A Spatio-Temporal Drought Analysis for the Midwestern US

Presented at World Environmental & Water Resources Congress 18th – 21th May, 2009, Kansas City

Dr. Shih-Chieh Kao Oak Ridge National Laboratory, CSE <u>kao@ornl.gov</u> <u>http://www.ornl.gov/~5v1/</u>

Dr. Rao S. Govindaraju

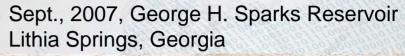
Purdue University, Civil Engineering govind@purdue.edu

Dr. Dev Niyogi

Purdue University, Agronomy, EAS climate@purdue.edu

Drought Overview

Geographic Information Science and Technology


Challenges

- No clear (scientific) definition
 - Phenomenon dependent in
 - Time and space
 - Between various variables (e.g. precipitation, streamflow)

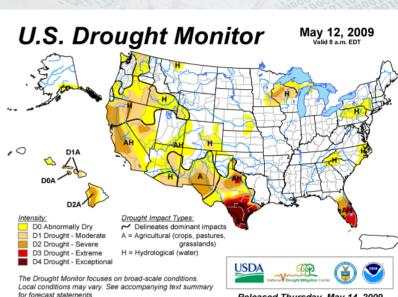
Classification of droughts

- Meteorological drought
- Hydrologic drought
- Agricultural drought

Various drought indices

(Barry Gillis, http://www.drought.unl.edu/ gallery/ 2007/Georgia/Sparks1.htm)

 Palmer Drought Severity Index (PDSI), Crop Moisture Index (CMI), Surface Water Supply Index (SWSI), Vegetation Condition Index (VCI), CPC Soil Moisture, Standardized precipitation index (SPI)


US Drought Monitor

Geographic Information Science and Technology

Overall drought status
 (D0 ~ D4) determined
 based on various indices
 together (Svobada *et al.*, 2002)

- PDSI

- CPC Soil moisture
- USGS weekly
- Percentage of normal
- SPI
- VCI

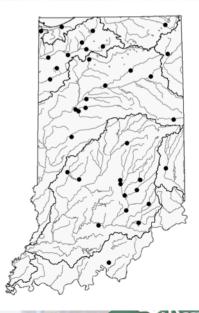
http://drought.unl.edu/dm

Released Thursday, May 14, 2009 Authors: David Miskus, Matthew Rosencrans, and Anthony Artusa, CPC/NOAA

http://drought.unl.edu/DM/MONITOR.html

- Linear combination of selected indices (OBDI, objective blend of drought indicator) was adopted as the preliminary overall drought status
- The decision of final drought status relies on subjective judgment

Research Objectives & Study Area


Geographic Information Science and Technology

Research Objectives

- Exploring the dependence structure between various drought indices
- Develop probability-based joint drought index
- NOAA time bias corrected divisional dataset (TD-9640)
 - Monthly precipitation, temperature, SPI, PDSI
 1895 ~ present
- NOAA daily precipitation dataset (TD-3200)
 - 73 stations (>80 years)
- USGS unregulated daily mean flow
 - 36 stations (>50 years)
- 4 Managed by UT-Battelle for the Department of Energy

Standardized Index Method

Geographic Information Science and Technology

- Proposed by McKee et al. (1993)
- Generalizable to various types of observations
 For precipitation: SPI
- For a given window size, the observed precipitation is transformed to a probability measure using Gamma distribution, then expressed in standard normal variable

Probabilities of Occurrence (%)	SI Values	Drought Monitor Category	Drought Condition
20 ~ 30	-0.84 ~ -0.52	D0	Abnormally dry
10 ~ 20	-1.28 ~ -0.84	D1	Drought - moderate
5~10	-1.64 ~ -1.28	D2	Drought - severe
2 ~ 5	-2.05 ~ -1.64	D3	Drought - extreme
< 2	< -2.05	D4	Drought - exceptional

Though SIs for different windows are dependent, no representative window can be determined

Co-occurrence of Droughts

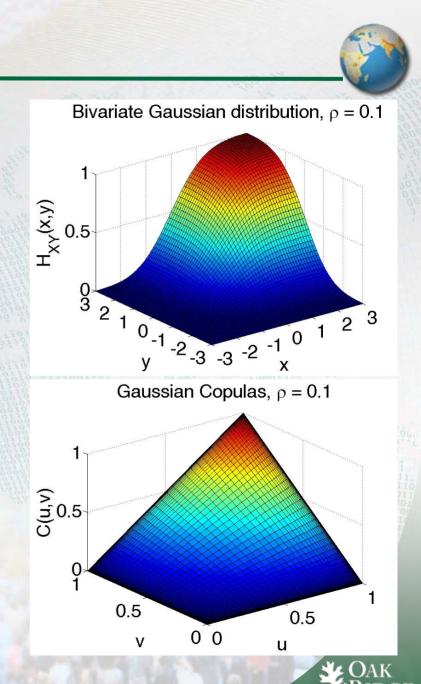
Geographic Information Science and Technology

Precipitation SIs {u₁, u₂, ..., u₁₂} and streamflow SIs {v₁, v₂, ..., v₁₂} are selected

- Annual cycle accounts for the seasonal effect naturally
- Allow for a month-by-month assessment for future conditions

Dependence structure

1	1101101100	Spearman's $r_{i,j}$ between u_i and u_j											
	j	1	2	3	4	5	6	7	8	9	10	11	12
	1		0.71	0.57	0.48	0.41	0.38	0.37	0.36	0.35	0.33	0.31	0.30
and v_j	2	0.89		0.82	0.70	0.61	0.55	0.53	0.51	0.49	0.47	0.44	0.42
an	3	0.80	0.93		0.87	0.76	0.69	0.64	0.61	0.59	0.56	0.54	0.51
n V _i	4	0.73	0.85	0.94		0.90	0.81	0.75	0.70	0.67	0.65	0.62	0.60
/eei	5	0.67	0.78	0.87	0.95		0.92	0.85	0.79	0.75	0.72	0.69	0.67
between	6	0.63	0.72	0.81	0.89	0.96		0.93	0.87	0.82	0.78	0.75	0.73
	7	0.59	0.68	0.75	0.83	0.90	0.96		0.94	0.89	0.85	0.81	0.78
's r	8	0.57	0.64	0.72	0.79	0.85	0.91	0.97		0.95	0.90	0.86	0.83
Spearman's r _{i,j}	9	0.55	0.62	0.69	0.75	0.81	0.87	0.93	0.97		0.96	0.91	0.88
an	10	0.53	0.60	0.66	0.72	0.78	0.83	0.89	0.94	0.98		0.96	0.92
Spe	11	0.51	0.58	0.64	0.70	0.75	0.81	0.85	0.90	0.94	0.98		0.96
	12	0.50	0.56	0.62	0.68	0.73	0.78	0.83	0.87	0.91	0.95	0.98	~


Copulas

Transformation of joint cumulative distribution

- $H_{XY}(x,y) = C_{UV}(u,v)$ marginals: $u = F_X(x), v = F_Y(y)$ Sklar (1950) proved that the
- Sklar (1959) proved that the transformation is *unique* for continuous r.v.s

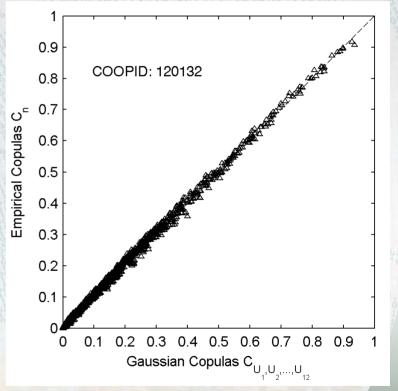
Use copulas to construct joint distributions

- Marginal distributions => selecting suitable PDFs
- Dependence structure => selecting suitable copulas
- Together they form the joint distribution

Higher Dimensional Copulas

Geographic Information Science and Technology

 Limited choices because of high mathematical complexity

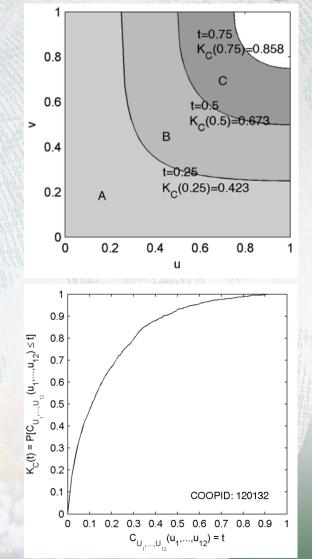

Gaussian copulas

- Derived from the well-known multivariate normal distribution
- Preserving all bivariate marginal dependencies through the correlation matrix Σ

Empirical copulas

- Multi-dimensional rank-based
 probabilities
- Treated as the observed probabilities when performing model verification

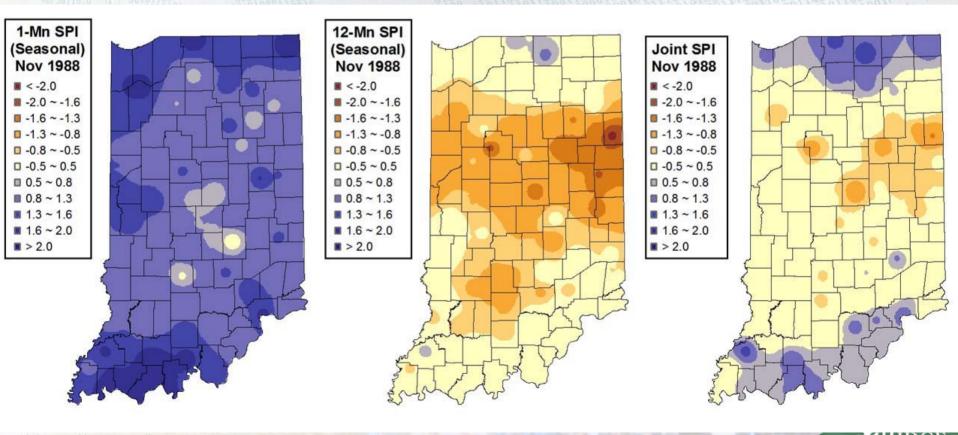
Empirical copulas were adopted in this study



Joint Deficit Index (I)

Geographic Information Science and Technology

- Assumption: events with the same value of copulas (joint cumulative probability) have same severity
 - Copula values are treated as joint deficit status
- Distribution function of copulas K_c(t)
 - Give probability measure for events with $C(u_1, u_2, ..., u_{12}) \le t$
- Joint deficit index (JDI)
 - JDI = $\Phi^{-1}(K_c)$
 - Share the same classification with SI



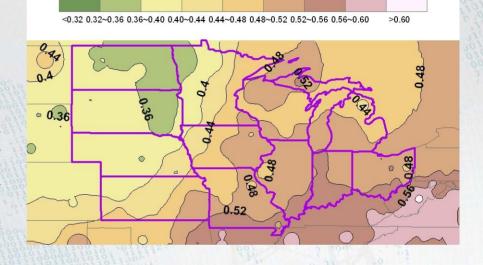
Joint Deficit Index (II)

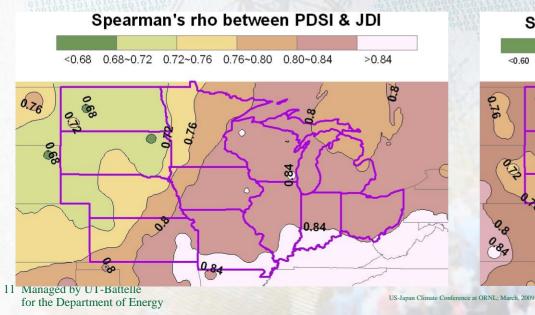
Geographic Information Science and Technology

- Comparison between 1-mn SPI, 12-mn SPI, and JDI
 - 12-Mn SPI changes slowly, weak in reflecting emerging drought
 - 1-Mn SPI changes rapidly, weak in reflecting accumulative deficit
 JDI reflects joint deficit

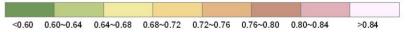
In Comparison with SPI & PDSI

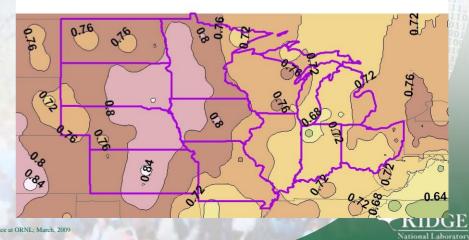
Geographic Information Science and Technology


PDSI

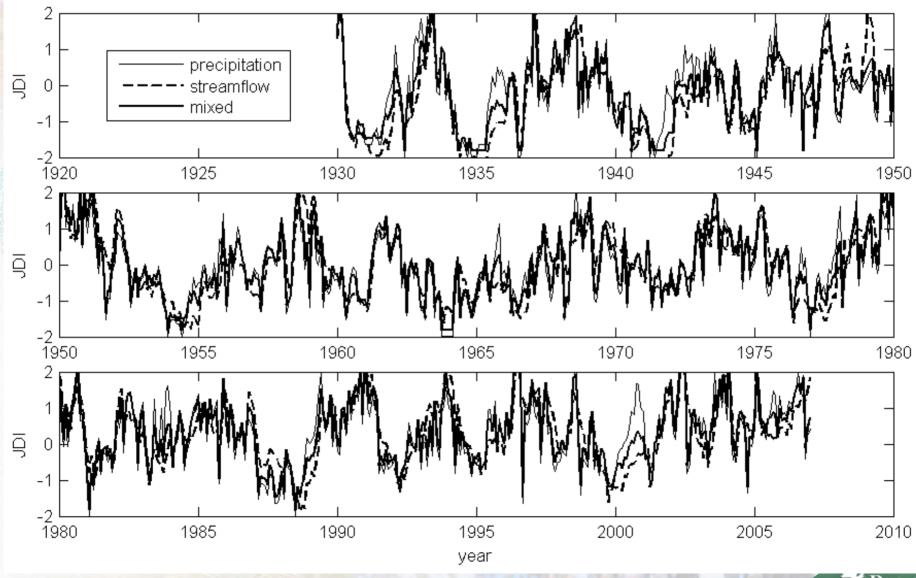

 Based on both precipitation and temperature

Highly correlated to JDI


00101'.'	SPI1	SPI ₃	SPI ₆	SPI ₉	SPI ₁₂	JDI
JDI	0.72	0.80	0.79	0.76	0.70	2
PDSI	0.45	0.66	0.75	0.77	0.76	0.79

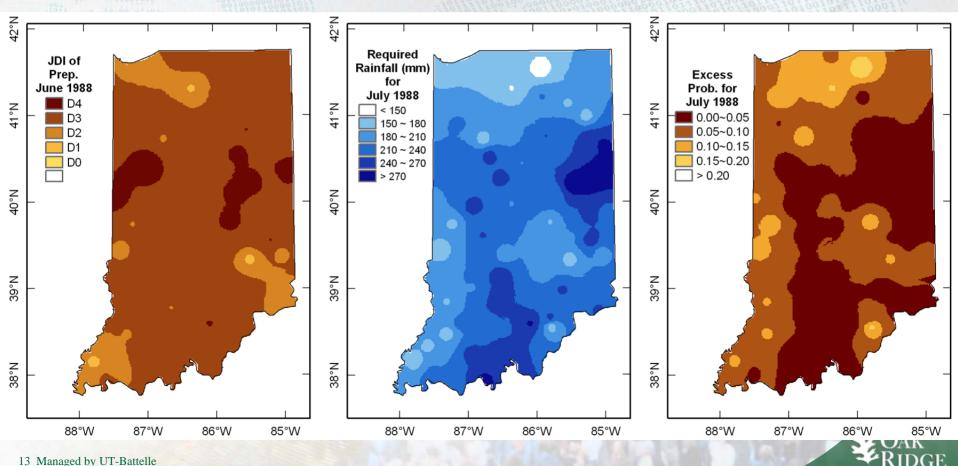

Spearman's rho between PDSI & 1-mn SPI

Spearman's rho between PDSI & 12-mn SPI



Precipitation vs. Streamflow

Geographic Information Science and Technology



Potential of Future Droughts

Geographic Information Science and Technology

Required precipitation for reaching joint normal status (K_c = 0.5) in the future

Probability of drought recovery

for the Department of Energy

US-Japan Climate Conference at ORNL; March, 2009

Conclusion

Geographic Information Science and Technology

- JDI can offer an objective and probability-based overall drought description. It is capable of capturing both emerging and prolonged droughts in a timely manner
- High correlation was founded between PDSI and JDI, suggesting the applicability of JDI.
- JDI has potential to be applied on different types of hydrologic variables, and can be used to derive an inter-variable drought index
- Potential of future droughts can be assessed by using JDI, where the required precipitation and its exceedance probability can be determined

Geographic Information Science and Technology

Dr. Shih-Chieh Kao

kao@ornl.gov; http://www.ornl.gov/~5v1/

15 Managed by UT-Battelle for the Department of Energy

US-Japan Climate Conference at ORNL; March, 2009