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Introduction

® The need for handling massive and high dimensional
datasets with a focused consideration on preserving the
dependence structure among variables.

@ Spatio-temporal & inter-variable dependence
- Temporal: Autoregression model (AR), Markov chain
- Spatial: Geostatistics (Kriging method)
- Inter-variable: Bayesian approach

® Lack of an effective mathematical tool to characterize
the dependence structure when variables are

- Multidimensional and non-Gaussian
- Combination of various marginal distributions
- Non-linear physical processes

® Risk, statistical similarity, extreme value and frequency,
anomaly detection, and data simulation

Concept of Correlation and Dependence Structure

® From moment-based statistics (mean, standard
deviation, coefficients of skewness and kurtosis) to
probability density function (PDF).

- Can the cross-moment (e.g., Pearson’s correlation
coefficient ») be extended in a similar manner?

- A two-dimensional mathematical formula rather than
a single measurement
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Figure 1 - Bivariate Gaussian distributions (2 =0 &  =0.5) and the
corresponding copula densities and realizations

® Transformation of joint cumulative distribution
- Univariate marginals: u; = Fy;(x)
- Hyq, xa(0,+%0) = Cuy . unUg,-- Up)

® Archimedean copulas
Frank family of Archimedean copulas: Clayton family of Archimedean copulas:
o) =-In(e*-Dle’-D) o0)=(t"-16
cu =~ EHED ;iufjl;)(jz(:')’+V"’710))"”’
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- Maximum-likelihood estimator versus non-parametric
estimator through Kendall's tau

- Goodness-of-fit of copulas
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Figure 2 - lllustration of (a) Student t copulas (degree of freedom v = 2), (b)
Frank copulas, and (c) Clayton copulas. All three copulas have the same
Pearson’s correlation coefficient © =0.5

® Flexibility in modeling various types of joint distributions

@ Strength in generating correlated random variables
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Figure 3 - The capability of copulas in random number generation. All
simulated patterns (500 data points in each panel) are combinations of
Normal(0,1) and Exp(1) marginals, and Clayton(3.18) and Frank(-7.9)
copulas
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Dependence in Climate Data

® Climate data contains multiple variables (e.g.,
temperature, pressure, wind speed, humidity, precipitable
water and precipitation). Each variable has its own type of
distribution, seasonal variability, and long-term non-
stationary trend.

® Most of the hydro-meteorological variables are governed
by non-linear processes with non-intuitive mechanisms.

® Data used in this study

- NCEP2 reanalysis: 1.9°x1.9° spatial resolution (total of
18,048 grid cells), beginning from 1979 until present.

- Monthly temperature (X), precipitation (Y), precipitable
water (2)

- Z-score transformation to remove seasonal variability
® Global correlation between normalized variables

- Category I: p <-0.3, negatively dependent

- Category II: -0.3 < o < 0.3, near independent

- Category lll: p > 0.3, positively dependent
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Figure 4 - Global maps and histograms of correlation coefficient o for
(Plots a & b) normalized temperature (X) versus normalized precipitation
(Y), (Plots c & d) Y versus normalized precipitable water (Z), and (3) X
versus Z. Number of grid points in Region | (o <-0.3), Region Il (-0.3 <
0 <0.3), and Region lll ( o > 0.3) are also marked on the histograms.

® Highly positive dependence between normalized
temperature and precipitable water.

® Dependence level between normalized temperature and
precipitation varies widely.

® Reflecting regional weather characteristics

® Example: grid point near Miami, FL (79.67W~81.56W,
24.76N~26.67N)

- Marginal distribution: kernel density function
- Dependence structure: Frank Archimedean copulas
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Figure 5 - Taking the grid cell containing Miami as an example, (a-c) show
the histograms and kernel density fitting of adjusted temperature (X),
precipitation (Y), precipitable water (), and (d-f) show the differences
between fitted Frank copulas and empirical copulas of each pair of
variables.

Climatic Anomaly Detection

@ Bivariate abnormal climate events:

- Months which are hot and have low precipitation,
have low precipitation and dry, or hot and dry

® Fixed versus adjusted thresholds (from the theory of
copulas) in detecting abnormal months

Table 1 - Summary of bivariate climatic anomaly detection

Regions

Case 1, fixed threshold

{XOD 2 xED YD < yliy 841%  439%  143%
(XD 2xGh 700 <y 838%  367%  0.52%
YD <yGh 200 <2y - 598%  8.96%

Case 2, adjusted threshold

(X2 DY <yiDy  481%  4.48%  447T%
(XD 2x(D 2D <200y 4B 424%  4.85%
{YOD < ylh 200 < 260y - 415%  4.45%

® The number of abnormal months is affected by the
dependence levels between variables.

@ By considering the dependence levels between
variables, the adjusted ratio approach results in similar
amount of anomalies.
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