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• Extreme rainfall behavior
– Basis for hydrologic design
– Conventionally analyzed only by “depth”
– Pre-specified artificial duration (filter), not the real 

duration of extreme rainfall event
– Hard to represent other rainfall characteristics, e.g. 

peak intensity
• Definition of extreme event in multi-variate sense 

is not clear
• Dependence exists between rainfall 

characteristics (e.g. volume(depth), duration, 
peak intensity)

• Explore the use of copulas

Background and Motivation



• Univariate (for variable X)
– Cumulative density function (CDF) and probability 

density function (PDF)

• Bivariate (for variables X and Y)
– joint-CDF and joint-PDF

– Marginal distirbutions

– Marginals (univariate CDF)
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Concept of Dependence Structure
• Conventionally quantified by the linear 

correlation coefficient ρ

– Can not correctly describe association between 
variables

– Only valid for Gaussian (or some elliptic) distributions
– A better tool is required
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Introduction to Copulas
• A copula C(u,v) is a function comprised of margins 

u & v from [0,1]×[0,1] to [0,1].
– Sklar (1959) showed that for continuous marginals u and 

v, there exists a unique copula C such that

– Transformation from [-∞,∞]2 to [0,1]2

– Provides a complete description of dependence structure
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• Archimedean Copulas
– There exists a generator φ(t), such that

– When φ(t) = -ln(t), C(u,v) = uv. (Independent case)
– Commonly used 1-parameter Archimedean Copulas:

• Frank family

• Clayton family

• Genest-Ghoudi family

• Ali-Mikhail-Haq family
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Archimedean Copulas (II)
• Distribution function of copulas KC(t)=P[CUV(u,v)≤t]

– Offers cumulative probability measure for

• Concordance measure - Kendall’s tau τ

– 1: total concordance, -1: total discordance, 0: zero 
concordance

– Sample estimator (c: concordant pairs, d: discordant 
pairs, n: number of samples)

– For Archimedean copulas

– Non-parametric estimation of dependence parameter θ
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τ = 0.66

ρ = 0.85

τ = 0.02

ρ = 0.03

τ = -0.65

ρ = -0.84



• Empirical copulas Cn

– a: number of pairs 
(x,y) in the smaple
with x≤x(i), y≤y(i)

• Empirical distribution 
function KCn

– b: number of pairs 
(x,y) in the sample 
with Cn(i/n,j/n)≤k/n

Empirical Copulas
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• Flood Frequency Analysis
– Favre et al. (2004): Assessment of combined risk
– De Michele et al. (2005): Dam spillway adequacy 

assessment
– Grimaldi and Serinaldi (2006): The use of asymmetric 

copula in multi-variate flood frequency analysis
– Zhang and Singh (2006): Conditional return period

• Return period assessment using bivariate model
– Salvadori and De Michele (2004): Concept of 

secondary return period using distribution function KC

• Probablistic structure of storm surface runoff
– Kao and Govindaraju (2007): Quantifying the effect of 

dependence between rainfall duration and average 
intensity on surface runoff

Applications of Copulas in Hydrology



• Rainfall frequency analysis
– De Michele and Salvadori (2003, 2006)

• Stochastic models for regular rainfall events
• 2 rainfall stations in Italy with 7 years data

– Grimaldi and Serinaldi (2006)
• Extreme rainfall analysis
• Relationship between design rainfall depth and the actual features 

of rainfall events
• 10 rainfall stations in Italy with 7 years data

– Zhang and Singh (2006)
• Bivariate extreme rainfall frequency analysis using depth, duration 

and average intensity
• 3 rainfall stations in Louisiana with 42 years data

• Unanswered questions 
– Data used for analysis may not be sufficient
– Definition of “extreme events” in multi-variate sense?
– Can results be applied for a large region?

Copulas in Rainfall Frequency Analysis
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Data Source & Study Area
• Nation Climate Data Center, 

Hourly Precipitation Dataset 
(NCDC, TD 3240 dataset)

• 53 Co-operative Rainfall Stations 
in Indiana with record length 
greater than 50 years

• Minimum rainfall hiatus: 6 hours
• About 4800 events per station
• Selected variables for analysis:

– Depth (volume), P (mm)
– Duration, D (hour)
– Peak Intensity, I (mm/hour)

• Marginals:
– u=FP(p), v=FD(d), w=FI(i)



Definitions of Extreme Events
• Hydrologic designs are usually governed by depth (volume) 

or peak intensity
• Annual maximum volume (AMV) events

– Longer duration
• Annual maximum peak intensity (AMI) events

– Shorter duration
• Annual maximum cumulative probability (AMP) events

– The use of empirical copulas Cn between volume and peak intensity
– Wide range of durations



• Candidate distributions
– Extreme value type I (EV1)
– Generalized extreme value (GEV)
– Pearson type III (P3)
– Log-Pearson type III (LP3)
– Generalized Pareto (GP)
– Log-normal (LN)

• Parameters estimated primarily by maximum 
likelihood (ML) or method of moments (MOM)

• Gringorton formula for empirical probabilities

• Chi-square and Kolmogorov-Smirnov (KS) test 
with 10% significance level

Analysis of Marginal Distributions (I)





Analysis of Marginal Distributions (II)

• EV1, GEV, LP3, LN provided better fit. GP provided
the worst.

• Fitting for duration of AMI events did not yield very 
good result

• EV1 and LN could be recommended for use

AMV
events EV1 GEV P3 LP3 GP LN EV1 GEV P3 LP3 GP LN

Depth, P 13.2 17.0 41.5 17.0 100 13.2 0.0 0.0 7.5 0.0 52.8 0.0
Duration, D 13.2 15.1 24.5 37.7 100 22.6 1.9 0.0 7.5 0.0 22.6 0.0
Intensity, I 15.1 17.0 45.3 20.8 100 11.3 0.0 0.0 1.9 0.0 54.7 0.0

Rejection rate (%) of Chi-square test Rejection rate (%) of KS test

AMI
events EV1 GEV P3 LP3 GP LN EV1 GEV P3 LP3 GP LN

Depth, P 5.7 3.8 62.3 3.8 100 1.9 0.0 0.0 11.3 0.0 45.3 0.0
Duration, D 60.4 39.6 88.7 37.7 100 28.3 15.1 0.0 45.3 0.0 45.3 0.0
Intensity, I 15.1 15.1 34.0 18.9 100 15.1 0.0 0.0 5.7 0.0 71.7 0.0

Rejection rate (%) of Chi-square test Rejection rate (%) of KS test

AMP
events EV1 GEV P3 LP3 GP LN EV1 GEV P3 LP3 GP LN

Depth, P 17.0 9.4 60.4 18.9 100 15.1 0.0 0.0 9.4 0.0 34.0 0.0
Duration, D 24.5 26.4 64.2 26.4 100 18.9 0.0 0.0 13.2 1.9 15.1 0.0
Intensity, I 7.5 17.0 43.4 18.9 100 9.4 0.0 0.0 1.9 3.8 62.3 0.0

Rejection rate (%) of Chi-square test Rejection rate (%) of KS test



Analysis of Dependence Structure (I)
• Candidate Archimedean copulas

– Frank family
– Clayton family
– Genest-Ghoudi family
– Ali-Mikhail-Haq family

• Non-parametric procedure for estimating 
dependence parameter

• Examination of Goodness-of-fit
– Distribution function KC(t)=P[C(u,v)≤t]
– Diagonal section of copulas δ(t)=C(t,t)
– Section with one marginal as median (one marginal 

equals 0.5)
– Multidimensional KS test (Saunders and Laud, 1980)



Variation of Kendall’s τ

mean stdev mean stdev mean stdev
AMV events 0.183 0.084 -0.370 0.068 0.260 0.097
AMI events 0.407 0.070 -0.011 0.096 0.405 0.070
AMP events 0.324 0.078 -0.185 0.093 0.265 0.094

τPD τDI τPI



Variation of θ (Frank family)
Frank
family mean stdev mean stdev mean stdev

AMV events 1.726 0.825 -3.824 0.909 2.546 1.063
AMI events 4.333 1.003 -0.111 0.883 4.314 0.986
AMP events 3.410 0.975 -1.863 0.927 2.389 1.029

θUV θVW θUW



Assessment of Copula Performance (I)



Assessment of Copula Performance (I)



Analysis of Dependence Structure (II)
• The distribution function KC(t) provides the 

strictest examination of copulas

• Clayton and Ali-Mikhail-Haq families performed 
well for positive dependence cases (CUV and 
CUW)

• Frank family of Archimedean copulas
– performed well for both positive and negative 

dependence
– passed the KS test for entire Indiana at the 10% 

significant level
– recommended for use in practice



Construct Joint Distribution via Copulas

• Bivariate stochastic models

• Examples using Frank family and EV1 marginals
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Application 1
Estimate of depth for known duration (I)
• For a known (or measured) d-hour event

• Given return period T, the T-year, d-hour rainfall 
estimate pT will satisfy

• Comparison between bivariate and univariate
depth estimates
– Bivariate using EV1 marginals and Frank family
– Univariate counterpart using GEV distribution (Rao

and Kao, 2006)
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Estimate of depth for known duration (II)
• Similar trends were observed for durations greater than 

10-hour, close to the univariate counterpart
• For durations less than 10-hour

– Univariate approach underestimated the rainfall depth
– AMV estimates gave the highest value
– AMI estimates should be the best, but fitting problem existed
– AMP estimates are recommended

• Average ratios for entire Indiana
duration AMV/GEV AMP/GEV AMI/GEV

1 1.98 1.51 1.18
2 1.50 1.16 0.93
3 1.33 1.04 0.86
4 1.24 0.99 0.85
6 1.14 0.96 0.89
9 1.07 0.99 0.98

12 1.05 1.03 1.04
18 1.03 1.07 1.05
24 1.03 1.08 1.03



Application 2
Estimate of peak intensity for known duration (I)
• For a known (or measured) d-hour event

• Given return period T, the T-year, d-hour rainfall 
estimate pT will satisfy

• Comparison between bivariate and univariate
depth estimates
– Bivariate using EV1 marginals and Frank family
– Univariate counterpart using GEV depth with Huff 

(1967) temporal distribution derived at each station
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Estimate of peak intensity for known duration (II)

• Similar trends were observed between AMV, 
AMI, and AMP estimates.

• AMI generally provided the largest estimates, 
unless positive dependence existed between D 
and I

• Univariate approach 
– Peak intensity generated by GEV depth with Huff 

distribution is around 4-5 times larger than the 
average intensity

– Followed the IDF relationship
– Failed to capture peak intensity

• AMP estimates are recommended



Application 3
Estimate of peak intensity for known depth (I)
• For extreme events greater than a threshold p

• Conditional expectation E[I | P>p]
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• Definition of extreme events
– AMV events are generally of longer duration than 

AMP, following by AMI events. AMV events may 
therefore be less reliable for short durations.

– For AMI definition, the hourly recording precision 
used in this study was found to be limiting

– AMP criterion seems to be an appropriate indicator 
for defining extreme events

• Marginal distributions
– EV1, GEV, LP3, LN were found to be appropriate 

marginal models for extreme rainfall
– EV1 and LN are recommended

Conclusions (I)



• Dependence structure
– Between P and D, positive correlated
– Between D and I, generally negatively correlated
– Between P and I, positive correlated
– Frank family is recommended
– Indiana rainfall may not be homogeneous in the multi-

variate sense
• Estimate of depth for known duration

– Similar results for durations larger than 10 hours
– AMP estimates are recommended to use for 

durations less than 10 hours
• Estimate of peak intensity for known duration

– Conventional approach fails to capture the peak 
intensity

– AMP definition is recommended

Conclusions (II)



Thank you for listening.
Questions?
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