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MUSE Overview

Motivation: Create a test bed for radiation detectors 
and algorithms

• Validate model methodology
– Conduct a series of data collections

– Full site characterization with benchmark quality

– Inform and validate modeling and simulation

• Understand model/data parameter sensitivity - How 
good is good enough?

• Create sets of synthetic data via interpolation and 
statistical sampling of modeled detector response
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MUSE Overview

Data Collection

• 200 points of static 2”x4”x16” NaI(Tl) data

• 300 points of GPS data

• 100 points of LIDAR data

• 60 points of HPGe data

• 2 locations of correlated static weather and 
radiation data over 7 days

• 50 dynamic data trials (car and cart)

Fort Indiantown Gap National 
Guard MOUT

Synthetic data production

• Static measurement interpolation

• Compare with dynamic data

• Interpolation of validated transport model 
results

Model development and validation

• Model of the FTIG developed for 
SCALE/MAVRIC

• NORM concentrations derived from 
HPGe measurements for model materials

• Data analyzed for consistency

• Validation of model with 
measured/analyzed data

• Weather anomalies analyzed
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Data Collection
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HPGe Measurements

More then 63 separate high 
precision HPGe 
measurements throughout the
range providing necessary 
input to model for extracting 
background source 
terms for each material type 

unshielded 
experiment
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Static measurements on Main St.: 
Cs137 source vs background

• Static Background measurements made along 90m path on Main St. every 50 cm
• More static measurements with ~ 10μCi 137Cs source placed about 5m off the path
• Both background and source data showing good sensitivity to the surrounding environment 
(beneficial for model validation)   

Full spectral integral  
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Model Development and Validation
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Model Validation – Split Transport and 
Response
1. Transport calculation –
SCALE/MAVRIC

Compute energy-dependent 
flux anywhere
Specific regions or a mesh tally
Automated variance reduction 

2. Energy deposited per unit flux – MCNP

Note: For non-isotropic detector, steps 2 and 3 are 
directionally dependent

3. Convolve and apply resolution function 
(like GADRAS)

Orientation 
3

Orientation 2

Orientation 3

Orientation 2
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Model Validation – Background with NaI
Measurements: Along centerline of main street
Used standard issue 2”×4”×16” NaI detector

1. Flux computed by SCALE/MAVRIC
2. Flux-to-Pulse Height computed with MCNP
3. Energy response applied for two 
orientations

Measurement 
locations

every 10 m
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Model Validation – Threat Source (81 μCi 
137Cs)

Bkgrnd

81 μCi Cs

Measurements (2”×4”×16” NaI detector)

Measurements: 30 minutes, 3 keV bins Use coarser bins in background-
subtracted measured values to show 
scattered contribution 

Zoomed in

Compare MC 
simulation of threat 
source (two detector 
responses) to
background-subtracted 
measured values
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Model Validation – Simulation of 137Cs 
Measurements

Source 
Position 1

Source 
Position 3
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Synthetic Data Development
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Synthetic Data Generation - Interpolation
Detector Position

Interpolated Position

Interpolated 
Response

Detector Response

Interpolate using a weighted 
average distance between 

detector responses

Moving Detector
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Synthetic Dataset Generation - Sampling

• We sample each interpolated detector response using generated detector 
integration time normalized Poisson distributions for each energy bin

• By doing this, we simulate a detector response over a short period of time
from well formed distribution

• This can be done many times, to simulate random variations between 
measurements to generate synthetic dataset ensembles
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Synthetic Dataset Ensemble – Algorithm 
Performance
• After generating many sets of 

synthetic data, evaluate algorithm 
performance from synthetic 
dataset ensembles over a variety 
of parameters

• Each synthetic dataset 
ensemble will have a different set 
of:

– Source strengths

– Source types

– Detector speeds

– Shielding or changing geometry

– Background composition and 
variability

• We can use these ensembles to 
test algorithm performance over a 
variety of parameters

K-Sigma Algorithm Example
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Thank you and we would love to answer 
any questions


