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ABSTRACT 

 
For Monte Carlo shielding problems that calculate a mesh tally over the entire problem, the 
statistical uncertainties computed for each voxel can vary widely. This can lead to unacceptably 
long run times in order to reduce the uncertainties in all areas of the problem to a reasonably low 
level.  Hybrid methods – using estimates from deterministic calculations to create importance 
maps for variance reduction in Monte Carlo calculations – have been successfully used to optimize 
the calculation of specific tallies. For the global problem, several methods have been proposed to 
create importance maps that distribute Monte Carlo particles in such a way as to achieve a more 
uniform distribution of relative uncertainty across the problem.  The goal is to compute a mesh 
tally with nearly the same relative uncertainties in the low flux/dose areas as in the high flux/dose 
areas.  Methods based on only forward deterministic estimates and methods using both forward 
and adjoint deterministic methods have been implemented in the SCALE/MAVRIC package and 
have been compared against each other by computing global mesh tallies on several representative 
shielding problems.  Methods using both forward and adjoint estimates provide better performance 
for computing more uniform relative uncertainties across a global mesh tally. 
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1. INTRODUCTION 
 
Hybrid methods use quick forward and/or adjoint flux estimates from a deterministic code to 
create biasing parameters for a detailed Monte Carlo (MC) calculation. One way to incorporate 
the deterministic estimate is through an importance map that defines target weights, ݓഥ , for MC 
weight windows.    
 
Importance maps can be developed to optimize the MC calculation over different spatial regions. 
For a source/detector problem, the goal is to maximize the figure-of-merit (FOM) of a single 
tally at a specific location. For a source/region problem, the goal is to compute several tallies or a 
mesh tally over a large portion of the problem with uniform relative uncertainties.  For the global 
problem, the goal is to compute a mesh tally over the entire problem space with uniform relative 
uncertainties – to converge every voxel at the same rate – regardless of the magnitude of the tally 
in the voxel. 
 
For the source/region and global cases, there are different quantities that the user may wish to 
optimize with the importance map. These include the spatial flux, ߶(ݎԦ); the space/energy flux, ߶(ݎԦ, (Ԧݎ)ܴ ,or an integrated response ;(ܧ = ,Ԧݎ)߶	(ܧ)݂׬  is a response function (ܧ)݂ where ,ܧ݀(ܧ
(an interaction cross section or flux-to-dose-rate conversion factors). 

231M&C 2013, Sun Valley, Idaho, May 5-9, 2013



Douglas E. Peplow 
 

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & 
Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9, 2013 

2/12 

 

Several methods for creating importance maps to optimize the MC calculation of a global 
quantity have been developed recently and their effectiveness on several representative shielding 
problems will be compared in this paper. These methods are based on either a forward flux 
estimate or a combination of forward and adjoint flux estimates. 
 

2. METHODS BASED ON FORWARD FLUX ESTIMATES 

2.1.  Cooper’s Method 

 
The use of hybrid deterministic/Monte Carlo methods, particularly for global variance reduction, 
has been an active area of research by the radiation transport group at the University of Michigan 
for a over a decade.  One of the first approaches studied was a way to develop Monte Carlo 
weight window target values that were proportional to deterministically estimated values of the 
forward flux [1].  For global problems using isotropic weight windows, Ref. 1 argues that in 
order to obtain uniform relative uncertainties in the Monte Carlo calculation, the weight windows 
should be set such that the number density of Monte Carlo particles, ݉(ݎԦ), is constant.  The 
physical particle density, ݊(ݎԦ), is related  to the Monte Carlo particle density by the average 
particle weight, ݓഥ(ݎԦ), such that ݊(ݎԦ) =  ,constant over the geometry (Ԧݎ)݉ To make  .(Ԧݎ)݉(Ԧݎ)ഥݓ
the weight window targets ݓഥ(ݎԦ) must be proportional to the physical particle density.  Cooper 
and Larsen calculate the weight window targets, ݓഥ(ݎԦ), from an estimate of the forward scalar 
flux ߶(ݎԦ) to be ݓഥ(ݎԦ) = (Ԧݎ)߶ max൫߶(ݎԦ)൯⁄ .  Note that Cooper’s method is a space-only method. 

2.2.  Global Flux/Response Weight Windows 

 
Two extensions of Cooper’s Method have been developed [2] based on what global information 
the user desires from the simulation: global flux weight windows, for obtaining energy-
dependent flux at every spatial location, and global response weight windows, for obtaining an 
energy-integrated response at every location.  Both of these methods are designed for calculating 
the “global solution” – everywhere in the geometry of the problem – with nearly uniform 
uncertainties. 
 
The global flux weight windows (GFWW) method keeps the Monte Carlo particle distribution 
uniform in space and energy.  This is a space/energy version of the original space-only Cooper’s 
Method.  The target weight windows, ݓഥ(ݎԦ,  should be proportional to the estimate of the ,(ܧ
forward scalar flux, ݓഥ(ݎԦ, (ܧ = ,Ԧݎ)߶	ܿ  When an energy-integrated response (such as dose) is  .(ܧ
desired at all spatial locations, the global response weight windows (GRWW) method keeps the 
Monte Carlo particle distribution proportional to the integral of the product of the response 
function, ݂(ܧ), and the estimate of the forward flux, ߶(ݎԦ, (Ԧݎ)ܦ is found from ,(Ԧݎ)ܦ ,The energy-integrated response  .(ܧ = ׬ ,Ԧݎ)߶	(ܧ)݂ ாܧ݀(ܧ .  The target weight windows, ݓഥ(ݎԦ, ,Ԧݎ)ഥݓ are then ,(ܧ (ܧ = (Ԧݎ)ܦܿ ⁄(ܧ)݂ .   
 
These two methods develop weight windows as a function of both space and energy.  Becker and 
Larsen state that the constant ܿ in either method is usually set to unity.  In practice, normalizing 
the target weights such that they are equal to unity in the source region produces higher FOMs. 
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2.3.  Van Wijk’s Methods 
 
In an iterative scheme using the MCNP weight window generator, van Wijk et al. [3] developed 
weight window targets based on previous MC estimates of either the spatial flux or the relative 
uncertainty in the spatial flux.  The target weights were then normalized using the maximum flux 
or the minimum relative uncertainty, respectively. The authors state that normalization to the 
highest flux or lowest uncertainty typically corresponds to the source area of the problem. 
 
The first method (called flux-based) constructs weight window targets based on a previous 
Monte Carlo estimate of the forward flux using ݓഥ(ݎԦ) = (Ԧݎ)߶ max൫߶(ݎԦ)൯⁄ .  Van Wijk et al. argue 
that because the goal of global variance reduction is to reduce the uncertainty in the computed 

flux, an alternative method (called ܴ݁-based) is to use the relative error, ܴ݁(ݎԦ) ∝ 1 ඥ߶(ݎԦ)⁄  of a 
previously computed Monte Carlo estimate of the forward flux and define the target weight 
windows to be ݓഥ(ݎԦ) = min	൫ܴ݁(ݎԦ)൯ ⁄(Ԧݎ)ܴ݁ .   
 
Like the approaches outlined in the previous sections, weight window targets based on the flux 
or the relative uncertainty in the flux could also be generated from deterministic estimates of 
those quantities. Note that van Wijk’s flux-based method would then be the same as Cooper’s 
method. A potential downfall of the ܴ݁-based method is that for a problem where the flux spans ݊ orders of magnitude, the weight window targets will only span ݊/2. Particles would have to 
survive many successive roulettes in order to populate the lowest flux areas of the problem. 
 

3. METHODS BASED ON BOTH FORWARD AND ADJOINT ESTIMATES 

3.1.  Becker’s Methods 

 
Becker [4] has also proposed three methods for developing weight windows based on both 
forward and adjoint deterministic solutions.  These three methods correspond to the portion of 
the phase space over which uniform relative uncertainties are desired: a small “detector” region, 
a region comprising a significant portion of the entire problem, and the global problem.  Each of 
the three methods can be used in one of two modes: to provide uniform uncertainties in flux 
across space and energy or provide uniform uncertainties for an energy-integrated response 
across space.  A brief outline of Becker’s method for the global problem is given below: 
 

Compute the forward flux estimate ߶(ݎԦ, (ܧ
Construct the adjoint source - 
   for optimizing flux use  
       or 
   for optimizing response use 

,Ԧݎ)ାݍ (ܧ = 1 ,Ԧݎ)߶ ൗ(ܧ  

,Ԧݎ)ାݍ  (ܧ = (ܧ)݂ ׬ (ܧ)݂ ,Ԧݎ)߶ ஶ଴(ܧ ൘ܧ݀  

(1) 
 
 

(2) 

Compute the adjoint flux estimate ߶ା(ݎԦ, (ܧ
Construct the contributon flux ߶௖(ݎԦ, (ܧ = ,Ԧݎ)߶ (ܧ ߶ା(ݎԦ, (3) (ܧ
Find the space-only contributon flux ߶௖(ݎԦ) = න ߶௖(ݎԦ, ஶ(ܧ

଴ (4) ܧ݀
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Construct the weight windows ݓഥ(ݎԦ, (ܧ = ߶௖(ݎԦ)߶ା(ݎԦ, (5) (ܧ

3.2.  FW-CADIS 

 
Wagner and Haghighat [5,6] developed the Consistent Adjoint Driven Importance Sampling 
(CADIS) method to develop weight window target values that were consistent with a biased 
source to optimize the MC calculation of an integrated response ܴ at one detector location. Using 
an adjoint source equal to the response function, ݍା(ݎԦ, (ܧ =  located at the detector, the ,(ܧ)݂
adjoint flux, ߶ା(ݎԦ, ܴ ,is computed and an estimate of the response ,(ܧ ,Ԧݎ)ݍ∬ = ,Ԧݎ)ା߶	(ܧ ,Ԧݎ)ݍ ,is made using the true source ,ܸ݀	ܧ݀	(ܧ ,Ԧݎ)ഥݓ ,Then the target weights .(ܧ ,Ԧݎ)ොݍ ,and biased source ,(ܧ  can be developed as ,(ܧ
 
(Ԧݎ)ഥݓ  = ܴ߶ା(ݎԦ, (6) ,(ܧ

  
,Ԧݎ)ොݍ  (ܧ = ,Ԧݎ)ݍ (ܧ ߶ା(ݎԦ, ܴ(ܧ . (7)

 
Though the idea of using adjoint information to accelerate Monte Carlo was well known for 
several decades before Ref. 6 was published, the unique feature of the CADIS method is that it 
ensures that the biased source and importance map are consistent with each other, so that 
computational time is not wasted splitting or rouletting particles right after birth.  
 
This method has been extended for optimizing source/region and global problems by 
incorporating the forward flux estimate into the definition of the adjoint source. The forward-
weighted CADIS method (FW-CADIS) [7,8] uses an adjoint source of ݍା(ݎԦ, (ܧ = (Ԧݎ)݃ ,Ԧݎ)߶ ⁄(ܧ  
for optimizing the space/energy flux, ݍା(ݎԦ, (ܧ = (Ԧݎ)݃ ,Ԧݎ)߶׬ ⁄ܧ݀	(ܧ  for optimizing the total 
flux, and ݍା(ݎԦ, (ܧ (Ԧݎ)݃	(ܧ)݂ = ׬ ,Ԧݎ)߶	(ܧ)݂ ⁄ܧ݀	(ܧ  for optimizing a spatially-dependent 
response. The FW-CADIS method can be used for source/region problems or global problems by 
changing the extent of the volume where the adjoint source is defined (expressed as ݃(ݎԦ) = 1, 
where the mesh tally is to be optimized and 0 otherwise). From the resulting adjoint fluxes, the 
weight window targets and biased source are developed similar to CADIS. Also like CADIS, the 
normalization of the target weights is based on the biased source. 
 

4. IMPLEMENTATION IN SCALE/MAVRIC 

4.1.  Methods 

 
Both SCALE 6.0 and 6.1 [9] contain the MAVRIC sequence, a user-friendly approach to 
applying CADIS or FW-CADIS to challenging shielding problems. MAVRIC uses the Denovo 
SN code [10] for the forward and adjoint flux estimates, creates the importance map (target 
weights) and biased source, and then uses them in Monaco [11], a fixed-source multi-group 
Monte Carlo code. The methods in this summary were added as alternatives to the CADIS/FW-
CADIS processing step of the MAVRIC sequence in an internal development version of SCALE.   
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The default in MAVRIC for Cooper’s, van Wijk’s, GFWW/GRWW and Becker’s forward/adjoint 
methods is to develop and use a biased source and normalize the computed importance map to 
that biased source. Keywords are available to turn the biased source creation and normalization 
off, so that the user can use the methods as described in their original references. In that case, 
further normalization of the target weights is left to the user. An option for the forward flux-
based methods is to normalize the target weight windows to the maximum flux value (like the 
description of Cooper’s method). In most cases, this would set the target weight to 1 at the center 
of the source, which is a reasonable approach.  In this paper, the forward-based methods will be 
run in a manner that corresponds to their original references – no biased sources and the target 
weights are normalized using the maximum forward flux estimate.  Becker’s forward/adjoint 
method will use the biased source, because normalizing adjoint-based importance maps is 
difficult without the biased source. 

4.2.  Mesh Tally Metrics 

 
Because a mesh tally consists of many actual tallies, the statistical tests are more complex than 
for a single tally.  Several statistical quantities and tests are used in Monaco, similar to those 
described in a recent study [12], that assess the distribution of relative variances over the mesh 
tally.  In Monaco, the basis of the statistical tests centers on the distribution of relative 
uncertainties in the ܸ voxels that have a non-zero score.  The mean of the distribution, ̅ݎ, is 
simply ̅ݎ = ∑ ௜ݎ ܸ⁄ , where ݎ௜ is the relative uncertainty of the flux or dose in voxel ݅.  If every 
voxel has been sampled well and its relative uncertainty is decreasing with the square root of the 
number of MC histories ܰ (ݎ௜ ∝ 1 √ܰ⁄ ), then the mean relative uncertainty of the voxels should 
also behave as 1 √ܰ⁄ .  The variance of ̅ݎ can also be calculated, as well as a figure-of-merit for 
the mesh tally using FOM = 1 ⁄(ଶܶݎ̅) , with the time	ܶ in minutes. 
 
The four statistical tests in Monaco examine whether, over the last half of the MC simulation, 
the:  

1) fraction of voxels with score, ߞ, is constant (within ±0.10);  
2) mean relative uncertainty, ̅ݎ,  is decreasing as 1 √ܰ⁄  (as measured by the coefficient of 

determination, ܴଶ, of a fit to a curve with a power of -0.5, ܴଶ > 0.99);  
3) variance of the mean relative uncertainty is decreasing with 1 ܰ⁄  (with an ܴଶ > 0.95 of a 

fit to a curve with a power of -1) ; and  
4) FOM is constant (within ±0.10).  

For non-uniform meshes (especially cylindrical), these tests may not be the best measure of 
performance because different size voxels will have a wider variety of relative uncertainties.  
The user is also cautioned that if there are individual voxels within the mesh tally that have 
relative uncertainties that are not decreasing as 1 √ܰ⁄ , then the mesh tally statistical tests will not 
be meaningful.  Note that the FOM computed by Monaco is a measure of the average relative 
uncertainty, not a measure of the uniformity in relative uncertainties which is the goal of this 
comparison study.  To compare uniformity, the entire relative uncertainty distribution must be 
examined. It is ultimately up to the user to decide if the mesh tally is performing well (is the goal 
of the mesh tally to calculate the dose rate, not the flux?; are all spatial areas of the mesh tally 
equally important?; are all magnitudes of the flux or response values equally important?; etc.). 
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5. EXAMPLE PROBLEMS 

5.1.  Simple Shielding Problem 

 
The first example problem is a simple shielding problem based on an example problem from van 
Wijk [3]. This problem consists of a 1 Ci 14.1 MeV neutron point source at the center of a 40 cm 
cube of paraffin encased in 10 cm of lead. This source box is located in a two-room building 
constructed of lead walls 10 cm thick. The rooms are separated by a borated glass window. The 
outer dimensions of the problem, shown in Fig. 1, are 420×220×240 cm. The objective of this 
problem is to compute the total flux everywhere.  This problem is not computationally very 
challenging — the ratio of the maximum to minimum fluxes is 1.6×106. If all of the materials 
were voids instead, that ratio would be 1.2×104, showing that most of the variation in flux is due 
to spatial attenuation, not material attenuation. 
 

Table I.  Run times for the  
simple shielding problem 

 
Figure 1.  Geometry of the simple 

shielding problem. 
 
The analog (with implicit capture) simulation was run for 7 hours so that the mesh tally statistical 
tests could all be satisfied. The target time for each hybrid calculation was a total of one hour on 
a single processor, as shown in Table I.  The deterministic calculations used a non-uniform 
51×35×37 mesh, 27 energy groups, a level-symmetric S8 quadrature and P3 Legendre scattering 
expansion. Because this problem involves a point mono-energetic source, no biasing of the 
source distribution in space or energy is possible. Results for the final MC mesh tally are 
summarized in Table II, showing that all of the hybrid methods performed well relative to the 
analog simulation.  For the statistical tests, “X” is passing, “-” is not. Figure 2 shows the 
cumulative distributions of the voxel relative uncertainties for the different methods. This shows 
that the analog calculation has the smallest fraction of voxels below a given relative uncertainty 
and FW-CADIS has the largest fraction. 

5.2.  Deep Penetration Shielding Problem 

 
As an example of a deep penetration shielding problem, consider a simplified, yet representative, 
problem involving an 860 × 460 × 460 cm concrete structure holding nuclear fuel [8], as shown 
in Fig. 3.  The fuel is represented as an 80 × 80 × 80 cm cube of homogenized uranium dioxide 
and water, surrounded by a 10 cm layer of steel.  The concrete walls are 30 cm thick, spaced 
every 1 meter in the ݔ-direction, leaving air regions that are 70 cm thick.  The source is modeled 

for adj MC Total
Analog 420 420
Cooper 8.9 50.9 60
van Wijk (Re) 8.9 50.1 59
GRWW 8.9 51.0 60
Becker 8.9 7.4 40.8 57
FW-CADIS 8.9 7.4 40.3 57

Time (min)
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uniformly over the central cube, emitting neutrons from a Watt fission spectrum, with a total 
strength of 1 Ci.  In this example, the goal is to optimize the calculation of the space/energy 
neutron flux, ߶(ݎԦ,  .over the entire problem ,(ܧ
 
 

Table II. Statistical tests for the  
simple shielding problem 

 
Figure 2.  Cumulative distribution of relative 

uncertainties for the simple shielding 
problem. 

 
Table III.  Run times for the deep 

penetration shielding problem 

 
   

 
Figure 3.  Geometry of the deep 
penetration shielding problem. 

 
An analog calculation (with implicit capture) and five hybrid methods were all used to calculate 
a mesh tally (86 × 46 × 46 uniform spatial mesh, 27 groups) of the neutron flux.  The run times 
for each, including the forward and adjoint discrete ordinates calculations and the final Monte 
Carlo calculations are shown in Table III.  The deterministic estimates used a non-uniform 
spatial mesh of 106 × 58 × 50, 27 energy groups, S8 quadrature and a P3 Legendre expansion of 
the scattering.  The mesh tally statistical test results for each method are shown in Table IV.  
After 24 hours of run time, the analog calculation has non-zero scores in only 45% of the voxels.  
Cooper’s method and GFWW do a better job at getting scores to all voxels/groups but van 
Wijk’s Re-based method does not, because the importance map spans only half the range that the 
forward flux does.  The adjoint-based methods do better at achieving a more uniform distribution 
of relative uncertainties across the 4.9 million tallies within the mesh tally.  As shown in Fig. 4, 

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20

fr
ac

tio
n 

of
 v

ox
el

s

relative uncertainty

Analog
Cooper
vanWijkRe
GRWW
Becker
FW-CADIS

FOM

ζ (/min) 1 2 3 4

Analog 1.0000 1.07E-01 0.21 X X X X

Cooper 1.0000 5.23E-02 6.11 X - X -

van Wijk (Re) 1.0000 4.61E-02 7.97 X X X X

GRWW 1.0000 3.38E-02 14.60 X - - -

Becker 1.0000 3.77E-02 12.32 X - X -

FW-CADIS 1.0000 2.03E-02 42.83 X X X X

Stat. Test

r

for adj MC Total
Analog 1446 1446
Cooper 29.2 1416 1445
van Wijk (Re) 29.2 1416 1445
GFWW 29.2 1416 1445
Becker 29.2 23.7 1386 1439
FW-CADIS 29.2 23.6 1392 1445

Time (min)
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for a given level of relative uncertainty, ݎmax, the FW-CADIS method has a larger fraction of 
voxels with relative uncertainties less than or equal to ݎmax. 
 
 

Table IV. Statistical tests for the deep 
penetration shielding problem

 
Figure 4.  Cumulative distribution of relative 

uncertainties for the deep penetration 
shielding problem. 

 

5.3.  Becker’s Challenge Problem 

 
The third example problem is from Becker [4]. The model consists mostly of nested cubes, with 
a volumetric UO2 fission neutron source (1016 n/s) surrounded by layers of steel, concrete and 
steel. This is located in a large water region, surrounded by concrete, lead, concrete and lead. 
Several concrete pillars are also included in the large water region. The overall size of the 
problem is 300×300×300 cm. The objective of this problem is to compute the total flux 
everywhere.  This is a more difficult shielding problem than the ones previously described, 
covering 14 orders of magnitude in total flux, with only 3 orders of magnitude due to spatial 
attenuation.  Figure 5 shows a portion of the problem geometry (with water made transparent) 
and Table V lists the problem run times. 
 

Table V.  Run times for 
Becker’s challenge problem 

 
Figure 5.  Geometry of Becker’s 

challenge problem (one octant) with 
the water removed. 
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relative uncertainty

Analog
Cooper
vanWijkRe
GFWW
Becker
FW-CADIS

FOM

ζ (/min) 1 2 3 4

Analog 0.4527 2.14E-01 0.0151 - - - -

Cooper 0.9914 2.18E-01 0.0146 X - - -

van Wijk (Re) 0.7677 2.68E-01 0.0096 - - - -

GFWW 1.0000 1.54E-01 0.0292 X - X -

Becker 0.9997 1.34E-01 0.0387 X - - -

FW-CADIS 1.0000 9.84E-02 0.0715 X X X X

Stat. Test

r

for adj MC Total
Analog 1203 1203
Cooper 38.6 1173 1212
van Wijk (Re) 38.6 1163 1202
GRWW 38.6 1184 1222
Becker 38.6 48.6 1118 1205
FW-CADIS 38.6 48.7 1117 1204

Time (min)
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The analog calculation and the five hybrid methods were each run for 20 hours, with the forward 
and adjoint SN calculations (non-uniform 74×74×74 mesh, S8, P3) taking about 40 and 50 
minutes, respectively. The mesh tally results, listed in Table VI, show that the forward-based 
methods did improve the mesh tally by getting particles to every voxel or nearly every voxel. 
The adjoint-based methods do much better at reducing the mean relative uncertainty and 
converging the mesh tally. The cumulative distributions of the voxel relative uncertainties for all 
of the methods are shown in Fig. 6. 
 

Table VI. Statistical tests for 
Becker’s challenge problem

 
Figure 6.  Cumulative distribution of 

relative uncertainties for Becker’s 
challenge problem. 

 
 
In this problem, the three forward-based methods would benefit from using source biasing and 
normalizing the importance map based on that biased source. Figures of merit for Cooper’s and 
van Wijk’s methods improve slightly and the FOM for GRWW improves by a factor of three 
when using a biased source and normalization. 

5.4.  Reactor Benchmark Problem 

 
The last example problem is the Monte Carlo Performance Benchmark problem [13].  This 
problem is designed to be an eigenvalue benchmark but can also be used as a test for global 
variance reduction methods.  For this study, the problem was done in two steps.  First, a Monte 
Carlo eigenvalue calculation was performed to compute the source distribution on a mesh (68 × 
68 × 61 over the fuel).  The second step used the mesh-source and performed a fixed-source 
calculation to compute a global mesh tally of total flux.  (In the fixed source calculation, fission 
was treated as absorption.)  This study focused on the second step, comparing an analog 
calculation and the five hybrid methods. 
 
The problem is a simplified PWR core model with 241 fuel assemblies, each with a 17 × 17 
array of fuel pins and control rod guide tubes filled with water.  The fuel rods consist of two sets 
of materials – one for the upper half (with less dense water) and one for the lower half.  Outside 
of the fuel assemblies, the simplified model includes water reflectors, a downcomer region, the 
reactor vessel and several regions above and below the core that represent the nozzle areas.  The 
geometry is shown in Fig. 7.  Run times for the analog and five hybrid method fixed-source 
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Analog
Cooper
vanWijkRe
GRWW
Becker
FW-CADIS

FOM

ζ (/min) 1 2 3 4

Analog 0.3428 2.64E-01 0.012 - - - -

Cooper 1.0000 3.49E-01 0.007 X - - -

van Wijk (Re) 0.9675 3.54E-01 0.007 X - - -

GRWW 1.0000 3.58E-01 0.007 X - - -

Becker 1.0000 5.26E-02 0.323 X X X X

FW-CADIS 1.0000 3.92E-02 0.582 X X X X

Stat. Test

r
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calculations are shown in Table VII.  Deterministic calculations used a non-uniform 92×92×80 
mesh, S4, and P3. The computed source distribution is shown in Fig. 8. 
 

 

Table VII.  Run times for the 
reactor benchmark problem

  
Figure 7.  Geometry of the reactor  

benchmark problem (left – vertical slice,  
right – horizontal slice). 

 

 

 

   
Figure 8.  Computed source distribution (neutrons per cm3) for the reactor benchmark 

problem (left – vertical slice through center, right – horizontal slice at midplane). 
 
The non-uniform rectangular mesh tally (27 × 27 × 27) used voxels that corresponded to the 
assembly size in the core region and slightly smaller voxels in the reflector regions. Only 14,823 
of the mesh tally voxels fell within the defined cylindrical model, giving a maximum ߞ value of 
0.753086.  For each method, Table VIII lists the statistical results and Fig. 9 shows the 
cumulative distribution of the relative uncertainties. After ten hours, only the two hybrid 
methods that used both forward and adjoint deterministic calculations passed all four of the 
statistical tests, with FW-CADIS having a slightly higher FOM than Becker’s method. 
 
Using a biased source and normalizing the importance map to that source would improve the 
FOM of Cooper’s method, van Wijk’s ܴ݁-based method and the GRWW method by factors of 8, 
5 and 13, respectively.  The mesh tallies for these methods would then pass the four statistical 
checks within the 10 hours.  But even with the biased source, none of the forward methods 
would come close to the FOM performance of the adjoint-based methods. 

for adj MC Total
Analog 612 612
Cooper 16.9 585 602
van Wijk (Re) 16.9 586 602
GRWW 16.9 584 601
Becker 16.9 31.2 558 606
FW-CADIS 16.9 31.2 558 606

Time (min)
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Table VIII. Statistical tests for the 

reactor benchmark problem

 
Figure 9.  Cumulative distribution 

of relative uncertainties for the  
reactor benchmark problem.

 
 

6. CONCLUSIONS  
 
This study has shown that the adjoint-based hybrid methods perform better than the forward-
based hybrid methods at computing a global mesh tally with more uniform relative uncertainties 
in four representative shielding problems.  Among the two adjoint methods, FW-CADIS 
performed better than Becker’s global on all four example problems.  On the more difficult 
problems, van Wijk’s ܴ݁-based method had more difficulty than the other forward-based 
methods at fully populating the mesh tally and achieving uniform relative uncertainties – most 
likely due to the fact that the importance map spanned only half the range of the estimated flux 
values. 
 
In the MAVRIC implementations, the FW-CADIS method and Becker’s methods are more 
flexible for semi-global problems.  In practice, a global solution is often not required.  Typically, 
a mesh tally is done over a large portion of a problem but some areas are not important.  For 
example, in the reactor benchmark problem, the fluxes may be desired for depletion calculations 
but are not required in the reactor vessel.  Dose-rate maps over buildings may only include the 
spaces where people could be present – areas inside walls or inside equipment do not require low 
uncertainties in a dose-rate mesh tally.  The adjoint-based methods allow the user to define the 
important areas within a mesh tally and to optimize relative uncertainties there.  The importance 
map based only on an estimate of forward fluxes will populate the MC problem with particles in 
all parts of phase space, whether those areas are important to the user or not. 
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relative uncertainty

Analog
Cooper
vanWijkRe
GRWW
Becker
FW-CADIS

FOM

ζ (/min) 1 2 3 4

Analog 0.6203 2.02E-01 0.040 - - - -

Cooper 0.7531 5.79E-02 0.510 X - X -

van Wijk (Re) 0.7524 7.27E-02 0.323 X - - -

GRWW 0.7531 1.40E-01 0.087 X - - -

Becker 0.7531 1.47E-02 8.281 X X X X

FW-CADIS 0.7531 1.27E-02 11.096 X X X X

Stat. Test

r
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