
number of histories and their standard deviations are calculated.

3.4 Final Responses

The above algorithm calculated five quantities, the first derivatives with re-
spect to three variables and every combination of double derivative. The five
responses calculated were (per source photon):

(1) the energy deposited in the sphere

(i) the energy escaping the sphere
(iii) the average path-length through the sphere
(iv) the average number of collisions in the sphere
(v) the energy arriving at a point detector

The third and fourth items are now used to calculate the average flux in the
sphere by the path-length and collision estimators.

For the path-length estimator, the flux is simply found by dividing by the
volume of the sphere. This is also done for its associated variance and for each
derivative with respect to any of the parameters.

Calculating the flux from the average number of collisions [A(4) in the algo-
rithm] is a little more complex since the flux is equal to

1
6= ——A4 54
—A) (54)
The derivatives can not be simply divided by puV. The derivative of flux with

respect to density is really

a 1 9 1

3;45: WV oy (4) - WA(‘U (55)
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1 1
= WA(zL, p) — pZHVA(4) (56)

and simply dividing the average number of collisions by puV (eq. (54)) would
leave out the second term of eq. (56). The expression for the variance of this
derivative would also have multiple terms, as would the derivatives (and their
associated variances) with respect to the cross section parameters.

The extra term in eq. (56) is not taken into account in the MCNPT™4B differ-
ential sampling routines and must be added by the user outside of the code,
as explained in a report by Densmore et al. (1997). The patch must be used
for every derivative of a response that depends on a parameter that is in the
contribution to that derivative. Version 4C is expected to include the extra
term automatically (Hess et al., 1998), if the user indicates that the tally is
dependent on the parameter.

3.5 A Better Way

With a slight change in the definitions of the segment contributions c;; for the
two flux tallies, the Los Alamos-style correction can be avoided — removing
the possibility of an error caused by the user forgetting to set a flag, as he will
have to in the next version of MCNP™, This can done by using definitions
for the third and fourth contributions of

(iii) s/V, length of track in the sphere divided by the volume
(iv) 1/puV, the ratio of the flux to the collision density

The derivatives of ¢;; would then be found and added to every update of the
first and double derivatives in the algorithm. For flux from the path-length
estimator, only the score changes, since the derivative of ¢;; with respect to
any of the three parameters is zero. This changed score is then used in the
derivative calculations.

For the collision estimator, the derivatives of c;; are non-zero and must be
added into the calculations each time the derivatives are updated. In the
algorithm shown in the appendix, this response is only scored once, at the
point of an interaction. The new steps of the collision density tally would then

be

- New collision tally routine:
. Calculate the contribution to the collision density tally (tally 4) as
ci; = 1/(ppV) and set score = wc;;.
. Calculate all relative derivatives and relative double derivatives of c;;.
- Update the response subtally, ¢(4) = ¢(4) + score.



56 D. E. Peplow and K. Verghese

- Update every derivative subtally,
q(4,a) = q(4,a) + score x (:f;gacii + t(a)).

- Update every second derivative subtally, ,
q(4,a,b) = q(4,a,b) + score * (tl(a, b) — ta(a, b) + t(a)t(d) + i%ciﬁ-

1(8) & Zcis + ta) 2 Feis)-

When this strategy is implemented, the variance of the flux is lower than that
of calculating an average collision density first and then calculating a flux
outside of the history loop. This will be illustrated in the following section.

3.6 Results

For the sphere problem, the base case values of p = 1 g/cm?®, p; = 1 cm?/g,
pa = 1 cm?/g, a radius of 1 cm and an initial energy of 1 (any units) were
used. Since there are five responses, fifteen first derivatives and thirty double
derivatives, not all of the results can be shown; only a few representative cases
are shown.

The first test is to vary one of the parameters and determine if the derivatives
calculated by differential sampling correspond to derivatives calculated by us-
ing independent Monte Carlo runs with a change in that parameter. Examples
are shown in Figs. 1 through 3. All of these runs were for 10° histories and
both implicit capture and the last flight estimator were used. These three, as
well as the others not in the figures, show that the differential sampling routine
as described above calculates the derivatives with respect to these parameters
quite well.

To demonstrate how useful differential sampling can be in perturbation stud-
ies, the Monte Carlo code was run independently for cases where the three
parameters took on values of p € [0.85 1.0 1.15] g/em?®, p, € [0.85 1.0 1.15]
cm?/g and g, € [0.85 1.0 1.15] cm?/g. These 27 cases were run for 5 x 10°
histories with both variance reduction techniques turned on. These were then
compared to the responses calculated by a Taylor series expansion using a
single run of the Monte Carlo at the base case of the parameters. The single
Monte Carlo was run using 10 histories to ensure that the relative errors in all
of the derivatives were small. The comparisons between the ‘true’ calculations
(independent Monte Carlo calculations) against the Taylor series calculations
are shown in Figs. 4 and 5. In both figures, the second order Taylor series
calculations match the independent MC runs very well. The real benefit of
using the Taylor series approach is that a whole suite of perturbed cases can
be calculated without running another Monte Carlo game, if the response and
all of derivatives were saved from the Monte Carlo single run at the base case
of parameters.
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independent Monte Carlo calculations. The lines in (b) and (c) are the derivatives
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One last result for this problem that is worth displaying is the comparison of
the relative error in calculating the flux in the sphere by the collision density
estimator. Figure 6 shows the flux (collision density estimator) calculated us-
ing the Los Alamos approach of correcting after all of the histories have been
run and the approach described in this chapter where a slightly more com-
plicated contribution derivative is scored during each segment in the history.
Also shown in Fig. 6 is the relative uncertainty for each method. Here, it is
assumed that the uncertainty for the Los Alamos approach is calculated by
the standard propagation of errors technique, which assumes independence of
the two terms. This yields a larger uncertainty value than using the approach
described in this paper.
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Fig. 6. (a) Comparison of the first derivative of the flux calculated by the collision
density estimator. (b) The relative uncertainty by the Los Alamos approach (circles)
and by the approach described in this report (squares).
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4 An Example Criticality Problem

Differential sampling applied to criticality problems can provide some impor-
tant information and make critical searches much faster. To illustrate this, we
will extend the methods outlined in the previous sections to find the derivative
of kg with respect to two parameters.

The example we will use is a critical slab problem taken from a series of
benchmark calculations (Sood et al., 1999): a slab of thickness ¢t = 3.707444
cm, the number of neutrons per fission of ¥ = 3.24, and macroscopic cross
sections for scatter, fission, and radiative capture of ¥, = 0.225216, ¥y =
0.081600 and £, = 0.019584 /cm..The total cross section is simply ¥ =
Y+ Ef + X..

To demonstrate differential sampling, we will assume that this is a single
isotope and that the density p is equal to 1 g/cm®. Then ¥ = pNyo /M, where
Ny is Avogadro’s number, ¢ is a microscopic cross section and M is the atomic
mass of the isotope. The reason for this is so that the dependence on density
can be shown and derivatives with respect to density may be found. This also
reduces the problem to the true independent physical quantities: the density
and the microscopic cross sections.

We will use this example and calculate the derivative of keg with respect to
the slab density and the number of neutrons per fission. The value of k.g is
calculated in the traditional manner — the number of neutrons produced at
each absorption event is kept as a function of space to be used as the source
distribution in the next outer iteration. At each absorption the number of
fission neutrons expected, ¢;; = vos/(0s+0.) is recorded in an array depending
on its location in the slab. For this problem, we divided the slab into 20 regions.
The number of fission neutrons produced in each of the slab regions is then
used as the source term in the next iteration (spatial bins are not usually
used in a criticality problem but this will not affect our demonstration). Each
iteration started with 2x10° neutrons and the iteration k.g was calculated as
the sum of all of the fission neutrons in the various slab regions divided by the
number of source neutrons. Starting with a uniform source in the first iteration,
about 20 iterations were required before the flux profile had converged. After
that, with each iteration an average was made over the next 30 iterations to
determine k.g. One run of the code for 50 iterations of 2x10° neutrons took
about five minutes on a Sun Ultra 60.
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4.1 Derivatives

To apply differential sampling to this problem, the relative derivatives of the
transport and collision kernels are needed as well as the relative derivatives of
the contribution to the score.

The kernels for this example are defined as

Ye ®* interacts within slab
T= (57)
e~¥*  escapes from slab
Cs= L2 scatter (isotropic to any angle) (58)
Co= 5%2 absorption (59)

where s is the distance traveled in the slab material and ¢ = o, + o5 + 0.
Relative derivatives with respect to the two parameters of interest, p and v
are

—~8—T= 1/p — ¥s/p interacts within slab (60)
T dp —Y¥s/p  escapes from slab
10
—=T= 61
T ayT 0 (61)
10
62
C. 5 C= (62)
1 0
63
C.a,Ce=0 (63)
where ¢ is either absorption or scatter. The double derivatives are
1 92 T —2%s/p* + (Ls/p)* interacts within slab (64)
T 9p? (Zs/p)? escapes from slab
1 0?
65
T 81/2T 0 (63)
1 92
— 66
T 8pdv (66)
1 02
—C. = 67
Cg apz C9 0 ( )
1 0
(. = 68
Cg 81/2 Cg 0 ( )
2
L 0 o (69)

C, dpov °
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The relative derivatives of the contribution ¢;; = vos/(os + 0.) are also easily
found to be

1 0
——c;; =0 70
500" (70)
1 0
Cij 81/% - 1/1/ (71)

and the relative double partial derivatives are

1 02

L "
I
B (13
i
2
Lo 0 (74)

o 3B

4.2 Algorithm

Including differential sampling into this example criticality code was very sim-
ilar to the previous example with the additional steps of averaging the Monte
Carlo calculated derivatives over the many iterations of the outer loop. As
fission neutrons are created in each of the regions of the slab, a score of
¢; = vos/(of + o.) is made to the tally for that region. At the same time,
derivative scores are added to derivative tallies and double derivative scores
are added to the double derivative tallies. These derivative scores include the
relative derivatives of the transport/collision kernels and the relative deriva-
tives of the contribution.

After all of the histories of one outer iteration are done, the total number of
fission neutrons in all of the slabs are added together and then divided by
the number of source neutrons, giving keg. In the same manner, the derivative
tallies in each slab region are also added together and divided by the number of
source neutrons to give the derivatives of kg with respect to the parameters.

Over the many iterations, the values of ke, Okeg/0p, Okes/Ov, etc. are then
averaged to give values with smaller variances than just a single iteration
alone.
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4.8 Results

Using the values listed above which should result in an exactly critical system,
a single run of the code calculated the following values:

ket = 0.9995 4 0.0028 (75)
g;keﬂ =0.6760 + 0.0041 cm®/g (76)
ba—ykeﬂ =0.3085 + 0.0009 (77)
%keﬂ = —~0.3746 + 0.0082 cm®/g? (78)

2 k=0 (19)
%keﬂ =0.2086 & 0.0013 cm?/g (80)

To test the derivatives, the critical slab problem was run at various densities,
from 40% below normal to 40% above normal. These independent Monte Carlo
calculations of k.g were then compared to values estimated by a truncated
Taylor series using the values of keg, Okeq/0p and 3%keg/dp? all calculated at
p = 1 g/cm?. The results are shown in Fig. 7. This figure shows two things:
(i) the calculated values of the first and second derivatives are correct and (ii)
a second order Taylor series approximation fits the independent calculations
very well, even to +£40% of the base value. The zeroth order Taylor series is
shown in the figure so that one can easily see the first order change (difference
between the dot-dash line and dashed line) and then the second order change
(difference between the dashed line and solid line).

It is useful to take the value of the first derivatives and compute the sensitivity
of kg to p . This is found to be
p 0

ke = 0.6763 £ 0. 1
i 5 6763 % 0.0045 (81)

For a 10% increase in density, there would be about a 6.8% increase in keg. It
can also be interpreted to say that a 1% uncertainty in the value of density
will give an uncertainty of 0.68% in keg. Combined with the 0.28% stochastic
uncertainty of the Monte Carlo calculation of ke, a 1% uncertainty in p gives
a total error of 0.73% in k.g.

The accuracy of the computed first and second derivatives of keg with respect
to v were also checked by running the code at various values of v. One would
expect that since v is the same everywhere in the slab, kg ought to be directly



66 D. E. Peplow and K. Verghese

1.4 T T T T T T —— —— m
1.3¢ .
S 1.2} |
<
£
g 1.1 L ]
§
5 1f ]
S
09} ]
e
£
S el 4
—‘4‘30'8 MC (w/ error bars)
Zero order
0.7t - - First Order .
~———  Second Order

0.6 - - : :
05 06 07 08 09 1 1.1 12 13 14 1.5
density g/cm3

Fig. 7. Comparison of nine independent Monte Carlo calculations of k.g and val-
ues using keg and its derivatives at p = 1 g/cm? in different order Taylor series
calculations.

proportional to v. This is true, as shown in Fig. 8. Calculating the sensitivity
of ke to v gives

v 0
1 ket = 1.000 £ 0.0040 (82)

which also shows that our expectation of direct proportionality was right. (The
reason this example was picked, is because it is fairly obvious what the answer
should be.) The second derivative found by differential sampling of kg with
respect to v is zero, as would be expected since the second derivatives of the
T and C kernels and of the score contributions with respect to v were all zero.

One result that is not expected is the non-zero value for %;keﬂ. The double
derivative of the two kernels and the contribution are all zero. The derivative
has a non-zero value because the score to the subtally has six terms, only some
of which are zero.
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4.4 Critical Searches

Where differential sampling really helps in criticality problems is in the critical
search. For example, change the above problem to one where we are trying to
find the critical density. Perhaps we guess 0.8 g/cm® and then we calculate keg
to be 0.8540. Without differential sampling we would guess a density higher,
recalculate, guess again, etc. Perhaps we would use a bisection method to
locate the critical density quickly.

If we would have used differential sampling, at p = 0.8 g/cm® we would have
also calculated first and second derivatives with respect to density to be 0.7534
cm®/g and -0.4339 cm®/g?. From these numbers, we could find the change in
density required to make the slab critical is §p = 0.206. This guess of p = 1.006
is very close to the true critical density. With differential sampling, the outer
iteration of a critical search can go from a bisection method to a Newton’s
method (or even better with second derivatives), speeding up the process.



68 D. E. Peplow and K. Verghese

5 Hints for More Realistic Problems

The discussion in this paper has focused on explaining differential sampling
and showing its implementation on simple problems. In real problems, cross
sections are not constant with energy, there is more than one region, etc. These
complexities to not prevent differential sampling from being used, they only
add to the number of arrays and the accounting in the Monte Carlo code.
Three real-world problems will be discussed in this section.

5.1 FEnergy-Dependent Cross Sections

Because cross sections are energy-dependent, trying to find the derivative of
a response, such as energy deposited in a region, with respect to a particular
cross section could only be done at exactly one specific energy. Another way
to look at this problem is this: suppose one did calculate the derivative of
response r with respect to cross section p. In calculating a truncated Taylor
series to do a perturbation study,

o+t =rip) + (5] 0 + 5 () 607 + - (83

one would find that describing a §p would be difficult since it is a function of
energy and the response r is only a scalar.

One way to work around this problem is by defining the total macroscopic
cross section of a region as the sum of the various interaction cross sections
for the different possible reactions

S(E) = 150 (E) + aBs(E) + -+ + anSa(E) (84)

where the constants a; are all normally equal to 1. One could then find the
derivative of the responses with respect to one of the a; constants. This way,
the energy dependence problem is avoided and perturbations can be cast in
a form of one partial cross section increasing (a; going from 1 to 1.1) and
another partial cross section decreasing (ay going from 1 to 0.9). This system
1s also easier for the user compared to finding derivatives with respect to
relative cross sections (X;/X) as others have done (Rief, 1984), since there is
no ambiguity about whether or not the total cross section is changing when
a study of one of the interaction cross sections is changing — with the above
system, eq. (84), it is obvious that the total does change. This system was
implemented on a mammography image simulation code and shown to work
well (Peplow, 1999).
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MCNP (Briesmeister, 1997) has the ability to calculate perturbations on the
weight fraction of a certain element in a compound. One should also be care-
ful here since increasing one weight fraction implies that the others are also
decreasing. It is not clear from the manual how this is taken into consideration.

5.2  Multiple Geometry Regions

For a low-energy photon problem involving multiple geometry regions, the
transport kernel can be expressed as

T = prpirexp (=3 pmpimm ) (85)

for a photon that crosses many regions m with a path length of s,, in each
region and finally interacts in region M. Using the notation from the previous
subsection for the energy-dependent mass attenuation coefficients, the total
mass attenuation in each region is

__ phot  phot cohe , cohe inco , inco
ﬂm - am ﬂm + a‘m ﬂm + am oum (86)

where the values of the ai,’s are 1.

The relative derivative of the transport kernel is then found to be

10T —fimSm m# M
T3 = (87)
Pm —lmSm + 1/pym m=M

with respect to any of the region densities. With respect to one of the cross
section coefficients, a! , where the interaction type ¢ is photoelectric, coherent
or incoherent, the relative derivative of the transport kernel is

—mim M
LT _ ) —pmins m # (88)

Pl Sm o/ M = M

The double partial derivatives of the transport kernel can be found to be

HmSmMnSn m 74 M,n # M
19 9,

A _ ntn - 89
Tc?pmc?pnT mSmfindn = 5o m=Mn#M (89)

mS3m —_ —
U SmfmSm — Qme— m=n=M
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L s Pt Sem o f13, S m# M,n#M
Tar g L=\ PrbtinSmprtilsn = E2paplsn  m=M,n# M (90)

\ Pl Sm P bt S — QZ—%pmMnsm m=n=M

P Sem fnSnfll, m#Mmn#Mm#n
PmSmfinSnfly, — Smpt,  m#EMn#Mm=n
10 8.,._ PrSmfnSnfly, — L2220, m = M,n # M (1)
T 0aiy, Opn PmSmbinSnfly, — 2222t m # Mn = M
PrmSm fhrm S [y,
—35m;zin+p—:;;: m=n=M

For neutron problems, a definition similar to eq. (85) for the transport kernel
can be made in terms of microscopic cross sections and densities of each region.

5.8 Anisotropic Scattering

Another complexity in real problems is that of anisotropic scattering. This does
not present a problem for the implementation of differential sampling. Again,
for a low-energy photon problem, the scattering kernels can be described as

phot , phot
Cphot = —L (92)
i
cohe, cohe
Ceohe = ——1— Pohe(0) — ) (93)
7
aincoﬂinco . , ,
Cinco = T—P"‘“’(Q,E — Q' E" (94)

where the P! terms represent the scattering distributions for photons of di-
rection and energy of 2, E to scatter to direction and energy of (', E’. These
probabilities can even include the scattering form factors if they are being
used in the simulation.

The relative derivative of the collision kernel for reaction type k& with respect
to the cross section multiplier a* is (suppressing the m subscript since collision
can only happen inside one region)

1 9Ck _ —ut i1 £k

T = 4 , (95)
Ckaa ___qu/lu_l_l/az sz
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Since none of the collision kernels depend on the density of the material,
—cf—k%c} = 0. Derivatives of the collision kernels in one region with respect to a
parameter in another region are also 0.

The double partial derivatives of the collision kernels are (again, suppressing
the subscript m)

N A AL
Ceda oo F =\ T ki o)
2‘:“_‘.%__2‘1—“;‘— Z:]:k

Any double derivative of any of the collision kernels with respect to any density
or with respect to a}, from another region are all zero.

6 Summary

The number of problems that Monte Carlo can solve can be expanded with
the use of differential sampling. Perturbation problems can be performed to at
least second-order accuracy without worrying about the large stochastic un-
certainties caused by differencing two Monte Carlo solutions. Sensitivities can
be accurately computed along with variances of those sensitivities. By using
derivative information, criticality searches can be performed faster. With only
a little extra coding, the scope of Monte Carlo simulation can be broadened
considerably.

The goal of this paper is to elucidate differential sampling in a manner that al-
lows Monte Carlo practitioners to easily implement the methods into their own
problems. The computational schemes are described in a manner very similar
to how the Monte Carlo game is actually played, as opposed to description
in terms of the transport equation. Not every type of photon and neutron
problem has been discussed here but with the detailed game descriptions, the
kernels and kernel derivative expressions, the two example problems and the
sample algorithm in the appendix, practitioners should be able to understand
differential sampling and then implement it into their own code for their own
specific problem. The methods described here can be expanded to calculate
higher order derivatives. We feel that the system presented here is much easier
on the code developer than the way differential sampling is presented in the
previous literature.

This paper provides examples of simple problems and derivatives with respect
to the parameters. Notes on extending these methods to real problems are
also given.



72 D. E. Peplow and K. Verghese

One important parameter that is not discussed in this paper is region size. It
would be useful to researchers in many fields to be able to find the derivative
of responses with respect to a region size. As with correlated sampling, this
appears to be a much more difficult problem than calculating responses for
perturbations in material parameters.
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8 Appendix: Example Code Algorithm

The following is a detailed algorithm for the code in the first example (the
point source in a sphere) which computes five responses, fifteen first derivatives
and thirty double derivatives. This is only for one history:

|

For every response r (r =1 through 5) and every parameter combination a
and b, clear all subtallies: ¢(r) = 0, q(r,a) = 0 and ¢(r,a,b) = 0.
For every parameter combination a and b, clear all accumulators: t(a) = 0,
t1(a,b) = 0 and ¢2(a,b) = 0.
Source: select direction of travel, Q, set energy E = Ejp, set weight w = 1.
Point detector (tally 5) from source
- Calculate the contribut;ion to the point detector, c;; and set score = wc;;.
- Calculate every =- o aaacq and every —— o eaabc,,
- Update the response subtally, ¢(5) = ¢(5) + score.
- Update every derivative subtally, ¢(5, a) = ¢(5, a)-i-:z.core*(c Lo+ t(a)).
- Update every second derivative subtally,

q(5,a,d) = q(5,a,b) + score * (tl(a b) — ta(a,b) + t{a)t(b) + = a aa%c,,-{-

t(b)c 3ac11 +t(a ) abcu)

10 Continue

Transport - calculate distance to edge d and pick s, a distance to travel.

If last flight estimator=.true., force a portion to leave, force a portion to

interact within d.

- Calculate the contribution to the energy escaping tally (tally 2) as ¢;; =
E exp(—ppd) and set score = we;;.

- Calculate all relative derivatives and double derivatives of c;;.

- Update the response subtally, ¢(2) = ¢(2) + score.

- Update every derivative subtally, ¢(2,a) = ¢(2, a)—i—score>0<(c Bac'J + t(a) )

- Update every second derivative subtally, ¢(2,a,b) = ¢(2,a,b) + score *
(six terms).

- Calculate the contribution to the path-length tally (tally 3) as ¢;; =
dexp(—pud) and set score = wc;;.

- Calculate all relative derivatives and double derivatives of c;;.

- Update the response subtally, ¢(3) = ¢(3) + score.

- Update every derivative subtally, ¢(3, a) = ¢(3, a)+score*(c Lo+ t(a)).

- Update every second derivative subtally, ¢(3,a,b) = ¢(3,a,b) + score
(six terms).
- Re-pick distance s such that s < d. Set weight w = w(1 — e™##%),

If s > d then (photon escapes)

- Update every t(a), all t1(a,b) and all t2(a, b) with T kernel, using d.

- Calculate the contribution to the energy escaping as ¢;; = E and set
score = wc;;. (Derivatives of ¢;; are all zero.)

- Update the response subtally, ¢(2) = ¢(2) + score.
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- Update every derivative subtally, q(2,a) = ¢(2,a) + score * t(a).

- Update every sec. der. subtally, ¢(2,a,b) = ¢(2, a,b) + score * (t1(a,b) —
ta(a, b) + t(a)t(b)).

- Calculate the contribution to the path-length tally as ¢;; = d and set
score = wc;;. (Derivatives of ¢;; are all zero.)

- Update the response subtally, ¢(3) = ¢(3) + score.

- Update every derivative subtally, ¢(3,a) = ¢(3,a) + score * t(a).

- Update every sec. der. subtally, ¢(3,a,b) = ¢(3,a,b) + score * (t1(a,b) —
ta(a,) + H(a)E(B).

- History is over, goto the “clean-up” section.

Move photon distance s in direction ).

Update every t(a), all t;(a,b) and all ¢,(a, b) with T kernel and s.

Path-length tally:
- Calculate the contribution to the path-length tally as c¢;; = s and set
score = we;j. (Derivatives of ¢;; are all zero.)

- Update the response subtally, ¢(3) = ¢(3) + score.

- Update every derivative subtally, ¢(3,a) = ¢(3, a) + score  t(a).

- Update every sec. der. subtally, ¢(3,a,b) = ¢(3,a,b) + score * (t;(a,b) —
ta(a, b) + t(a)t(b)).

Photon is now at the next interaction site.

Point detector (PD) - similar to the above PD operations with more com-

plicated ¢;;.

Collision density tally: (Replace this with the code listed in Section 3.5)

- Calculate the contribution to the collision density tally (tally 4) as ¢;; = 1
and set score = we;;. (Derivatives of ¢;; are all zero.)

- Update the response subtally, ¢(4) = ¢(4) + score.

- Update every derivative subtally, q(4,a) = ¢(4, a) + score * t(a).

- Update every sec. der. subtally, ¢(4,a,b) = ¢(4,a,b) + score * (¢,(a, b) —
ta(a, b) + t(a)t(b)).

If implicit capture=.true. (a portion gets absorbed, a portion scatters)

- Calculate the contribution to the energy absorbed tally (tally 1) as ¢;; =
EC, and set score = wc;;.

- Calculate all relative derivatives and double derivatives of ¢;;.

- Update the response subtally, ¢(1) = ¢(1) + score.

- Update every derivative subtally, ¢(1, a) = ¢(1, a)+5core>'<<C L+ t(a ))

- Update every second derivative subtally, ¢(1,a,b) = ¢(1,a,b) + score x
(six terms).

- Set weight w = wy,/u. Reaction type is set to “scatter”.

If implicit capture=.false., pick reaction type as either scatter or absorption.

If reaction type is absorption:

- Update every t(a), all t1(a,b) and all t5(a, b) with C, kernel.

- Calculate the contribution to the energy absorbed tally as ¢;; = E and
set score = wc;;. (Derivatives of ¢;; are all zero.)

- Update the response subtally, ¢(1) = ¢(1) + score.
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- Update every derivative subtally, ¢(1,a) = ¢(1, a) + score x t(a).
- Update every sec. der. subtally, ¢(1,a,b) = ¢(1,qa,b) + score x (t;(a,b) —
ta(a, b) + Ha)t()).
- History is over, goto the “clean-up” section.
— Photon scatters. Update every t(a), all t;(a, b) and all t5(a, b) with C, kernel.
Pick new (1.
- Energy absorbed tally:
- Calculate the contribution to the energy absorbed tally as ¢;; = 0.1F and
set score = wc;;. (Derivatives of ¢;; are all zero.)
- Update the response subtally, q(1) = ¢(1) + score.
- Update every derivative subtally, ¢(1,a) = ¢(1,a) + score * t(a).
- Update every sec. der. subtally, ¢(1,a,b) = ¢(1,a,b) + score * (t;(a,b) —
t(a,8) + H(a)t(t)).
- Set energy E=0.9E.
- Russian Roulette — perform for low weights. If history is terminated, deposit
the energy in a similar manner as the photon absorption routine.
- Goto 10.

Once a history terminates, some “clean-up” is necessary.

~ For every r, add the response subtally to the main response and variance
tally, A(r) = A(r) + q(r) and B(r) = B(r) + (g(r))".

- Add first derivative subtallies to the first derivative and their variance tallies,
for every response r and every parameter a, A(r,a) = A(r,a) + ¢(r,a) and
B(r,a) = B(r,a) + (q(r, a))z'

~ Add double derivative subtallies to the double derivative and their vari-
ance tallies, for every r and every pair of parameters a and b, A(r,a,b) =
A(r,a,b) + q(r,a,b) and B(r,a,b) = B(r,a,b) + (¢(r,a,b))?

After all N histories of the simulation are complete, the final calculations can
be performed.

— For all of the responses reset A(r) = A(r)/N and then the variances are
calculated as 02 = [B(r)/N ~ (A(r))?]/N. The standard deviation of A(r)
is then o,.

— Similarly, for all of the first derivatives, reset A(r,a) = A(r,a)/N and cal-
culate 02, = [B(r,a)/N — (A(r,a))?]/N.

— Finally, for the second derivatives, A(r,a,b) = A(r,q,b)/N and calculate
O'z,a,b = [B(r,a,b)/N — (A(r,q, b))2]/N



