Quantifying and Comparing the Intensification of Extreme Rainfall Frequency from NCEP and ERA40 Reanalysis Data

kaos@ornl.gov

Auroop Ganguly

gangulyar@ornl.gov

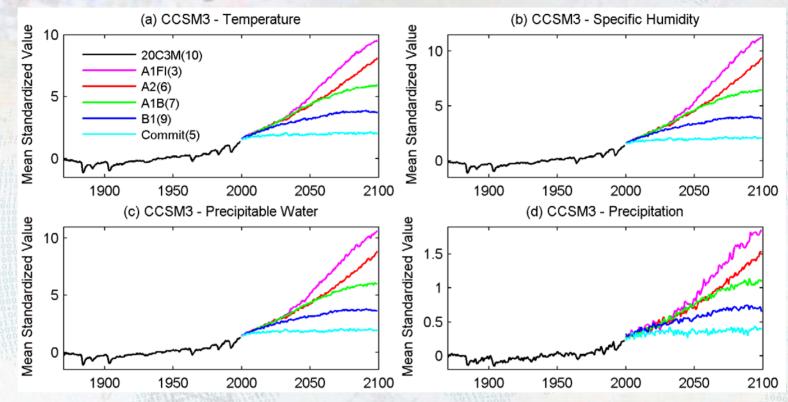
GIST Group, CSE Division Oak Ridge National Laboratory


- Presenting at the 2010 American Meteorological Society Annual Meeting

Managed by UT-Battelle for the Department of Energy

Background and Motivation

Geographic Information Science and Technology



- How to interpret it in terms of hydraulic/hydrologic engineering design concept (recurrence interval)?
- Challenges
 - Scale and resolution
 - Inconsistence among different climate models
 - Scientific understanding
 - Limited (in time) observational dataset to verify
- Potential impacts
 - Most structures are designed based on thresholds developed under stationary assumption
- More thorough examination toward rainfall extremes

From Temperature to Precipitation

Geographic Information Science and Technology-

- Clausius-Clapeyron relationship
 - temperature => humidity => precipitable water => precipitation => surface hydrology
 - Non-stationary

• How to quantify the change in frequency?

Reanalysis and Climate Model Data

Geographic Information Science and Technology

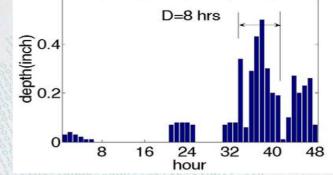
Features required

- Annual maximum rainfall under various storm durations
- Fine temporal resolution (sub-daily) and global coverage
- Continuously recorded

Meteorological reanalysis

- NCEP1: 1948 ~ present, ~1.9°
- NCEP2: 1979 ~ present, ~1.9°
- ERA40: 1958 ~ 2001, , ~2.5°

Climate projection


- 20th Century control run (20C3M, 1900~1999), A1FI, A2, A1B, B1, Commit scenarios (2000~2099)
- CCSM3, ~1.4°, 6-hourly data available through ESG
- CSIRO3.5, ~1.9°, daily data available through PCMDI

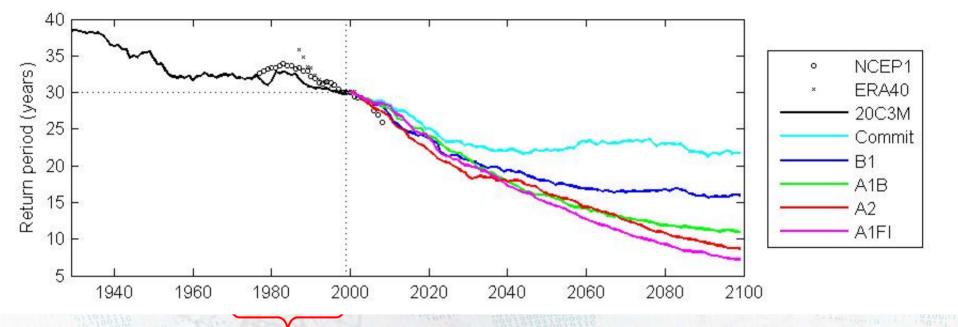
Quantifying the Frequency of Rainfall Extremes

Geographic Information Science and Technology

- Kharin et al (2007)
 - Daily and 5-day Precipitation
 - 20-year window:
 - 1981-2000, 2046-2065 and 2081-2100
 - What is the relationship between rainfall intensity and duration?

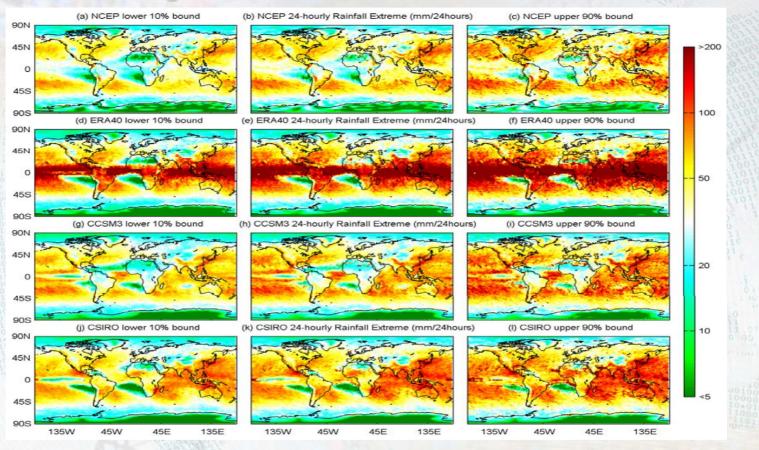
– Can we show the continuous change of frequency?

Procedures


- 30-year moving window
- Compute the 6-, 12-, 18-, 24-, 36-, 48-, 72-, 120-, 240-hour annual maximum rainfall depth
- Generalized extreme value distribution with maximum-likelihood estimators
- Goodness-of-fit test: Kolmogorov-Smirnov, Cramér-von Mises
- 3-, 5-, 10-, 30-, 50-, and 100-year recurrence levels
- 1000-member bootstrapping uncertainty

Return Period in the Changing Climate

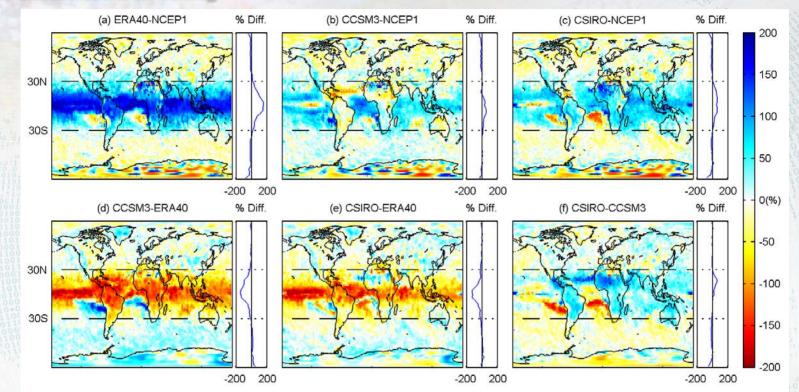
Geographic Information Science and Technology


30yr window

- Annual maximum precipitation in a 6-hr interval
- Median of global return period corresponding to year-1999 estimates
- Goodness-of-fit tests at 5% significant level:
 - NCEP: 2.56%, ERA40: 1.24%, CCSM3: 0.02%
- Consistent trend in the recent two decades

6 Managed by UT-Battelle for the Department of Energy

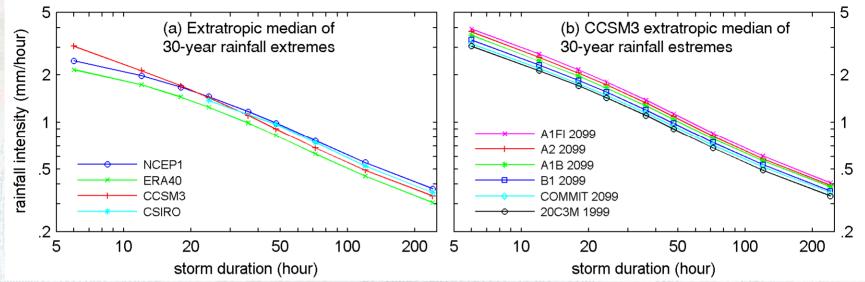
Estimates/Uncertainty of Rainfall Extremes


Geographic Information Science and Technology

- Example: year-1999 estimate (1970-1999 data)
 - 24-hour storm duration, 30-year return period
 - Major difference near tropical regions
 - Sampling uncertainty seems to be less than cross-model difference
- 7 Managed by UT-Battelle for the Department of Energy

Difference Between Models and Reanalysis

Geographic Information Science and Technology



Year-1999 estimate, 24-hour storm duration, 30-year return period

- Percentage difference: 100*(A-B)/[(A+B)/2]
 - Largest difference between two reanalysis
 - High agreement in extratropic regions (90S~30S & 30N~90N)

Intensity-Duration-Frequency Curves

Geographic Information Science and Technology

- **Rainfall Intensity-Duration-Frequency (IDF) relationship**
 - Can we build IDF curves from climate data?
 - Does the linear trend on the log-log plot exist?
- Global extratropic median of 30-year rainfall intensity
 - IDF relationship basically holds
 - Inter-model inconsistency remains the largest difference
 - For CCSM3, the year-2099 IDF curves among various scenarios vary proportionally.
 - Will the climate safety factor as a possible direction?

9 Managed by UT-Battelle for the Department of Energy

US-Japan Climate Conference at ORNL; March, 2009

Concluding Remarks and Future Works

Geographic Information Science and Technology

- Interpreting the intensification of rainfall extremes in terms of hydraulic/hydrologic design concepts
 - Can we still use return period?
 - The potential influence of non-stationarity should be considered.
 - Credibility versus risk
- The linkage between global and regional trend needs to be built
 - Physical mechanism, parameterization, and model resolution
 - Consistency among multiple models
 - Downscaling with consideration of multi-model inconsistency
- Quantify the change of frequency for other hydrometeorological variables
- Trigger of extreme events

Geographic Information Science and Technology

Shih-Chieh Kao

kaos@ornl.gov; http://www.ornl.gov/~5v1/

11 Managed by UT-Battelle for the Department of Energy

US-Japan Climate Conference at ORNL; March, 2009