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Hydrologic Extreme Events

Delphi, Indiana (Feb, 2008)
Flooding of Tippecanoe River

(AP Photo/Journal & Courier, Michael Heinz) (Barry Gillis, http://www.drought.unl.edu/gallery/ 
2007/Georgia/Sparks1.htm)

George Sparks Reservoir (Sept, 2007)
Lithia Springs, Georgia

• Risk in hydraulic design - Return Period

• Multivariate with spatio-temporal dependence structure
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Outline

• Background and motivation

• Correlation and dependence structure

• Copulas

• Application I: Extreme rainfall analysis

• Application II: Drought frequency analysis

• Application III: Climate extreme and impact

• Future works

• Summary and concluding remarks
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Background and Motivation

• Uncertainty
– Central limit theorem and normal distribution
– Sum of a sufficiently large number of independent random 

variables

• Risk
– (probability of an event) * (losses)

• How to compute the probability when variables are
– multidimensional and non-Gaussian
– mixture of discrete and continuous variables
– with complicated dependence structure

• Need a flexible algorithm in constructing multivariate 
joint distribution
– Focus on dependence in this study
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• Classification
– Temporal: autoregression model (AR), Markov chain
– Spatial: geostatistics (Kriging method)
– Inter-variable: Bayesian approach

• Conventionally quantified by the Pearson’s 
linear correlation coefficient ρ

– Only valid for Gaussian (or elliptic) distributions

Correlation and Dependence

ρ=0.85 ρ=0.85 ρ=0.85
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Example - Bivariate Distribution
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Copulas

• Transformation of joint 
cumulative distribution
– HXY(x,y) = CUV(u,v)

marginals: u = FX(x), v = FY(y)
– Sklar (1959) proved that the 

transformation is unique for 
continuous r.v.s

• Use copulas to construct joint 
distributions
– Marginal distributions =>

selecting suitable PDFs
– Dependence structure =>

selecting suitable copulas
– Together they form the joint 

distribution
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Example of Copulas – Frank Family

• Frank family of 
Archimedean copulas ( ) ( )( )
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Monte Carlo Simulation

• Clayton family (θ = 8.2), normal & exponential marginals
• Frank family (θ = -8), normal & exponential marginals
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Beyond Bivariate Dependence

• Samples with identical 
bivariate dependencies 
(correlation matrix)
– Do they have identical 

trivariate distributions?
– Could cause error when 

computing conditional 
probabilistic features 0 0 .5 1
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Extreme Rainfall - Univariate Approach

• Selection of annual maximum precipitation
– Durations are not the actual durations of rainfall events
– Long-term maximum may cover multiple events
– Short-term maximum encompasses only part of the extreme 

event
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Application I
Extreme Rainfall - Multivariate Approach
• Definitions of Extreme Rainfall Events

– Hydrologic designs are usually governed by depth (volume) or peak 
intensity

– Annual maximum volume (AMV) events
• Longer duration

– Annual maximum peak intensity (AMI) events
• Shorter duration

– Annual maximum cumulative probability (AMP) events
• The use of empirical copulas between volume and peak intensity
• Wide range of durations
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Extreme Rainfall Frequency Analysis

• Bivariate distribution HPD, HDI, HPI
– Total precipitation (P), duration (D), 

and peak intensity (I)
– Marginal: Extreme Value Type I (EV1), 

Log Normal (LN)
– Dependence: Frank Family

• Applications
– Estimate of depth for known duration

– Estimate of peak intensity for known 
duration 

– Estimate of peak intensity for known 
depth
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Estimate of depth for known duration

• AMP definition seems to be an appropriate indicator 
for defining extreme events

T-year depth pT given duration d: FP(pT|d-1<D<d)=1-1/T
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Estimate of peak intensity for known duration

• Conventional approach fails to capture the peak 
intensity

T-year peak intensity iT given duration d: FI(iT|d-1<D<d)=1-1/T
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Rainfall Peak Attributes

• Given depth (P) and duration (D), compute the conditional expectation 
of peak intensity (I) and percentage time to peak (Tp)

Expectation of peak 
intensity given P & D

Expectation of time to 
peak (%) given P & D
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Application II
Drought Frequency Analysis

• Challenges in characterizing droughts
– No clear (scientific) definition: deficit of water for prolonged time
– Phenomenon dependent in time, space, and between various 

variables such as precipitation, streamflow, and soil moisture

• Classification of droughts
– Meteorological drought: precipitation deficit
– Hydrologic drought: streamflow deficit
– Agricultural drought: soil moisture deficit

• Various drought indices
– Palmer Drought Severity Index (PDSI), Crop Moisture Index (CMI),

Surface Water Supply Index (SWSI), Vegetation Condition Index 
(VCI), CPC Soil Moisture, Standardized precipitation index (SPI)



19 Managed by UT-Battelle
for the Department of Energy US-Japan Climate Conference at ORNL; March, 2009

US Drought Monitor

• Overall drought status 
(D0 ~ D4) determined 
based on various indices 
together (Svobada et al., 2002)
– PDSI
– CPC Soil moisture
– USGS weekly
– Percentage of normal
– SPI
– VCI

• Linear combination of selected indices (OBDI, objective 
blend of drought indicator) was adopted as the 
preliminary overall drought status

• The decision of final drought status relies on subjective 
judgment

http://drought.unl.edu/DM/MONITOR.html
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Standardized Index Method

• Proposed by McKee et al. (1993)
• Generalizable to various types of observations

– For precipitation: SPI

• For a given window size, the observed precipitation is 
transformed to a probability measure using Gamma 
distribution, then expressed in standard normal variable

• Though SIs for different windows are dependent, no 
representative window can be determined

Probabilities of
Occurrence (%) SI Values Drought Monitor

Category Drought Condition

20 ~ 30 -0.84 ~ -0.52 D0 Abnormally dry
10 ~ 20 -1.28 ~ -0.84 D1 Drought - moderate
5 ~ 10 -1.64 ~ -1.28 D2 Drought - severe
2 ~ 5 -2.05 ~ -1.64 D3 Drought - extreme
< 2 < -2.05 D4 Drought - exceptional
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Co-occurrence of Droughts

• Precipitation SIs {u1, u2, …, u12} and streamflow SIs {v1, 
v2, …, v12} are selected
– Annual cycle accounts for the seasonal effect naturally
– Allow for a month-by-month assessment for future conditions

• Dependence structure

i
j

0.71 0.57 0.48 0.41 0.38 0.37 0.36 0.35 0.33 0.31 0.30
0.89 0.82 0.70 0.61 0.55 0.53 0.51 0.49 0.47 0.44 0.42
0.80 0.93 0.87 0.76 0.69 0.64 0.61 0.59 0.56 0.54 0.51
0.73 0.85 0.94 0.90 0.81 0.75 0.70 0.67 0.65 0.62 0.60
0.67 0.78 0.87 0.95 0.92 0.85 0.79 0.75 0.72 0.69 0.67
0.63 0.72 0.81 0.89 0.96 0.93 0.87 0.82 0.78 0.75 0.73
0.59 0.68 0.75 0.83 0.90 0.96 0.94 0.89 0.85 0.81 0.78
0.57 0.64 0.72 0.79 0.85 0.91 0.97 0.95 0.90 0.86 0.83
0.55 0.62 0.69 0.75 0.81 0.87 0.93 0.97 0.96 0.91 0.88
0.53 0.60 0.66 0.72 0.78 0.83 0.89 0.94 0.98 0.96 0.92
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Joint Deficit Index

• Comparison between 1-mn SPI, 12-mn SPI, and JDI
– 12-Mn SPI changes slowly, weak in reflecting emerging drought 
– 1-Mn SPI changes rapidly, weak in reflecting accumulative deficit
– JDI reflects joint deficit
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Precipitation vs. Streamflow
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Potential of Future Droughts

• Required precipitation for reaching joint normal status 
(KC = 0.5) in the future

• Probability of drought recovery
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Application III
Rainfall in Climate Projections

• Temperature vs precipitation
– Clausius-Clapeyron relationship
– temperature => humidity => precipitable water => precipitation => 

Surface Hydrology

• Model bias and uncertainty, spatio-temporal variability, 
extreme rainfall, drought potential, …

• Multivariate frequency analysis
– Not so fast!
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Model Bias
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Between GCMs
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Return Period in the Changing Climate (I)

• Annual maximum precipitation in a 6-hr interval
• Generalized extreme values (GEV) dist. with block maximum theory
• Median of global return period corresponding to year-1999 estimates
• Goodness-of-fit tests at 5% significant level: 

– NCEP: 2.56%, ERA40: 1.24%, CCSM3: 0.02%

30yr window
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Return Period in the Changing Climate (II)

• Spatial variability
• Computational challenges

– Around 33GB outputs, 800 CPU-hour computation time
– Parallel computing environment

• Uncertainty quantification 
– Bootstrapping => rapid increase in computation time

• Multivariate storm events analysis
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Droughts in the CCSM3 Projections

• 12-month SPI comparing to the 
current (1970-1999) moisture 
status

• Assess of water availability
• Regions of interest
• Co-occurrence of 

droughts/natural disasters 
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Future Works

• More analysis of hydro-meteorologic components in the 
climate projections
– Specific humidity, wind speed, evapotranspiration, surface flow
– Extreme, uncertainty, and potential impact
– Multivariate frequency analysis

• Multi-model inter-comparison
– Multi-model super-ensemble
– Reanalysis data (NCEP1, NCEP2 and ERA40), and local 

observation (NOAA and USGS)

• Co-occurrence of natural disaster
– Spatio-temporal and inter-variable dependence structure

• Statistical/physical downscaling
• Prepare for the coming AR5
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Potential Applications in Other Fields

• Mutual information and non-linear correlation (Auroop)
• Complex/social networks (Karsten)
• Simulation of household data (Cheng)
• Remote sensing data processing (Raju) 
• Probabilistic decision making in the agent-base 

modeling (Xiaohui)
• Capabilities of copula-based approach

– Median regression
– Markov process
– Copula-based geostatistics
– Monte Carlo simulation
– Conditional distribution and risk
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Concluding Remarks

• Copulas are found to be flexible for constructing 
joint distributions
– Toward better quantification of uncertainty and risk

• The dependence structure can be faithfully 
preserved

• Caution when using copulas
– Need reliable data
– Difficulties arise in higher dimensions

• Mathematical complexity
• Hard to preserve all lower level mutual dependencies
• Compatibility problem
• Limited choice of parametric models
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Is it the copula's fault?
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Thank you
Questions?

Shih-Chieh Kao
kaos@ornl.gov; http://www.ornl.gov/~5v1/

mailto:kaos@ornl.gov
http://www.ornl.gov/~5v1/
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