
Trivariate Statistical Analysis of 
Extreme Rainfall Events via 
Plackett Family of Copulas

Shih-Chieh Kao
Purdue University
October 29, 2007



Outline
• Background and Motivation
• Research Objectives
• Introduction to Copulas
• Current Choices of Trivariate Copulas
• Plackett Family of Copulas
• Temporal Distribution of Design Rainfall
• Conclusions



Background and Motivation
• Many hydrologic variables are indexed in space and time, 

and are co-dependent.
– The assumption of independence is not realistic

• Univariate stochastic approaches are not capable of 
addressing multivariate problems.
– Infinite possibilities of joint distributions exist for fixed marginals

• The need to characterize dependence structure
– Linear correlation coefficient is not a complete measure.

• Explore use of copulas as a solution

• Constructing higher order (>2) stochastic models is an 
unresolved problem



Research Objectives
• Given depth and duration, use conditional expectation to 

develop the temporal distribution for design rainfall
– (1) Capture peak properties
– (2) Develop temporal accumulation curves

• Construct a trivariate copula preserving bivariate 
dependencies for analyzing Indiana rainfall

• Explore the nuances of compatibility problem
– Not any given set of bivariate dependencies has a valid trivariate 

copula

• Examine the use of Plackett family of copulas at the 
trivariate level



Basic Probabilistic Definition
• Univariate (for variable X)

– Cumulative density function (CDF) and probability density function (PDF)

• Bivariate (for variables X and Y)
– joint-CDF and joint-PDF

– Marginal distributions
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Concept of Dependence Structure
• Conventionally quantified by the linear 

correlation coefficient ρ

– Can not correctly describe association between 
variables

– Only valid for Gaussian (or some elliptic) distributions
– A better tool is required to characterize dependence 

=> copulas
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• A copula C(u,v) is a function comprised of margins u & v 
from [0,1]×[0,1] to [0,1].
– Sklar (1959) showed that for continuous marginals u and v, there 

exists a unique copula C such that

– Transformation from [-∞,∞]2 to [0,1]2

– Provides a complete description of dependence structure

Introduction to Copulas
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Data Source & Study Area
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• Nation Climate Data Center, 
Hourly Precipitation Dataset 
(NCDC, TD 3240 dataset)

• 53 Co-operative Rainfall Stations 
in Indiana with record length 
greater than 50 years

• Minimum rainfall hiatus: 6 hours

• About 4800 events per station

• Annual maximum cumulative 
probability (AMP) definition for 
selecting annual series



• Preserving mutual dependencies

– Drawback of Archimedean copulas

• Only one bivariate dependence can be preserved

• Compatibility problem
– Q1: Is it possible to have all perfect positive dependencies at the 

bivariate level? (i.e. ρXY = 1, ρYZ = 1, and ρXZ = 1)
– Q2: Is it possible to have all perfect negative dependencies at 

the bivariate level? (i.e. ρXY = -1, ρYZ = -1, and ρXZ = -1)
– Not any set of given bivariate dependencies has valid copulas

Difficulties in Constructing Higher-order Copulas
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Current Choices of Trivariate Copulas
• Archimedean Copulas 

– Grimaldi and Serinaldi 2006a; Zhang and Singh, 2007b, 2007c
• Fully-nested copulas 

– Grimaldi and Serinaldi, 2006b, 2007

– Not all bivariate dependencies can be preserved
• Salvadori and De Michele (2006)

– Special case of “conditional copulas” (Chakak and Koehler, 1995)
– Sequence of variables is not interchangeable

• Meta-elliptical copulas 
– Genest et al., 2007; Renard and Lang, 2007
– Extension of multivariate Gaussian distribution
– Lack of parameter on the trivariate level
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• Constant cross product ratio
theory (2-Plackett copulas)
– For any given point (u,v) in [0,1]2

– In terms of copulas CUV(u,v)

– Ψ = 1, independent
Ψ > 1, positive dependent (Ψ → ∞, totally positive)
Ψ < 1, negative dependent (Ψ → 0, totally negative)

– Parameter estimation
• Maximum likelihood
• Median approach – n00n11/n01n10
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Trivariate Plackett Family of Copulas (I)
• 3-Plackett

– In [0, 1]3

– Solve the 4-th order polynomial

– When compatible, only one solution in (Fréchet bounds)

– Implicit procedure for computing copula density
– Parameter estimation

• Maximum likelihood
• Median approach – n000n011n101n110/n111n100n010n001
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Trivariate Plackett Family of Copulas (II)
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Feasible Region for Valid 3-Plackett

• Problem: bivariate distributions may not be compatible, 
i.e. probability measure VC in [a1, b1, c1] and [a2, b2, c2] 
might be negative! – Open Question. 

• Feasible region of Plackett parameters
– Adopt numerical approach to find when copula density is greater 

or equal to zero in [0,1]3
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Comparison between Plackett and Gaussian
• Samples with identical 

bivariate dependencies 
(correlation matrix)
– Do they have identical 

trivariate distributions?
– Could cause error when 

computing conditional 
probabilistic features 0 0 .5 1
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Temporal Distribution of Design Rainfall 
• Given depth (P) and duration (D), what is the 

corresponding temporal distribution of design rainfall?
– Conditional expectation
– Two applications

• Capture the peak features
• Develop the temporal accumulation curves

• Selected variables for analysis:
– Depth (volume), P (mm)
– Duration, D (hour)
– Peak Intensity, I (mm/hour)
– Percentage Time to Peak, Tp (%)
– Percentage cumulative accumulation at each 10% temporal 

ordinates, A10, A20, …, A90 (%)

• 50 out of 53 stations are valid for 3-Plackett



Marginal Distributions 
• Parameter estimation

– Maximum likelihood (ML) & method of moments (MOM)

• Goodness-of-fit
– Chi-square and Kolmogorov-Smirnov (KS) test

• Selection of marginal distribution:
– Akaike Information Criterion (AIC) & Bayesian Information 

Criterion (BIC)

– P, D, and I: Log-normal (LN) distribution
– Tp and Ak: Beta (β) distribution

GEV LN P3 LP3 GEV LN P3 LP3
Depth, P 7 38 1 7 4 47 0 2

Duration, D 1 46 6 0 1 50 2 0
Intensity, I 9 41 2 1 2 49 1 1

Number of stations with the minimum AIC Number of stations with the minimum BIC



Bivariate Dependence Structure 

• Parameter estimation
– Maximum likelihood (ML)
– Non-parametric approach using Kendall’s tau τ
– Median approach

• Goodness-of-fit
– Multidimensional KS test
– Rosenblatt’s transformation test (RTT)

• Z1 = Φ-1(P[U≤u]), Z2 = Φ-1(P[V≤v|U=u]) 
• Test if S = Z1

2 + Z2
2 follows chi-square distribution (λ2

2)

mean stdev mean stdev mean stdev mean stdev mean stdev
P vs. D 0.336 0.077 3.554 1.031 3.410 0.975 5.140 2.335 4.468 2.394
P vs. I 0.246 0.097 2.410 1.055 2.389 1.029 3.270 1.449 2.926 1.474

P vs. Tp 0.047 0.100 0.392 0.959 0.429 0.926 1.323 0.551 1.518 0.838
P vs. Ak -0.053 0.103 -0.503 0.966 -0.494 0.947 0.883 0.469 0.917 0.581
D vs. I -0.196 0.093 -1.971 0.962 -1.863 0.927 0.439 0.198 0.554 0.341

D vs. Tp 0.030 0.085 0.246 0.868 0.272 0.776 1.214 0.477 1.421 0.608
D vs. Ak -0.076 0.093 -0.726 0.910 -0.710 0.866 0.783 0.364 0.746 0.395

Frank's θ esimated by Plackett's ψ estimated by
ML MLKendall's τ Median

Kendall's τ





• Parameter estimation
– Only by maximum likelihood (ML)
– Sample size is not sufficient for median approach. Cases with zero 

observation may exist
• RTT test

– Z1 = Φ-1(P[U≤u]), Z2 = Φ-1(P[V≤v|U=u]), Z3 = Φ-1(P[W≤w|U=u,V=v]) 
– Test if S = Z1

2 + Z2
2 + Z3

2 follows chi-square distribution (λ2
3)

Trivariate Dependence Structure 

median approach maximum likelihood median approach maximum likelihood
CUVW (P vs. D vs. I) 3/53 22/53 4/50 4/31

CUVR90 (P vs. D vs. A90) 0/53 1/53 0/53 0/52

Number of stations rejected by RTT 
at 5% significance level

Number of stations invalid for 3-Plackett

Variables mean stdev Variables mean stdev
P vs. D vs. I 1.163 0.531 P vs. D vs. Tp 1.438 1.088

P vs. D vs. A10 1.162 0.722 P vs. D vs. A60 1.392 1.174
P vs. D vs. A20 1.149 0.623 P vs. D vs. A70 1.403 1.200
P vs. D vs. A30 1.432 1.271 P vs. D vs. A80 1.228 0.765
P vs. D vs. A40 1.379 1.180 P vs. D vs. A90 1.228 0.880
P vs. D vs. A50 1.458 1.542

Plackett's ψ Plackett's ψ





Rainfall Peak Attributes
• Given depth (P) and duration (D), compute the conditional 

expectation of peak intensity (I) and percentage time to 
peak (Tp)
– Peak intensity increases with total depth, decreases with duration
– Time to peak increases with duration, decreases with total depth

[ ]DDD dDdpPIE <<−> 1,|

[ ]DDDp dDdpPTE <<−> 1,|



Temporal Accumulation Curves
• Given depth (P) and duration (D), compute the 

conditional expectation of percentage accumulations at 
each 10% temporal ordinates (A10, A20, …, A90)

• Results are sensitive to the quality of data

[ ]DDDk dDdpPRE <<−> 1,|



Conclusions (I)
• Plackett family of copulas, along with the underlying 

cross product ratio theory, was found to be a suitable 
trivariate dependence model in constructing rainfall 
temporal distribution.

• The feasibility region for Plackett parameters that would 
result in valid 3-copulas has been identified numerically 
in this study.

• Not every sets of given bivariate dependencies have a 
corresponding valid 3-copula (even for Gaussian 
copulas). The compatibility of given bivariate 
dependencies needs to be investigated.



Conclusions (II)
• Marginal distributions

– Log-normal distribution is found suitable for depth, duration, and 
peak intensity

– Beta (β) distribution is found suitable for percentage time to peak 
and percentage cumulative accumulation at each 10% temporal 
ordinates

• Dependence Structure
– Plackett family is found to be a suitable dependence model both 

on the bivariate and trivariate levels.

• When given depth and duration, it can be observed that 
peak intensity (I) increases with depth, decreases with 
duration, while time to peak (Tp) increases with duration, 
decreases with depth.

• The analytical proof for trivariate Plackett family remains 
an “Open Question”.



Questions?
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