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Abstract— This paper presents a hybrid (Monte Carloldeterministic) method for increasing the efficiency of
Monte Carlo calculations of distributions, such as flux or dose rate distributions (e.g., mesh tallies), as well
as responses at multiple localized detectors and spectra. This method, referred to as Forward-Weighted
CADIS (FW-CADIS), is an extension of the Consistent Adjoint Driven Importance Sampling (CADIS)
method, which has been used for more than a decade to very effectively improve the efficiency of Monte
Carlo calculations of localized quantities (e.g., flux, dose, or reaction rate at a specific location). The basis
of this method is the development of an importance function that represents the importance of particles to the
objective of uniform Monte Carlo particle density in the desired tally regions. Implementation of this method
utilizes the results from a forward deterministic calculation to develop a forward-weighted source for a
deterministic adjoint calculation. The resulting adjoint function is then used to generate consistent space-
and energy-dependent source biasing parameters and weight windows that are used in a forward Monte
Carlo calculation to obtain more uniform statistical uncertainties in the desired tally regions. The FW-
CADIS method has been implemented and demonstrated within the MAVRIC (Monaco with Automated
Variance Reduction using Importance Calculations) sequence of SCALE and the ADVANTG (Automated
Deterministic Variance Reduction Generator)/ MCNP framework. Application of the method to represent-
ative real-world problems, including calculation of dose rate and energy-dependent flux throughout the
problem space, dose rates in specific areas, and energy spectra at multiple detectors, is presented and
discussed. Results of the FW-CADIS method and other recently developed global variance-reduction
approaches are also compared, and the FW-CADIS method outperformed the other methods in all cases
considered.

I. INTRODUCTION

Although the stochastic Monte Carlo method is
considered to be the most accurate method available for
solving radiation transport problems, its applicability has
been limited by its computational expense. This is
particularly true for deep-penetration shielding problems,
involving attenuation of several orders of magnitude
between the source and detector, and problems requiring
detailed distributions (e.g., flux or dose rate) throughout
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the system being analyzed. While advanced variance-
reduction methods, such as the use of deterministic adjoint
importance functions,! have been applied successfully to
the former class of source-detector problems, optimization
of Monte Carlo simulations for calculating detailed
distributions throughout a system or for calculating the
responses of multiple detectors is a relatively new area of
research. In fact, it is a generally accepted view in the
radiation shielding community that deterministic transport
methods (e.g., the discrete ordinates method) are
necessary for the analysis of systems for which detailed
distributions are required. Nevertheless, desires to cap-
italize on the accuracy and modeling fidelity associated
with the Monte Carlo method, continuing increases in
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available computational resources, and the availability of
mesh tally (a set of region tallies defined on a mesh that
overlays the geometry) features in modern Monte Carlo
codes have motivated users to challenge this status quo
and attempt to calculate detailed distributions (e.g., mesh
tallies) with the Monte Carlo method. For analyses that
require the statistical uncertainty in each mesh cell to be
less than some maximum value, the Monte Carlo
computation time is dictated by the mesh cell with the
slowest statistical convergence (largest statistical uncer-
tainty). Consequently, for problems involving significant
radiation attenuation, the computation time required by
the Monte Carlo method for calculating detailed distribu-
tions is typically prohibitive, and other means (e.g.,
deterministic methods) must be used for the analysis.

The inability to calculate detailed distributions with
available Monte Carlo codes and methods motivated
efforts at the Oak Ridge National Laboratory (ORNL) to
investigate and develop methods to overcome this
inability. These efforts have led to the development of
an extension to the Consistent Adjoint Driven Importance
Sampling (CADIS) method for global and regional
variance reduction. The CADIS method? was developed
previously and has been shown to be highly effective (see,
for example, Refs. 1 through 6) for deep-penetration
source-detector—type problems, i.e., problems where a
single, localized response is sought, using source biasing
parameters and weight windows?® based on a deterministic
adjoint function. The CADIS method is a hybrid method
in that it utilizes results from a deterministic calculation to
improve the efficiency of a Monte Carlo simulation. The
method, referred to as the Forward-Weighted CADIS
(FW-CADIS) method,®? involves determining an adjoint
importance function that represents the importance of
particles to achieving uniform Monte Carlo particle
density, which is related to statistical uncertainty,
throughout all (global variance reduction) or part (regional
variance reduction) of the problem space. The name stems
from the fact that the method involves a weighting of the
adjoint source with information from a forward solution,
i.e., forward weighting. Once the appropriate adjoint
(importance) function is obtained, standard CADIS
relations are used to calculate consistent source biasing
parameters and weight window values. To the authors’
knowledge, The FW-CADIS method represents a novel
use of the adjoint methodology for biasing Monte Carlo
simulations. This paper provides a detailed description of
the FW-CADIS method and examples of its application to
relevant problems in the nuclear industry.

“The weight window technique provides a means for
assigning detailed space- and energy-dependent importance
values and applying geometric splitting/roulette and energy
splitting/roulette, while at the same time controlling weight
variations. See Ref. 7 for more details.
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I.A. Background

Over the past several decades, many techniques,
referred to as variance-reduction and/or biasing techni-
ques, have been developed to reduce the variance of
Monte Carlo calculations. These techniques commonly
modify the natural sampling procedure/formulation
(related to the physical laws of particle transport) to focus
computational efforts on the simulation of “important”
particles (i.e., those particles that contribute to the desired
tally). To compensate for this modification and preserve
the correct average for the simulation, each particle is
given a statistical weight w. At each event where a
modified probability density function (pdf) f(x) is
sampled instead of the physical pdf f(x), the weight is
modified by the ratio f(x) /f(x).

The main difficulty associated with using variance-
reduction techniques is the determination of the problem-
dependent variance-reduction parameters present in the
biased terms [i.e., f(x)]. Specifically, all variance-
reduction techniques require problem-specific parameters
that are dependent on the importance of particles with
respect to the tally objective. The challenge to the user has
been determining the problem-specific parameters. In the
absence of a reliable, physics-based method for devel-
oping the needed parameters, Booth and Hendricks'®
aptly describe the situation: “The selection is more art
than science, and typically, the user makes a few short
trial runs and uses the information these trials provide to
better guess the parameters; that is, the user learns to
adjust parameters on the basis of previous experience.”
Responding to these difficulties, a number of strategies
(both deterministic and stochastic) for determining
variance-reduction parameters have been proposed and
developed.

It has long been recognized that the adjoint function
(i.e., the solution to the adjoint form of the Boltzmann
transport equation) has physical significance!! as a
measure of the importance of a particle to some objective
function (e.g., the response of a detector) and that this
physical interpretation makes the adjoint function well
suited for biasing Monte Carlo simulations. Accordingly,
trends in Monte Carlo code development have reflected a
recognition of the benefits of using deterministic adjoint
(importance) functions for Monte Carlo variance reduc-
tion.'”> A review of variance-reduction concepts and
works related to the use of deterministic importance
functions for variance reduction of Monte Carlo simula-
tions is available in Ref. 1. As discussed in Ref. 1,
deterministic adjoint functions have been used for Monte
Carlo variance reduction of source-detector-type pro-
blems for many years with considerable success. The
CADIS methodology!?> has been implemented and
automated into codes such as AMCNP (Refs. 1 and
13) and Automated Deterministic Variance Reduction
Generator'*!> (ADVANTG) (more recently), which are
based on MCNP (Ref. 7), and the Monaco with Automated
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(MAVRIC) sequence released with SCALE 6 (Ref. 18),
and is being routinely used at ORNL and elsewhere'®-23 for
three-dimensional (3-D) Monte Carlo simulations of real,
complex radiation transport applications.

Although the CADIS methodology has proven to be
very effective for automated optimization of localized
quantities in source-detector—type problems, efforts to
optimize global distributions have not, until very recently,
been nearly as successful. A number of heuristic
approaches, such as specification of the adjoint source
(response function) throughout the problem phase-space,
have been tested and found to be ineffective. Specification
of the adjoint source at the outer boundaries of a problem
in an attempt to encourage particles to move outward
through the entire system was found to be reasonably
effective®*2> but required considerable user understanding
of the problem and an iterative approach, which
complicates the ability to automate the process. (The
ability of any method to be automated is considered by the
authors to be critically important to its ultimate use.)

Previous work for global problems by Cooper and
Larsen?® suggests that in order to obtain uniform relative
uncertainties in a Monte Carlo calculation, it is necessary
to have uniformly distributed Monte Carlo particle density
throughout the system. Recognizing that the physical
particle density n(7) is related to the Monte Carlo particle
density m(F) by the average particle weight w(7),

n(r) =w(r)m(F) . (1)

Cooper and Larsen observed that if the average particle
weight is proportional to the physical particle density, the
Monte Carlo particle density is approximately constant,
as desired [i.e., for m(F) equal to a constant ¢, then
w(F)=n(¥)/c]. Therefore, to make the Monte Carlo
particle density m(7) constant over the geometry, Cooper
and Larsen propose the use of weight targets based on an
estimate of the forward scalar flux ¢(7) as

e
)= (@)

Intuitively, this method makes sense in that it is
desirable to have low weight targets (high importance)
where the flux is low, and vice versa. While this approach
does encourage particles toward regions of lower flux and
discourages particles from moving toward regions of
higher flux, the forward flux does not represent the
expected contribution to the desired response, which is
proposed to be uniform Monte Carlo particle density
throughout the system. Using this method, Cooper and
Larsen demonstrated good results for one-group test
problems. When applied to more realistic applications,
however, the method was not found to be satisfactorily
effective in many cases.?*

(2)
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Another relevant prior work is that of Becker et al.,’

which involves a hybrid global variance-reduction method
based on a new concept referred to as “correctons.” In
this method, a deterministic solution is used to construct
an efficient Monte Carlo problem in terms of “correc-
tons” such that the correction flux has considerably less
variation across a system than the physical flux. This
method has been demonstrated on one-dimensional, one-
group problems but has not yet been demonstrated on
realistic problems. While many of the methods have
focused on creating parameters for use in techniques that
are available in the standard codes (e.g., weight windows
and source biasing parameters), this method would require
changes to existing Monte Carlo codes.

Hence, a need remained for an effective method for
global variance reduction of realistic (i.e., geometrically
complex, multidimensional, energy-dependent) Monte
Carlo simulations. In particular, a method that meets the
following criteria is desired:

1. simultaneously optimizes multiple tallies and/or
mesh tallies with nearly uniform statistical
uncertainties

2. operates in combination with standard Monte
Carlo codes through “standard” features and
utilizes proven, reliable variance-reduction tech-
niques (e.g., weight windows and source biasing)

3. is automatable so that users without expert
knowledge of either deterministic or Monte
Carlo methods can still use it effectively on their
applications.

The FW-CADIS method was developed in response
to this need. Although the FW-CADIS approach was
originally conceived to simultaneously optimize near and
far detectors in a nuclear well-logging tool,?® it was not
formalized and initially published until 2007.

In parallel to the work at ORNL, researchers at the
University of Michigan were continuing their work to
develop a more effective method for global variance
reduction. Building on Cooper and Larsen’s method, two
approaches have been developed®® that create weight
windows as functions of space and energy, based on only
the forward estimate of flux. These methods differ by the
type of global information the user desires from the
simulation: global flux weight windows (GFWWs), for
obtaining flux in every energy group at every location,
and global response weight windows (GRWWs), for
obtaining an energy-integrated response at every spatial
location. Both of these methods are designed for
calculating the “global solution”—everywhere in the
geometry of the problem—with nearly uniform statistics.
These methods are summarized in Table 1.

Becker’® has also proposed three methods for
developing weight windows based on both forward and
adjoint deterministic solutions. The three methods
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TABLE I
Global Variance-Reduction Methods Using Forward Estimates
Method To Optimize Use
GFWW O(F E) w(7, E)cd(F, E)
GRWW D(F)= J o4(F, E)O(F, E) dE (7, E)oc D(7)
E ’ Gd(F, E)

correspond to the portion of phase-space over which
uniform relative uncertainties are desired: a small
“detector” region, a region comprising a significant
portion of the entire problem, and the global problem.
Each of the three methods is designed to provide uniform
uncertainties across space and energy or just across space.

1.B. Global Variance-Reduction Terminology

To distinguish between different types of problem
objectives, this paper uses the terms “global,” “regional,”
and “source-detector” to represent problem objectives
that are defined as follows:

1. Global: The goal is to calculate the flux ¢(7, E) or
flux-based response throughout the entire problem space
with low statistical uncertainty. Examples include cal-
culation of space- and energy-dependent flux and dose
rate over the entire spatial domain of a problem.

2. Regional: The goal is to calculate the flux or flux-
based response over a portion or portions of the problem
space with low statistical uncertainty. Examples include
calculation of space- and energy-dependent flux and dose
rate throughout one or more spatial regions of a problem.

3. Source-detector: The goal is to calculate the flux
or flux-based response at a single location with low
statistical uncertainty. For example, to calculate the total
dose rate using the flux—to—dose rate conversion factors
o (E) over a detector volume V,, the specific response of
interest is

D= Ln L JVd \u(a E, Q) G.(E)dFdEAQ . (3)

1.C. Outline

This paper presents a method that satisfies the above
criteria and provides examples of its application. It is an
extension of the CADIS method that involves forward
weighting of the adjoint source to generate an adjoint
function that represents the particle importance to the
desired global or regional response. This method,
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FW-CADIS, has been implemented and demonstrated
within the MAVRIC sequence of SCALE 6 and the
ADVANTG/MCNP framework. The remainder of this
paper is organized as follows. Section II reviews the
CADIS methodology for variance reduction of source-
detector problems and describes the theory behind the
FW-CADIS method for global and regional variance
reduction. Section III describes the implementation of the
CADIS and the FW-CADIS methodologies in the
MAVRIC and ADVANTG codes. Section IV discusses
the application and performance of the FW-CADIS
method for the solution of example problems that are
representative of real-world problems of interest to the
nuclear industry. Results of the FW-CADIS method and
other recently developed global variance-reduction
approaches are also compared in Sec. IV. Finally,
summary and concluding remarks are offered in Sec. V.

II. METHODS

As noted in Sec. I.A., it has long been recognized that
the adjoint function has physical significance as a measure
of the importance of a particle to some objective function
(e.g., the response of a detector) and that this physical
interpretation makes the adjoint function well suited for
biasing Monte Carlo simulations. This recognition has led
to the development of several methods that utilize
deterministic adjoint importance functions for Monte
Carlo variance reduction. In this section, we briefly
review the adjoint methodology, prior to describing the
methods for variance reduction of source-detector, global,
and regional problems.

I1.A. Adjoint Methodology

The goal of many “traditional” Monte Carlo
simulations is to calculate the response (i.e., flux, dose,
reaction rate, etc.) at some location(s), which can be
expressed as

R= Jﬁllw(;‘, E, Q) ou(7. E. Q) dFdEdQ, 4)
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where \ is the particle flux and G, is some objective
function (e.g., dose rate response function).

From the forward and adjoint forms of the transport
equation,!!

Hy=¢q (5)
and
HY' ' =¢*, (6)

and the following adjoint identity

QU HYY =y, HAY ), (7)
one can show that
g =" g, (8)

where

H, H" = forward and adjoint transport operators,
respectively
y+ = adjoint function
g, g7 = forward and adjoint sources, respectively

&

integration over all the independent vari-
ables.

If one lets ¢t = o, the left side of Eq. (8) is the
detector response [i.e., Eq. (4)], and the right side is an
alternative formulation for the response in terms of the
adjoint function, resulting in the following two expres-
sions for response:

R J “q,(f, £ Q)q* (. £ Q)drdEdQ  (99)

An EV
and
R= J ”qﬁ (7, E, Q)q(?, E, Q) dFdEAQ . (9b)
4t EV

From Eq. (9b), the adjoint function ™ has physical
meaning as the expected contribution to the response R
from a particle in (7, E, Q) or, in other words, the
importance of a particle in that phase-space to the
response. It is this physical interpretation that has been
used in the development of methods, like the CADIS
methodology described below, to optimize local quantities
for source-detector—type problems. Specifically, the user
defines a response (at some location) for optimization, and
that response is used to define the adjoint source.

The following sections describe variance-reduction
methodologies for source-detector, global, and regional
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problems, all of which are based on adjoint importance
functions.

I1.B. Source-Detector Problems: CADIS Method

Although it is certainly not the only deterministic
adjoint-based methodology for source-detector—type pro-
blems, the CADIS methodology has proven to be very
effective for automated optimization of localized quant-
ities in source-detector—type problems and is routinely
used at ORNL and elsewhere by SCALE 6 users for 3-D
Monte Carlo simulations of real, complex radiation
transport applications. The CADIS methodology is briefly
reviewed in this section to provide background for the
description of the FW-CADIS method for global and
regional problems in subsequent sections.

In the CADIS methodology, which evolves from Eq.
(9b) and the concept of importance sampling,*! the biased
source distribution is given by

gt (F, E, Q)q(?, E, Q)
I J vt (7, E, Q)q(?, E, Q) didEdQ)

an E
) v (7, E, leq(?, E, Q) | o

a(7 . Q) =

where the numerator is the detector response from a
particle in (7, E, Q) and the denominator is the total
detector response R. Therefore, the ratio is a measure of
the contribution from (7, E, Q) to the total detector
response. Intuitively, it is useful to bias the sampling of
source particles by the ratio of their contribution to the
detector response, and therefore, this expression could
also be derived from physical arguments.

Since the source variables are sampled from a biased
pdf, g (7, E, Q), the statistical weight of the source
particles must be corrected according to the following
equality:

w(7 B Q)q(7 B Q) =woq(7 E. Q). (11)
where wy is the unbiased particle starting weight, which
is set equal to 1. Substituting Eq. (10) into Eq. (11) and
rearranging, we obtain the following expression for the
statistical weight of the particles:

R
Ut (F, E, Q)
Equation (12) shows the inverse relationship between the
adjoint (importance) function and the statistical weight.

The relationships for the particle statistical weights,
which are used in source sampling and the particle

w(?, E, Q)= (12)
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transport process, are consistent. Consequently, particles
are created with weights that reside within their
corresponding weight window. This is an important
characteristic of the CADIS methodology because it
eliminates the incompatibility between source and
transport biasing that has been problematic in other
approaches due to poor computational efficiency and/or
false convergence.’? For example, if the statistical
weights of the source particles are not within the weight
windows, the particles are immediately split or rouletted
in an effort to bring their weights into the weight window.
This results in unnecessary splitting/rouletting and a
corresponding degradation in computational efficiency.
For problems in which the adjoint function varies
significantly (in space and/or energy) within the source
region, the source biasing is very effective for improving
computational efficiency.

II.B.1. Global Problems: FW-CADIS Method

For global variance reduction, one’s interest is not
confined to a localized region but rather to determining a
quantity (e.g., flux) with uniformly low statistical
uncertainty throughout the entire problem space. To
achieve this objective in a Monte Carlo simulation,
Cooper and Larsen®® have suggested that the distribution
of Monte Carlo particles should be uniform throughout
the system. Although this is not a “physical” response, it
does intuitively represent a desirable objective for
obtaining uniform uncertainty and indicates that it may
be possible to develop an adjoint importance function that
represents the importance of particles to achieving this
desired objective, i.e., uniformly distributed Monte Carlo
particle density. To do so, we cast the problem of
calculating Monte Carlo particle density into the response
formulation [Eq. (4)]:

R = J“\p(? E, Q) Gd<7, E, Q)d?dEdQ, (13)

4T EV

where o,(7, E, Q) is some function that converts particle
flux to Monte Carlo particle density. The physical particle
density n(F, E, Q) is related to the Monte Carlo particle
density m(7, E, Q) by the average particle weight
w(F, E, Q):

n(?, E. Q) ocw(?, E Q)m(? E. Q) (14)

and
q;(r, E, Q) =n<7, E, Q)V(F, E, Q) . (1)
where v(7, E, Q) is the particle velocity. Substituting

n(r, E, Q) from Eq. (15) into Eq. (14) and rearranging,
the Monte Carlo particle density can be estimated by
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(16)

Integrating over the independent variables, the total
Monte Carlo particle density can be estimated by

;o - A 1 - A
R—Jﬂll\p(r,E,Q) w(?,E,Q)v(F,E,Q) dFdEdQ) .

(17)

Recalling from Cooper and Larsen that if the average
particle weight is set proportional to the physical particle
density, the Monte Carlo particle density is approximately
constant, as desired; i.e.,

for m ~ constant,
woc n, and (18)
wy o\ .

Therefore, by substituting the forward flux (7, E, Q)
for (w(7, E, Qv(F, E, Q)], Eq. (17) becomes

Roc “J\p(? E Q)

4nEV

dFdEAQ . (19)

q/(f, E, Q)

Recognizing the similarities between Egs. (19) and (9a),
we see that by defining the bracketed term in Eq. (19) as

1

e

gt (7, E, Q) =

we can calculate an adjoint importance function that
represents the importance of particles to achieving the
desired objective, i.e., uniform Monte Carlo particle
density, which should correspond to approximately
uniform statistical uncertainties. Physically, this corre-
sponds to weighting the adjoint source with the inverse of
the forward flux. Hence, where the forward flux is low,
the adjoint importance will be high, and vice versa. Once
the adjoint importance function is determined, the
standard CADIS methodology is used to calculate
consistent source biasing parameters and weight windows
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[see Egs. (10) and (12)]. Therefore, we refer to this
method as the FW-CADIS method.

In some applications the goal is to determine the total
(i.e., energy-integrated) flux or flux-based response over
the entire problem space with low statistical uncertainty.
In such cases, we want to achieve uniform Monte Carlo
particle density spatially with respect to the response of
interest. For example, if our goal is spatially dependent
total flux,

o(F) = ”\IJ(?, E, fz)dEdQ, (21)
4n E

then we are interested in making the spatially distributed

Monte Carlo particle density, i.e.,

m(F) = J Jm(? E, Q) dEdQ, (22)
4n E

constant. Following the same logic described above, we

can develop an adjoint importance function to achieve

this objective by defining our adjoint source as

1
J Ju(7. £ Q)dEaq

4n E

q"(r= (23)

Similarly, if the objective of a calculation is spatially
dependent total dose rate,

D(F) = ”q;(r, E, Q) 64(F, EYdEdQ,  (24)

4n E

where o (7, E) is the dose rate response function, then
we can develop an adjoint importance function to achieve
this objective by defining our adjoint source as

Gd(?, E)

T E)= — — .
¢ E) g"qf(?, E, Q) 64(F, E)dEdQ

(25)

4n

IL.B.2. Regional Problems: FW-CADIS Method

For regional problems the goal is to determine the
flux or response over a portion or portions of the problem
space with uniform (low) statistical uncertainty. Hence, in
such cases, we want to achieve uniform Monte Carlo
particle density over one or more spatial regions. For
example, if the goal is to calculate dose rate throughout a
portion of the problem volume V, then the adjoint source
can be defined as
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Gdﬁ:, E) .
N — forrFeV
¢ (7. E)=1{ | | oul® E)(F, E. Q) dEag)
4n E
0 for ¢V
(26)

The adjoint source can be defined for whatever
objective is desired. This is a very useful aspect of the
method because for many applications results are not
needed throughout the entire problem space.

II. IMPLEMENTATION

In the FW-CADIS method, forward information (e.g.,
flux, dose rate, etc.) is used to define an appropriate
response (adjoint source) to generate the adjoint import-
ance function for achieving uniform particle density (or
response) throughout the system. It is possible to optimize
for global quantities, such as flux or dose rate distributions
throughout a problem; regional responses, such as flux or
dose rate throughout one or more regions of a problem;
and multiple detector responses, such as response or
spectra at multiple localized detectors, simply depending
on how the adjoint source is defined. A summary of
typical cases is provided in Table II.

The first step is generating an estimate of the forward
scalar flux ¢(7, E), which can be obtained from a discrete
ordinates calculation. The adjoint source ¢ (7, E) is then
constructed using one of the forms from Table II. The
remainder of the algorithm is the same as that of the
standard CADIS method: The adjoint scalar flux
&7 (7, E) is determined, and the biased source distribution
is calculated using

7, B)= (7 E)D G )

(27)
where R= [, [ q(¥, E)¢™" (F, E)dE dV and where V is
the volume of the physical source.

Next, the weight window target values are calculated
as

(28)

Whereas the weight window implementation in MAVRIC
uses weight window target values per Eq. (28), the weight
window technique implementation in MCNP requires
weight window lower bounds w,. The width of the
window is controlled by the input parameter ¢, which is the
ratio of upper and lower weight window bounds
(c=wy / wy). The space- and energy-dependent weight
window lower bounds for use in MCNP are given by



44 WAGNER et al.

TABLE 1I
FW-CADIS Options Available in the MAVRIC Sequence*
To Optimize Use an Adjoint Source of MAVRIC Input
Total dose rate gt (FE)= L){(r) adjointSource 1
[ cu(E)(F,E) dE ' 0a(E)o(.E) dE boundingBox x; X y; y2 z; 2> end
responselD=5
end adjointSource
respWeighting
Groupwise dose rate . oq4(E)g(7) adjointSource 1
c4(E)O(F, E) q"(FE)= 5a(E)O(, E) boundingBox x; x y; y2 z1 22 end
s ' responselD=5
= ggr) end adjointSource
o(7, E) fluxWeighting
Groupwise flux - g(r) adjointSource 1
(I)(F’ E) q (V,E): d)(’—; E) bOuIldiIlgBOX X1 X2 Y1 Y221 22 end
’ responselD=1
end adjointSource
fluxWeighting
Total flux e g(®) adjointSource 1
[ &(F.E) dE g ()= W boundingBox x; x; y; y2 z1 z» end
’ responselD=1
end adjointSource
respWeighting

*The function g(7) has the value 1 where the adjoint source is defined (in the cuboid defined with x; x; y; y2 z; z2) and O
elsewhere; response ID=1 is used to specify the unity function (to compute total flux from the groupwise fluxes); and response
ID=35 is used to specify the set of flux—to—dose rate conversion factors c,(E).

(29)

Both the biased source(s) and the weight window values
are used by the Monte Carlo calculation.

The CADIS and FW-CADIS methods have been
implemented and automated in the MAVRIC sequence
of SCALE 6 and the ADVANTG code (based on
MCNP). A discussion of the implementation of the
methods in each of these codes is briefly reviewed in
Secs. IIILA and III.B, followed by a discussion of their
usage in Sec. III.C.

HI.A. Implementation in MAVRIC

Since January 2009, SCALE (Ref. 18) has included
tools designed for 3-D shielding analysis. These include
the Monaco fixed-source multigroup Monte Carlo code,
the Denovo?? Cartesian mesh discrete ordinates code, and
the MAVRIC sequence!” for using the CADIS and the
FW-CADIS methods.

Monaco uses the same combinatorial solid-body geo-
metry description and multigroup cross-section processing

NUCLEAR SCIENCE AND ENGINEERING

as the KENO-VI/CSASG6 criticality sequence in SCALE.
Monaco has an easy-to-use and flexible block and
keyword style input, which allows users to define
distributions, response functions, and spatial meshes for
specifying multiple sources and tallies. Mesh-based
weight windows and mesh-based source biasing para-
meters can also be used by Monaco.

The MAVRIC sequence reads an input very similar to
that of Monaco, with one additional block specifying
information needed for the automated variance-reduction
methods. This additional information consists of one or
more adjoint sources (corresponding to the tallies that the
user wishes to optimize) and a spatial mesh. MAVRIC
constructs a mesh-based version of the geometry and then
uses Denovo to calculate forward and/or adjoint fluxes.
The mesh-based flux estimates calculated by Denovo are
used with either the CADIS or the FW-CADIS methods to
construct space- and energy-dependent weight windows
and consistent, mesh-based source biasing parameters.
These biasing parameters are then passed to Monaco for
the Monte Carlo calculation. Note that the tracking and
tallies in the Monaco calculation use the combinatorial
solid-body geometry, not the mesh-based geometry used
in the Denovo calculations. The user’s original source
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specifications are replaced by the biased mesh-based
source specifications, so care must be taken that the
spatial meshing is fine enough in the source regions such
that the mesh-based versions of the sources adequately
represent the true sources (see Ref. 18 for further details).

MAVRIC can also be executed in parts, so that the
results of intermediate steps can be checked before
proceeding to the next step. A Java viewer is available
to view any of the mesh-based files: the forward and
adjoint flux files from Denovo, the space- and energy-
dependent weight window values, the final biased mesh
sources, and any mesh tallies produced by Monaco. The
Denovo flux files, the weight window file, and mesh
source files can be used as the starting points in
subsequent MAVRIC calculations, eliminating the need
to regenerate these files.

With the computational infrastructure in MAVRIC to
generate input for, execute, and use results from forward
and adjoint deterministic calculations, alternative deter-
ministic importance function-based methods can be
implemented and tested with relative ease. The GFWW
and GRWW methods, as well as Becker’s methods>° for
developing weight windows (for source/detector, source/
region and global problems; optimizing either the flux or a
response) have been implemented as options in the
development version of MAVRIC to support testing and
performance comparisons. For the GFWW and GRWW
methods, no adjoint sources are required since only
forward estimates of the flux over the entire geometry are
required. Calculations based on Becker’s methods, using
both forward and adjoint flux estimates, are specified in a
manner very similar to FW-CADIS calculations with one
extra keyword specifying the method to use (source/
detector, source/region, or source/global). The current
implementation in MAVRIC expands upon the original
methods in that biased sources are constructed along with
the weight windows for the Monte Carlo calculation.

The metric typically used to evaluate the performance
of a variance-reduction method for improving the
efficiency of a Monte Carlo simulation is the figure of
merit’ (FOM), which is defined as

1
FOM= ——
R2T

(30)
where R is the relative uncertainty for a single tally and T
is the total computer time for the Monte Carlo simulation.
Although this metric is very useful for evaluating the
efficiency of individual tallies, it is not directly useful for
comparing the efficiency of calculations of distributions,
such as mesh tallies. For the latter purpose, alternative
forms of the FOM have been proposed.** In the current
development version of Monaco (for SCALE 6.2), the
mesh tally FOM is calculated from the mean relative
uncertainty of the mesh tally cells with score
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and

(31)

where R; is the relative uncertainty of the flux or dose rate
in mesh tally cell i and N, is the total number of mesh
tally cells. Four statistical tests>*3> have also been added
to the development version of Monaco. These tests
measure over the simulation: (a) if {, the fraction of
voxels that have received a score, is constant (linear slope
is 0 £0.10); (b) if the mean relative variance is
decreasing as 1 / VN (coefficient of determination of a
power law fit >0.99); (c) if the variance of the relative
variance is decreasing with 1/N (coefficient of deter-
mination of a power law fit >0.95); and (d) if the FOM is
constant (linear slope is 0 = 0.10).

I1.B. Implementation in ADVANTG

The ADVANTG code'* was originally developed to
implement the CADIS methodology through use of the
TORT 3-D discrete ordinates code*®37 for the determin-
istic adjoint calculation and the MCNP 4C code*® for the
Monte Carlo calculation. During the past few years,
ADVANTG has been extended to MCNP5 (Ref. 7), the
FW-CADIS method has been implemented, and the use of
TORT has been discontinued and replaced by Denovo.
Denovo implements modern iterative solvers and trans-
port discretization schemes, provides a number of
quadrature sets, and includes an embedded first-collision
source treatment. ADVANTG has the capability to
seamlessly utilize most of the features provided by
Denovo, including the execution of parallel calculations,
from within its automated sequences.

Input to ADVANTG includes a standard MCNP
input file, from which ADVANTG extracts the geometry
of the material bodies, material compositions, fixed-
source distributions, tally regions, and response spectra.
ADVANTG also reads an additional input file that
contains a Cartesian structured grid, parameters for the
Denovo discrete ordinates calculation(s), and options for
the CADIS and FW-CADIS calculations. The spatial
mesh grid is used for the deterministic calculations and for
the space- and energy-dependent weight windows that are
generated by the CADIS or FW-CADIS calculation.

Similar to MAVRIC, when executing an FW-CADIS
calculation, ADVANTG performs a sequence of several
steps. First, a discretized version of the Monte Carlo
problem is constructed for the discrete ordinates calcula-
tion. A forward-mode Denovo calculation is then
executed, and the scalar flux output is used to construct
an adjoint source according to Egs. (20), (23), or (25),
depending on the nature of the response of interest. An
adjoint-mode Denovo calculation is then executed, and



46 WAGNER et al.

the resulting flux distribution (importance function) is
used to compute weight window lower bounds according
to Eq. (29) and a consistent, biased source distribution
according to Eq. (27). The biased source distribution is
generated directly on the space and energy bins that were
used to describe the source in the MCNP input file.?°

One of the primary tasks required to automate the
CADIS and FW-CADIS methods is the construction of a
discretized version of the Monte Carlo problem for the
discrete ordinates calculation. Since the steps required to
accomplish this task are not typically part of conventional
transport algorithms, some additional details are provided
here. First, the geometry of the MCNP material bodies
(cells) and the given source distribution are mapped onto
the user-defined grid. The original version of ADVANTG
accomplished this in a straightforward way by querying
the material defined at the centroid of each mesh cell and
assigning that material to the entire cell. A more
sophisticated approach is to sample multiple points within
each cell and generate a mixed material description.*’ The
current version of ADVANTG uses ray tracing to estimate
the material fractions in each cell. The next step is to
translate the MOCNP material compositions (nuclide
identifiers and number densities) into a form suitable for
use with the multigroup cross-section library selected by
the user. This library also determines the energy group
structure onto which the energy spectra of the sources and
responses are mapped. To mitigate the impact of ray
effects, Denovo’s embedded first-collision treatment is
used for point sources (in forward calculations) and point
detectors (in adjoint calculations).

The variance-reduction parameter output by
ADVANTG is written in a form that is directly usable
by unmodified versions of MCNP. The space- and
energy-dependent weight window lower bounds are
written as a WWINP file,> and the biased source
distribution is written as SDEF cards that are incorporated
into the user’s MCNP input file.

The application of ADVANTG to calculating energy-
dependent pulse-height tallies in a simplified radiation
portal monitoring scenario is discussed in Sec. IV.B.

III.C. Comments on Usage

Previous studies (Refs. 1, 3, 13, and 14) have
demonstrated that the calculational efficiency achievable
with the hybrid methods is not overly sensitive to the
accuracy of the adjoint function and, therefore, that
approximate, fast-running deterministic calculations (e.g.,
course spatial mesh, coarse energy groups, and low
quadrature order) are typically sufficient for the purpose
of generating effective variance-reduction parameters.
This behavior is considered to be desirable, as different

See Ref. 7 for information on the WWINP file and SDEF
cards.
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users will inevitably take different approaches toward
defining mesh resolution for the deterministic calculations
and it is desirable to not spend a large fraction of the total
computation time on the deterministic calculations.
Regarding the mesh distribution, it has been shown that
it is important to capture the bulk characteristics of the
problem geometry (e.g., material locations and thick-
nesses) in order to capture the physics characteristics of
the problem. Failure to do so can manifest itself in poor
computational efficiency and/or convergence behavior.
However, because the process is automated, creating and
utilizing different mesh distributions is a simple matter.

Both MAVRIC and ADVANTG provide the cap-
ability to output 3-D visualization files with the
deterministic fluxes and weight window values.
Inspecting the quality of the deterministic results (e.g.,
for expected physical behavior) is an important step to
take before proceeding to the Monte Carlo simulation that
uses the variance-reduction parameters.

Subsequent to using the results of the Monte Carlo
simulation, it is important to carefully study the results of
the statistical tests of tally convergence. The trend and
magnitude of the variance of variance and the magnitude of
the Pareto slope are, in our experience, the primary
indicators of statistical convergence issues, which may be
the result of an inadequate deterministic solution caused by
inadequate spatial mesh or the selection of a cross-section
library not applicable to the problem. In challenging
simulations the statistical checks may not indicate any
issues until several million particle histories have been
simulated. For this reason, we advise against relying on very
short Monte Carlo runs, even if the initial results appear well
converged. Note, this guidance is also applicable to other
codes when using variance-reduction parameters.

IV. APPLICATION AND ANALYSES

In this section the hybrid methods discussed in Sec. 11
are applied to two problems of interest to the nuclear
industry. More details on these problems, as well as the
application of the FW-CADIS method to other relevant
problems, are available in Refs. 5, 9, 17, 24, 25, and 41
through 44.

1IV.A. Example Problem 1: Optimizing
Mesh Tallies in a Small Building

To evaluate and demonstrate the effectiveness of the
FW-CADIS method, we consider in this section a
simplified, yet representative, problem involving the
calculation of total neutron dose rate throughout a 860-
X 460- X 460-cm?® concrete structure holding nuclear
fuel, as shown in Fig. 1. The fuel is represented as an
80 X 80 X 80 cm?® of homogenized uranium dioxide and
water, surrounded by a 10-cm layer of steel. The concrete
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Fig. 1. Geometry of the test problem. An 80- X 80- X 80-
cm cube of homogenized uranium dioxide and water for the
source, surrounded by a 10-cm layer of steel in a system of 30-
cm-thick concrete walls and air regions.

walls are 30 cm thick, spaced every 1 m in the x direction,
leaving air regions that are 70 cm thick. The source is
modeled uniformly over the central cube, emitting
neutrons from a Watt fission spectrum, with a total
strength of 1 Ci. Three cases for optimizing the mesh tally
(uniform 10-cm voxel, 86 X 46 X 46) over the building
are considered: (a) calculation of the total dose rate D(F),
(b) calculation of the flux ¢(7, E), and (c) calculation of
the total flux ¢(7). Five methods of calculation are
compared for each case: analog method (with implicit
capture on; weight cutoff of 10~6), Cooper and Larsen’s
method, GFWW/GRWW methods, Becker’s method for
global optimization (Becker’s Global), and FW-CADIS
method. Calculations were all performed with the
MAVRIC sequence of SCALE, using the 27-group
neutron shielding cross-section library. Denovo calcula-
tions used a nonuniform mesh of 106 X 58 X 50, an Sg
level-symmetric quadrature, and a Legendre expansion
order of 3. Cooper and Larsen’s method calculations used
only space-dependent weight windows and an unbiased
source (consistent with its original description). The
GFWW/GRWW calculations and Becker’s Global were
extended beyond their original descriptions to use
consistent source biasing parameters.

IV.A.1. Optimizing for Total Dose Rate

For a fair comparison, each method was allowed a
total of 120 min on a single processor. For the five
methods, detailed timing information (deterministic and
Monte Carlo) is shown in Table III, which also shows for
each method the statistical quantities relating to the
relative uncertainty distribution of the final mesh tally of
dose rate (rem/h Ci~') as well as indicates the statistical
tests described in Sec. III.LA that each method passed.
Figure 2 shows a dose rate plot at the midplane (z=0) of
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TABLE 1II

Details for the Five Methods Used to Optimize the Calculation of Total Dose Rate for the Small Building Example Problem
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“The fraction of voxels with a nonzero score.

"See Sec. III.A for a description of the four tests.
€X” indicates the test measure was satisfied.
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Fig. 2. Dose rates (rem/h Ci~!) and associated relative uncertainties from the analog method, Cooper and Larson’s method, the
GRWW method, Becker’s Global, and the FW-CADIS method for the midplane (z=0) of the small building example.
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the building for each method, along with the relative
uncertainties associated with the dose rate values. Dose
rates and relative uncertainties along a line (y=z=0) are
shown in Figs. 3 and 4. The center of the source in
the 3-D geometry representation corresponds to
x=y=z=0. The dose rates for all five methods were
compared to a very long analog calculation (160 h) to
ensure that use of the hybrid variance reduction did not
bias the results. Total dose rates from the five methods
compared well to the long analog calculation within the
first two walls. Beyond the first two walls, the
uncertainties of the long analog total dose rates were too
large for comparison.
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Fig. 3. Dose rates (rem/h Ci~!) from the analog method,
Cooper and Larson’s method, the GRWW method, Becker’s
Global, and the FW-CADIS method, along the line y=z=0 of
the small building example.
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Fig. 4. Relative uncertainties of the dose rates from the
analog method, Cooper and Larson’s method, the GRWW
method, Becker’s Global, and the FW-CADIS method, along
the line y=z=0 of the small building example.
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As expected, the dose rates computed in the 120-min
analog calculation have low relative uncertainties only
where the fluxes are high—near the source region. As the
dose rate drops farther from the source region, the relative
uncertainties increase significantly. Few particles survive
to reach the room farthest from the source.

Since Cooper and Larsen’s method is designed to
calculate fluxes for every mesh cell, it is not expected to
perform well at calculating the total dose rate, which is
more sensitive to the fluxes in the higher-energy groups.
Cooper and Larsen’s method does perform better than the
analog method, but it should be noted that each history in
this method required much more time, by a factor of >40,
compared to the analog method. With weight windows
proportional to the forward flux, particles are repeatedly
split as they move outward. While the dose rate results for
this problem seem reasonable, the long time per history is
a concern because the source is not sampled very often.
For a source with a large volume and a distribution over a
large range of energies, Cooper and Larsen’s method may
not be able to sample the source adequately in reasonable
run times, which could result in a significant bias in the
calculated results.

As shown in Table III, the GRWW method with a
consistent biased source performed well, Becker’s Global
performed better, and the FW-CADIS method performed
the best for the different mesh tally statistical measure-
ments (lowest mean relative uncertainty, highest mesh
tally FOM, etc.). Results for the four mesh tally tests,
based on the change of the distribution of relative
uncertainties over the last half of the simulation, are
shown in Table III for each method. Figures 5 and 6 show
the details of the distribution of relative uncertainties of
the 181 976 voxels as pdf’s, showing the fraction of mesh
cells that has certain values of relative uncertainty, and as

Probability

20 %0 60 80 100
Relative Uncertainty (%)

Fig. 5. The distribution of relative uncertainties of the
dose rates from the analog method, Cooper and Larson’s
method, the GRWW method, Becker’s Global, and the FW-
CADIS method.
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Fig. 6. The cdf of relative uncertainties of the dose rates
from the analog method, Cooper and Larson’s method, the
GRWW method, Becker’s Global, and the FW-CADIS
method.

cumulative distribution functions (cdf’s), showing the
fraction of mesh cells that has relative uncertainties below
certain values. Figures 5 and 6 show that the FW-CADIS
method produces a total dose rate mesh tally with more
uniform and lower relative uncertainty values than the
other methods. The cdf graph is particularly useful in
comparing the fraction of voxels below a certain relative
uncertainty. For our five methods, the fractions of mesh
tally voxels that have <10% uncertainty are as follows:
analog, 0.1; Cooper and Larsen, 0.006; GRWW, 0.28;
Becker’s Global, 0.48; and FW-CADIS, 0.77.

IV.A.2. Optimizing for Space/Energy Flux

Since the goal of this case is to attain low (and
uniform) relative uncertainties in every energy group of
every voxel, more total run time (24 h) was allowed for
each of the five methods. The timing, mesh tally statistical
quantities, and results of mesh tally statistical tests
described in Sec. IIILA are all shown in Table IV. The
flux results for the five different methods were similar
(where there were reasonable statistics). A comparison of
the group 5 (0.9 to 1.4 MeV) fluxes for the line y=z=0
from the five methods is shown in Fig. 7. The
corresponding relative uncertainties are shown in Fig. 8.
The center of the source in the 3-D geometry representa-
tion corresponds to x=y=z=0. As in the previous case,
the order of increasing performance was Cooper and
Larsen’s method, the GFWW method, Becker’s Global,
and the FW-CADIS method. Figures 9 and 10 show the
pdf and the cdf of the relative uncertainties of the
4 913 352 space/energy flux values (181 976 voxels, 27
energy groups). Figures 9 and 10 clearly show that the
FW-CADIS method provides lower and more uniform
relative uncertainties across space and energy than the
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Fig. 7. Group 5 (0.9 to 1.4 MeV) fluxes (n/cm? s~! Ci~ 1)
from the analog method, Cooper and Larson’s method, the
GFWW method, Becker’s Global, and the FW-CADIS method,
along the line y=z=0 of the small building example.
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Fig. 8. Relative uncertainties of the group 5 flux (n/
cm? s~ Ci™!) from the analog method, Cooper and Larson’s
method, the GFWW method, Becker’s Global, and the FW-
CADIS method, along the line y=z=0 of the small building
example.

other methods for this problem. The fractions of mesh
tally voxels with <10% uncertainty are as follows: the
analog method, 0.10; Cooper and Larsen’s method, 0.23;
the GFWW method, 0.40; Becker’s Global, 0.51; and the
FW-CADIS method, 0.67.

As an example of obtaining more uniform relative
uncertainties among energy groups, consider just one
voxel in the center of the rightmost room of the building.
Figure 11 shows the energy-dependent flux computed
with different variance-reduction approaches. The analog
calculation recorded scores in only the five lowest of the
27 energy groups and is not shown in Fig. 11. The fluxes
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20 10 60 50 100

Relative Uncertainty (%)

Fig. 9. The distribution of relative uncertainties of the
space/energy fluxes from the analog method, Cooper and
Larson’s method, the GFWW method, Becker’s Global, and the
FW-CADIS method, along the line y=z=0 of the small
building example. The value for the analog curve reaches 0.59
at 100% relative uncertainty.

~

Fraction Below

60 5 100

Relative Uncertainty (%)

Fig. 10. The cdf of relative uncertainties of the space/
energy fluxes from the analog method, Cooper and Larson’s
method, the GFWW method, Becker’s Global, and the FW-
CADIS method, along the line y=z=0 of the small building
example.

are very similar among the methods. The relative
uncertainties are shown in Fig. 12, with the FW-CADIS
calculation achieving the lowest overall uncertainties.
These uncertainties are more uniform over the range of
energies with slightly higher uncertainties near 1 eV and
in the lowest energy group.

IV.A.3. Optimizing for Total Flux

Optimizing for the calculation of the total flux is
similar to optimizing a response; in this case the response

JAN. 2014
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Flux per Unit Lethary
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Neutron Energy (eV)

Fig. 11. Neutron flux per unit lethargy for one voxel in the
rightmost air region.

Relative Uncertainty in Flux

LE0S  1E04  1EG3  LEO2  LEGL  LEWO 1EW01  LEWQ2  LEW3  LEWOA  LEWS  LEWG
Neutron Energy (eV)

Fig. 12. Relative uncertainties in the neutron flux for one
voxel in the rightmost air region.

function as a function of energy is simply 1. Results for
the five methods are shown in Table V. Optimizing total
flux over space was the original intent of Cooper and
Larsen’s method, and it does well in this test, performing
very similarly to the GRWW method. In fact, since the
response being optimized is total flux, Cooper and
Larsen’s method should be equivalent to the GRWW
method except for the use of the biased source in the
GRWW implementation in MAVRIC. The use of the
biased source caused the number of source particles
sampled by the GRWW method to be larger than with
Cooper and Larsen’s method. Becker’s Global and the
FW-CADIS method outperform the forward-flux—based
methods because the adjoint information is included; the
variance-reduction parameters from these methods bal-
ance the simulation based on the importance of a particle
contributing to the total flux. The pdf and cdf plots of the
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®See Sec. IIILA for a description of the four tests.
©»X” indicates the test measure was satisfied.
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distribution of relative uncertainties over the 181 976
voxels were similar to the corresponding distributions for
the dose rate response, with the fractions of mesh tally
voxels with <10% uncertainty being as follows: the
analog method, 0.16; Cooper and Larsen’s method, 0.25;
the GRWW method, 0.32; Becker’s Global, 0.40; and the
FW-CADIS method, 0.68.

IV.A.4. Other Types of Optimization with the
FW-CADIS Method (Regional Problems)

The FW-CADIS method is quite flexible. The
regions that will be optimized in the Monte Carlo
calculation are defined by the user’s specification of the
adjoint source. Unlike the GFWW/GRWW methods that
are global in nature, the FW-CADIS method can be
focused on only those regions for which reliable results
are needed. In other words, computational time is not
wasted on achieving uniform, low statistical uncertainties
in regions of the problem where they are not needed.
For example, Fig. 13 shows total dose rates and
uncertainties from a calculation where the adjoint source
definition was restricted to the voxels in the air. Note
that the uncertainties in the exterior walls and in the
source region are higher than in the air regions. Figure 14
shows the dose rates and uncertainties from a similar
calculation where the adjoint source definition was
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restricted to just the third and fourth large air regions.
Notice that those air regions have lower relative
uncertainties than the air regions near the source. In
MAVRIC (and ADVANTG), the area of optimization can
also be set to include areas within a certain range of
response (estimated using the Denovo forward-flux
estimate). Figure 15 shows an example where the
calculation was optimized to the areas for which the
estimated dose rates were 107% to 1072 rem/h Ci~!. Dose
rates below 10~ % rem/h Ci~ ! are not calculated well at all,
since particles in those areas have very little chance to
contribute to the areas that have a dose rate between 104
and 1072 rem/h Ci~ ..

IV.B. Example Problem 2: Optimizing an
Energy-Dependent Pulse-Height Tally
in a Radiation Portal Monitor

To evaluate the effectiveness of the FW-CADIS
method for obtaining relatively uniform statistical uncer-
tainties in an energy-dependent tally, we consider the
radiation detection scenario shown in Fig. 16. This
problem is a simplified representation of the use of a
radiation portal monitor*> for screening truck cargos for
illicit radioactive materials. Here, the panel detector array
is simply represented by four 10.16- X 10.16- X 40.64-cm
Nal crystals in a staggered arrangement. The 2.44-
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Fig. 13. Dose rates (rem/h Ci~!) and associated relative uncertainties for the small building example optimized for calculating

the dose rates in the air regions.
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Fig. 14. Dose rates (rem/h Ci~—!) and associated relative uncertainties for the small building example optimized for calculating

the dose rates in the third and fourth large air regions.
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Fig. 15. Dose rates (rem/h Ci~ ') and associated relative uncertainties for the small building example optimized for calculating

the dose rates between 10~* and 102 (rem/h Ci~ ).

cargo container

Nal crystals

iron block

block

Fig. 16. Geometry of the portal monitor problem. The
panel is represented by the four 10.16- X 10.16- X 40.64-cm?
Nal crystals. A '33Ba point source emits photons at the center
of the 2.44- X 2.44- X 6.10-m> cargo container, which holds an
array of 1- X 1- X 2-m? blocks of polyethylene (lighter color)
and low-density iron (darker color).

X 2.44- X 6.10-m subject cargo container holds an array
of 1- X 1- X 2-m blocks of polyethylene at 0.5 g/cm?® and
iron at 1 g/cm?. A point photon source with the emission
spectrum of '3*Ba (modeled as 13 discrete lines from 4.6
to 383.8 keV) is located at the center of the container,
which happens to lie in an air gap between the blocks. The
wall of the container is 0.3-cm-thick carbon steel at full
density. The detectors and container are placed above a
30.48-cm-thick concrete pad. The objective of the
simulation is to estimate the integrated pulse-height
spectrum in the four detectors for energies up to
384 keV within 1-keV-width energy bins. The ability to
apply variance-reduction techniques, such as weight
windows and source biasing, to simulations with
pulse-height tallies is a relatively new feature in the
MCNP code (released in version 1.50). The implementa-
tion of pulse-height-tally variance reduction requires
additional bookkeeping and computations that may

NUCLEAR SCIENCE AND ENGINEERING

significantly contribute to run time, especially in simula-
tions where the importance varies over many orders of
magnitude.

ADVANTG was used to generate weight windows
and a biased source distribution using the FW-CADIS
method. Since the objective is to estimate an energy-
dependent pulse-height spectrum with relatively uniform
uncertainties across the 384 energy bins, the adjoint
source was constructed according to Eq. (20), though
scalar adjoint fluxes were used. The Denovo run time for
completing both calculations was 60 CPU minutes.
MCNPS simulations were performed with and without
the ADVANTG-generated weight windows and biased
source distribution with run time limits of 5700 and
5760 min, respectively, for the purpose of comparing
results on an equal time basis. The pulse-height spectrum
mean values and relative uncertainties are plotted in
Figs. 17 and 18, respectively. The distribution of tally bin
relative uncertainties is shown in Fig. 19.

1.0E-06

o Conventional MCNP
——MCNP with FW-CADIS

1.06-07 +

1.0E-08 +

Pulse Height (counts / source particle)

o @oo

1.0E-10

0 50 100 150 200 250 300 350 400
Energy (keV)

Fig. 17. Pulse-height spectrum mean values for the portal
monitor problem estimated by 96 h conventional MCNP and
FW-CADIS simulations.
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Fig. 18. Pulse-height spectrum relative uncertainties for
the portal monitor problem.
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Fig. 19. Distribution of relative uncertainties in the pulse-
height spectrum for the portal monitor problem.

As expected, the tally mean values exhibit statistical
agreement. The differences between the 384 bin mean
values estimated with and without the FW-CADIS
variance-reduction parameters are approximately norm-
ally distributed. In all but one of the bins, the differences
were <3c from zero. For the outlier, the difference was
3.330; however, the relative uncertainty of the mean
value was 41% for the case without the FW-CADIS
parameters.

The distribution of relative uncertainties, as shown in
Fig. 18, is far more uniform when the FW-CADIS
variance-reduction parameters are used. Without the
FW-CADIS parameters, the relative uncertainties varied
between 3.46% and 100%, while two of the bins received
no scores. With the application of the FW-CADIS
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method, the uncertainty range was reduced to 0.78% to
11.28%, and all tally bins received scores. Moreover, the
fraction of tally bins that have relative uncertainties less
than a given value, as shown in Fig. 19, was significantly
increased. The average per-bin FOM, calculated accord-
ing to Eq. (30), was increased from 0.045 to 0.830 min~ !,
which can be interpreted as an average speedup of a factor
of 18. The FOM of the total count rate was increased from
18.1 to 173.6. Thus, for this problem, the FW-CADIS
method is able to simultaneously increase the number of
overall tally contributions, while ensuring that those
contributions are distributed relatively uniformly in
energy, as was desired.

V. SUMMARY

A novel hybrid Monte Carlo/deterministic trans-
port method, FW-CADIS, has been developed for
enabling and/or increasing the efficiency of Monte
Carlo calculations of distributions, such as flux or dose
rate distributions (e.g., mesh tallies), as well as responses
at multiple localized detectors and/or regions. The FW-
CADIS method has been implemented and demonstrated
within the MAVRIC sequence of SCALE and the
ADVANTG/MCNP framework. The performance of the
method has been demonstrated on representative, real-
world problems, including calculation of dose rate and
energy-dependent flux throughout the problem space,
dose rates in specific areas, and energy spectra at multiple
detectors. Results of the FW-CADIS method and other
recently developed global variance-reduction approaches
have been compared, and the FW-CADIS method was
demonstrated to outperform other methods in all cases
considered. The method has also been applied to a variety
of other relevant and challenging problems, many of
which would otherwise be computationally prohibitive,
including determining dose rates throughout a full-scale
pressurized water reactor facility,”?*=>> site boundary
dose rates from an array of commercial spent fuel storage
casks,*! criticality accident alarm system analyses,*?
nuclear well-logging simulations,’ dose rates throughout
a city from a postulated nuclear weapon detonation,*® and
fusion neutronics analyses.** In all applications to date,
excellent results have been achieved.®

Implementation of the FW-CADIS method requires
two approximate deterministic calculations (one forward
and one adjoint) to generate consistent source biasing and
weight window parameters for the subsequent Monte
Carlo simulation and does not require any modifications
to existing Monte Carlo codes. An important distinguish-
ing characteristic of this method, as compared with other
global variance-reduction methods,?%? is that it can be
used to optimize results for a subset (or subsets) of the
problem space, as opposed to the entire problem space.
While substantial speedups (hundreds to tens of thou-
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sands) are routinely observed with the CADIS method,
the FW-CADIS method has proven to be transformational
in that it enables high-fidelity Monte Carlo results for
distributions (e.g., spatial dose rate distribution) in large
phase-spaces—a capability previously attributed only to
deterministic methods. Hence, this method has initiated a
paradigm shift in the methodology used to obtain
accurate, full domain solutions to large, complex radiation
transport problems.

Recent work?’*® has extended the FW-CADIS
method for eigenvalue problems for the purpose of
accelerating Monte Carlo reactor analyses. Potential other
applications include accelerating continuous-energy
Monte Carlo for the generation of problem-dependent
multigroup cross sections, and groupwise forward and
adjoint fluxes for SCALE sensitivity/uncertainty analyses.
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