Streamflow Variability and Its Potential Impact on Energy Production

Shih-Chieh Kao, Ph.D.

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Outline

- Background
- Streamflow Variability
 - Grand Coulee as an Example
 - Regional Assessment
- National Hydropower Asset Assessment Project
- Copula Applications on Hydrologic Engineering
 - Application I: Extreme Rainfall
 - Application II: Droughts
- Future Research

Background - Hydroelectricity

- Power Generation
 - Hydro: 7% of the US & 19% of the world total
 - Nuclear: 19% of the US & 15% of the world total
- Hydropower generation is not fully proportional to capacity

Other Impact - Nuclear Plant Cooling

- TVA Browns Ferry Nuclear Plant
 - 3494 MW (ORNL Jaguar 5~10 MW)
 - 10% of the TVA total
- Aug 2007, TVA reactor shut down; cooling water from river too hot
 - "We don't believe we've ever shut down a nuclear unit because of river temperature," said John Moulton, spokesman.
- Aug 2010, Browns Ferry reduced to 45% due to water temperature concern
 - TVA spent \$40 million to replace the electricity (\$2 million per day)

Picture provided by Boualem Hadjerioua

Streamflow Variability

- Streamflow variability is often large and unpredictable
- Joint influence
 - Natural variability
 - Snowmelt and groundwater recharge
 - Dam regulation / power generation
 - Domestic / industrial water usage
 - Vegetation and urbanization
 - Climate change
- Major technical challenges
 - Streamflow at ungauged locations
 - Watershed modeling
 - Climate projection

Nericeal Laboration

Grand Coulee

- The largest hydropower facility in the US
- Capacity 6495 MW
- 8.7% of the US Hydropower total
- Upper Columbia River basin
- Capacity factor 39.03%

- 8 out of the 10 largest hydropower facilities from the same region
- Dam attributes were not found in the National Inventory of Dam

Between Generation & Streamflow

- Data Oct. 1977 ~ Sept. 2007
 - EIA monthly generation
 - USGS 09423000
 - Strong correlation between flow & generation ($\rho = 0.93$)
- P = eγQH
 - e, efficiency; γ, specific weight; Q, flow rate; H, head; P, power
 - e*H = 266.78 ft
 - if e = 0.7, H = 381.11 ft
 - Hydraulic head: 380 ft
- Estimate potential power generation from streamflow

Capacity & Performance Factor

Capacity Factor

- Generation / (Capacity * 1 year)
- Fluctuation due to streamflow availability
- How frequent is a facility utilized?
- Performance (efficiency)
 - $P_{avg} / \gamma Q_{avg} H$
 - Operation and regulation
- Both curves do not act consistently
- Constant head assumption to be relaxed when more detailed data are available

Seasonal Variability

- The upper 20% quantiles varies around 15000 cfs from fall to winter
 - 700000 MWh difference
- Seasonality needs to be properly accounted for
 - Important feature for future site selection
- Streamflow has high temporal correlation
 - How can we utilize some new statistical methods to improve the forecasting?

Regional Assessment

- Analysis of historic generation, runoff, and precipitation time series
- **USGS Waterwatch Runoff (mm)**
 - Available for each subbasin (HUC08)
- Computed from observed streamflow normalized by drainage area

PRISM Precipitation

- Available for each (4km)² grid
- Observation adjusted by topographic features

Region-based Assessment

Region 06 - Tennessee

Region 17 - Pacific Northwest

NHAAP (PI: Boualem Hadjerioua)

- National Hydropower Asset Assessment Project (NHAAP)
 - An integrated and up-to-date national hydropower assessment

for the U.S. Department of Energy

NHAAP Web-based GIS

Click here to see Monthly Generation for a specific year

Click here to see Monthly streamfore for a specific year

Challenge for Ungauged Locations

- ~84,000 non-power dams vs ~22,000 USGS gauges
 - Less than 10,000 gauges are current
- Regression approach: Vogel et al. (1999)
 - Regression formula for 19 HUC02 Regions
 - Variables: drainage area, precipitation, temperature
 - Annual mean flow
- Runoff map approach
 - Runoff: Streamflow
 - normalized by drainage area
 - Water watch approach
- However, the accuracy of stream GIS layers is the dominate factor

Low-flow Analysis

Extreme Rainfall - Univariate Approach

- Selection of annual maximum precipitation
 - Durations are not the actual durations of rainfall events
 - Long-term maximum may cover multiple events
 - Short-term maximum encompasses only part of the extreme event

Correlation and Dependence

- Classification
 - Temporal: autoregression model (AR), Markov chain
 - Spatial: geostatistics (Kriging method)
 - Inter-variable: Bayesian approach
- Conventionally quantified by the Pearson's linear correlation coefficient ρ

 $\rho_{XY} = E[(X - \overline{x})(Y - \overline{y})] / Std[X]Std[Y]$

Only valid for Gaussian (or elliptic) distributions

Serient Laborated

Example - Bivariate Distribution

0 Managed by UT-Battelle for the U.S. Department of Energy

Copulas

Transformation of joint cumulative distribution

- $H_{xy}(x,y) = C_{UV}(u,v)$
 - marginals: $u = F_x(x), v = F_y(y)$
- Sklar (1959) proved that the transformation is *unique* for continuous r.v.s

Use copulas to construct joint distributions

- Marginal distributions => selecting suitable PDFs
- **Dependence structure =>** selecting suitable copulas
- Together they form the joint distribution

Extreme Rainfall Frequency Analysis

- Bivariate distribution H_{PD}, H_{DI}, H_{PI}
 - Total precipitation (P), duration (D), and peak intensity (I)
 - Marginal: Extreme Value Type I (EV1), Log Normal (LN)
 - Dependence: Frank Family
- Applications
 - Estimate of depth for known duration

 $F_{P}(p_{T}|d-1 < D \le d) = 1 - 1/T$

Estimate of peak intensity for known duration

 $F_{I}(i_{T}|d-1 < D \le d) = 1 - 1/T$

- Estimate of peak intensity for known depth E[I | P > p]

Estimate of depth for known duration

T-year depth p_T given duration d: $F_P(p_T|d-1 < D < d) = 1-1/T$

Estimate of peak intensity for known duration

T-year peak intensity i_T given duration d: F_I(i_T|d-1<D<d)=1-1/T

Rainfall Peak Attributes

 Given depth (P) and duration (D), compute the conditional expectation of peak intensity (I) and percentage time to peak (T_p)

Expectation of peak intensity given P & D

Expectation of time to peak (%) given P & D

5 Managed by UT-Battelle for the U.S. Department of Energ

Joint Deficit Index

- Comparison between 1-mn SPI, 12-mn SPI, and JDI
 - 12-mn SPI changes slowly, weak in reflecting emerging drought
 - 1-mn SPI changes rapidly, weak in reflecting accumulative deficit
 - JDI reflects joint deficit

Precipitation vs. Streamflow

Potential of Future Droughts

 Required precipitation for reaching joint normal status (K_c = 0.5) in the future

Probability of drought recovery

for the U.S. Department of Energy

Climate Change on Snowmelt Timing

- Investigate the trend of 1960-1999 spring onset (Cayan et al., 2001)
- Simulation: five ensemble members of VIC model
- Observation: 223 unregulated and snowmelt driven USGS stations

Climate-induced non-stationary

30yr window

PI: Auroop R. Ganguly

- Annual maximum precipitation in a 6-hr interval
- Generalized extreme values (GEV) distribution
- Median of global return period corresponding to year-1999 estimates
- Goodness-of-fit tests at 5% significant level:
 - NCEP: 2.56%, ERA40: 1.24%, CCSM3: 0.02%

National Hydrography Dataset

Thank you Questions?

Shih-Chieh Kao

kaos@ornl.gov; http://www.ornl.gov/~5v1/

2 Managed by UT-Battelle for the U.S. Department of Energy