

<section-header><section-header><section-header><text><text><text><text><text>

CADIS Method

 We want source particles born with a weight matching the weight window targets

$$W_0(\vec{r}, E) \equiv \frac{q(\vec{r}, E)}{\hat{q}(\vec{r}, E)} = \overline{W}(\vec{r}, E)$$

• So the biased source needs to be

$$\hat{q}(\vec{r},E) = \frac{q(\vec{r},E)}{\overline{w}(\vec{r},E)} = \frac{1}{c} q(\vec{r},E) \phi^{+}(\vec{r},E)$$

• Since the biased source is a pdf, solve for *c*

$$c = \iint q(\vec{r}, E) \phi^+(\vec{r}, E) d\vec{r} dE$$

9 Managed by UT-Battelle for the U.S. Department of Ener

40 ft Sealand Container

• Results for DHS Cargo (0.4 g/cm³) and HP-Ge detector

Uranium	Time ((min)	Count	Relative	MC FOM
	Denovo	MC	(Rx/s/Ci)	Uncert.	(/min)
Analog without		1442	9.365E+04	4.9%	0.287
Analog with		1443	1.046E+05	4.5%	0.348
CADIS without	70	643	9.901E+04	1.2%	10.1
fission rate	83	62	7.292E+07	0.4%	1210.0
CADIS with	104	465	9.963E+04	1.4%	10.9
CADIS fission	105	462	3.166E+03	1.0%	22.4
Similar results	s for other car	go materi	al/detector co	mbinations	3
Managed by UT-Battelle for the U.S. Department of Energy		Presentation_name			CAR RUC Freetow

40 ft Sealand Container		
Increase in count rate with HEU pres	sent	
	Fission/ Act. Back.	
PNNL hydrogenous (0.2 g/cm ³)		
Sodium Iodide Detector	4.7%	
High-Purity Germanium Detector	10.7%	
Helium-3 Detectors	1.3%	
DHS iron/organic mixed cargo (0.4 g/cm ³)		
Sodium Iodide Detector	2.8%	
High-Purity Germanium Detector	3.2%	
Helium-3 Detectors	2.3%	
PNNL high iron mixed cargo (0.6 g/cm ³)		
Sodium Iodide Detector	0.8%	
High-Purity Germanium Detector	1.1%	
Helium-3 Detectors	0.3%	
4 Managed by UT-Battelle for the U.S. Department of Energy Presentation name		COAK RIDG

40 ft Sealand Container

• Speed up compared to analog calculations

	without	with
	uranium	uranium
PNNL hydrogenous (0.2 g/cm ³)		
Sodium lodide Detector	10	16
High-Purity Germanium Detector	93	72
Helium-3 Detectors	114	87
DHS iron/organic mixed cargo (0.4 g/cm ³)		
Sodium Iodide Detector	6	4
High-Purity Germanium Detector	32	20
Helium-3 Detectors	60	46
PNNL high iron mixed cargo (0.6 g/cm ³)		
Sodium Iodide Detector	21	14
High-Purity Germanium Detector	132	74
Helium-3 Detectors	96	64
ed by UT-Battelle		

