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• Need to study the joint behavior between 
random variables, e.g. rainfall intensity and 
duration

• Single-variate frequency analysis is not capable 
of addressing multi-variate problems

• Assessing dependence structure

• Explore use of copulas

• Uncertainty of rainfall events induces uncertainty 
in storm surface runoff

Background and Motivation



• For two random variables X & Y, we can define:
– Joint Cumulative Density Function (j-CDF)

– Joint Probability Density Function (j-PDF)

• The Probability Density Function (PDF) of X can be 
obtained by integrating hXY(x,y) for the domain of Y

• Margins u & v of HXY are defined as the Cumulative 
Density Functions (CDF) of X and Y
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Difficulties in Constructing joint Distribution
• Given marginal distributions

and correlation coefficient, 
can joint-distribution be 
constructed?

ex: exponential margins
=> Unlimited choices!!

• Correlation coefficient can not correctly describe association 
between variables

?
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Introduction to Copulas (I)
• A Copula C(u,v) is a function comprised of margins u & v 

from [0,1]×[0,1] to [0,1].
• By Sklar’s (1959) theorem, there exists a copula C such 

that

If u and v are continuous, then C is unique.
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Introduction to Copulas (II)
• Properties of C(u,v):

(1) C(u,0) = C(0,v) = 0
(2) C(u,1) = u; C(1,v) = v
(3) C(u,v) is a 2-increasing function

For every u1≤u2, v1≤v2,
C(u2,v2)-C(u1,v2)-C(u2,v1)+C(u1,v1) ≥0

• Boundaries of copulas



• Archimedean Copulas
– There exists a generator φ(t), such that

– When φ(t) = ln(t), C(u,v) = uv. (Independent case)
– Commonly used 1-parameter Archimedean Copulas:

• Gumbel-Barnett family

• Ali-Mikhail-Haq family

• Clayton family

• Frank family
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Measure of Dependence

• Concordance Measurement
– Kendall’s tau τ

– Sample estimator (c: concordant 
pairs, d: disconcordant pairs)

• Non-parametric Estimation of 
Copula Parameter θ
– For Archimedean Copulas
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• De Michele and Salvadori (2003)
– Bivariate rainfall frequency analysis using intensity and duration
– Frank family of Archimedean copulas with Generalized Pareto 

distributed (GP) margins
– Explain regular rainfall events
– 2 rainfall stations in Italy with 7 years data

• Favre et al. (2004)
– Bivariate flood frequency analysis using peak flow and volume of

two watersheds in Canada
– Assessment of combined risk
– Conditional return period

• Salvadori and De Michele (2004)
– Return period assessment using bivariate model
– Concept of secondary return period using Archimedean copulas

Literature Review of Copulas in Hydrology (I)



• De Michele et al. (2005)
– Bivariate flood frequency analysis using peak flow and volume
– Gumbel family of Archimedean copulas with GEV margins
– Dam spillway adequacy assessment of Ceppo Modrelli dam in 

Northern Italy

• Zhang and Singh (2006)
– Flood frequency analysis using peak flow, volume, and duration
– Gumbel-Hougaard family of Archimedean copulas with EVI and 

LP(3) margins

• Salvadori and De Michele (2006)
– Trivariate rainfall frequency analysis using intensity, duration, 

and dry period
– Frank family of Archimedean copulas with GP margins
– Bivariate copula functions were connected by a simple function 

to form trivariate copula function

Literature Review of Copulas in Hydrology (II)



Data Source & Study Area

• Data obtained from Nation 
Climate Data Center, Hourly 
Precipitation Dataset (NCDC, 
TD 3240 dataset)

• 74 Co-operative Rainfall 
Stations in Indiana with 
record length greater than 25 
years

• 56 stations with record 
length greater than 50 years



• Estimate the variability of computed surface runoff 
based on design or observed rainfall

• Examine how dependence between rainfall 
variables (eg: rainfall duration, average intensity) 
affects surface runoff.

• Construct bivariate stochastic model to characterize 
storm and surface runoff

• Utilize copulas to assist in the mathematical 
development

Probabilistic Structure of Surface Runoff



• Eagleson (1978)
– Used rainfall duration and average intensity to characterize 

rainfall
– Duration and intensity were assumed to be exponentially-

distributed and independent of each other
– Used Phillip’s (1957) infiltration formula

• Cordova and Rodriguez-Iturbe (1985)
– Adopted one type of bivariate exponential distribution
– Correlation between duration and intensity has non-

negligible effect on storm surface runoff
– Positive correlation assumption contrary to reality

Previous Work on Probabilities of Storm Runoff



Sample Plot
• Histogram and scatter plot 

from Station 120132
• 55 years data with 5278 

divided events
• Marginal distributions decay 

exponentially
• Negative correlation between 

intensity and duration
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• Margins are assumed to be exponential distributed 

– I denotes average intensity, Tr denotes rainfall duration
– λI, λTr are parameters of exponential distributions

• Gumbel (1960) bivariate exponential distribution

– H is a j-CDF, and θ is a parameter related to correlation
– Valid for 0 ≥ ρ ≥ -0.40365 (0 ≤ θ ≤ 1)

• The survival function can be expressed as an 
Archimedean Copula (Gumbel-Barnett family)

Bivariate Exponential Distribution and Copulas
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Parameter Estimation

• Marginal parameters λI, λTr : Method of Moment & 
Maximum likelihood estimators

• Dependence parameter θ
– Parametric Approach: Maximum likelihood

– Non-parametric Approach: Copula Generator
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Correlation Coefficient and Kendall’s Tau



Marginal Parameters



Dependence Parameters



• Developed by the Soil Conservation Service (1972) 
• Use Curve Number (CN) to describe land use, 

hydrologic soil type, and antecedent moisture condition
• Potential maximum retention S (inch):

• Initial abstraction Ia (inch):

• For a given rainfall depth D, the Excess Rainfall Depth 
Pe (inch):
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• Transformation

• Zero runoff condition: D ≤ 0.2S

• Equivalent initial abstraction z* = 0.2SλIλTr
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Zero Runoff Probability - Conventional Approach
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• Inverse functions of survival margins

• Transformation from actual domain to marginal 
domain

• Two different approaches yield the same results

Zero Runoff Probability - Copulas Approach
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Zero Runoff Probability



• Conventional approach

• By using transformation

• Applying copulas in this case does not simplify 
the problem significantly
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Mean and Standard Deviation of Rainfall Excess
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Mean of Rainfall Excess



Standard Deviation of Rainfall Excess



Model Validation



GIS Application

• CN values determined by incorporating USGS 
landuse information and STATGO soil database

• Reflect the effect of urbanization



• Gumbel’s (1960) bivariate exponential distribution is 
found suitable for describing average intensity and 
duration for the rainfall events in Indiana. These two 
quantities exhibit negative correlation with respect to 
each other.

• The dependence parameter can be estimated either by 
the ML method or the non-parametric estimation 
procedure relied on copulas. The use of copulas results 
in a simpler and more elegant estimator.

• The probability structure of storm surface runoff is 
sensitive to the dependence parameter, especially for 
the mid CN range (20 < CN < 80). The CN values for a 
large portion of Indiana fall in this range.

Conclusion (I)



• The dimensionless parameter z*, equivalent initial 
abstraction, is found to depend on both rainfall and soil 
properties.

• Based on the constant relationship between 
dimensionless statistical properties of rainfall excess 
versus z*, the probability structure of surface runoff can 
be derived for any location of interest. Such maps can be 
used to identify regions that are prone to development of 
surface runoff.

• For complicated multivariate stochastic models, the 
potential simplification offered by copulas for various 
rainfall and runoff statistics was demonstrated.

Conclusion (II)



Thank you for your listening.
Questions?
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