Multivariate Flood Frequency Analysis through Copulas in a Partially Gauged Watershed

Presented at World Environmental & Water Resources Congress

20rd - 24th May, 2012, Albuquerque, NW

Shih-Chieh Kao (kaos@ornl.gov)

Environmental Sciences Division Oak Ridge National Laboratory

Ni-Bin Chang (nchang@ucf.edu)

Department of Civil, Environmental, and Construction Engineering University of Central Florida

Background

- 25000 USGS Gauge Stations
 - Enough?
- Estimate Flood Frequency at Ungauged Locations
 - Modeling Approach
 - Statistical Approach
- Limitations of the Univariate Flood Frequency Analysis
 - How to account for river confluences?
 - What if a river has been partially regulated?
 - How to account for major land use and land cover change?
- Multivariate Flood Frequency Analysis Could be a Solution
 - But, can we make it easier?

Joint Distribution and Copulas

- One may formulate any joint distribution in terms of copulas and marginals
 - $H_{XYZ}(x,y,z) = C_{UVW}(u,v,w)$ $u = F_X(x), v = F_Y(y), w = F_Z(z)$
 - Copulas is a "distribution-free" dependence structure
- Use copulas to construct joint distributions
 - Marginal distributions => selecting suitable PDFs
 - Dependence structure => selecting suitable copulas
 - Together they form joint distribution
- ³ Managed With the OESpecific marginals

Copula Density

- Joint PDF versus copula density
 - Positive dependence: main diagonal (u = v)
 - Independence: flat surface
 - Negative dependence: secondary diagonal (u v = 1)

Case Study

Data Availability

	X ₁	X ₂	X ₃	X ₄	
USGS ID	03426310	03430100	03431060	034315005	
Gage Name	Cumberland River at Old Hickory Dam	Stones River below J Percy Priest Dam	Mill Creek at Thompson Lane near Woodbine	Cumberland River at Woodland St at Nashville	
Drainage Area (km²)	30233	2310	241.9	33307	
Corresponding Watersheds	S ₁	S ₂	S ₃	S_1 , S_2 , S_3 , and S_4	
Data Coverage	WY1948~WY2007	WY1940~WY2010	WY1997~WY2009	WY1993~WY2009	
# of Annual Peak Flow	19 (pre-regulated) 53 (pos-regulated)	30 (pre-regulated) 43 (post-regulated)	45 (peak flow since WY1965)	16	
Mean Annual Flow (m³/s)	526.12	39.93	4.08	589.98	
6 Managed by UT-Battelle for the U.S. Department of	Old Hickory Dam regulated at 1954	J Percy Priest Dam regulated at 1967		AND CAK	

Fitting of Marginal Distributions

Correlation between High Flow Pairs

Flow Synthesization through Copulas

- Gaussian copulas is chosen for simplification
 - Multivariate normal distribution (MVN)

 $\Phi_{d}(\phi^{-1}(u_{1}),...,\phi^{-1}(u_{d})) = \int_{-\infty}^{\phi^{-1}(u_{1})} \cdots \int_{-\infty}^{\phi^{-1}(u_{d})} (2\pi)^{-\frac{a}{2}} |\Sigma|^{-\frac{1}{2}} \exp(-\mathbf{z}\Sigma^{-1}\mathbf{z}^{T}/2) dz_{1} \cdots dz_{d}$

Gaussian Copulas

 $C_{U_1,...,U_d}(u_1,...,u_d) = \Phi_d(\phi^{-1}(u_1),...,\phi^{-1}(u_d)) = \Phi_d(\phi^{-1}(F_{X_1}(x_1)),...,\phi^{-1}(F_{X_d}(x_d)))$

- Existing MVN generators are easy to use
- Procedures
 - (1) Calculate the correlation matrix for MVN
 - (2) Generate 100,000 MVN samples
 - (3) Transform the MVN samples to Gaussian copulas, and then to different marginals
 - (4) The synthesized (x_1, x_2, x_3) flow are then used to estimate the flood frequency at downstream reaches.

Evaluation

• Three synthesizing functions were tested:

$$-$$
 (1) $X_4 = X_1$

$$- (2) X_4 = X_1 + X_2 + X_3$$

$$- (3) X_4 = X_1 + X_2 + w * X_3$$

- Validate by observed X₄ flow
 - Function (2) works the best
 - More suitable function can be considered in the future

	KS (5%)	CM (5%)	Nash E	R ²	RMSE (m ³ /s)	PE (%)	May 3 rd , 2010
(a) X ₁	Reject	Reject	0.0703	0.961	592.9	-20.5	885.3 yrs
(b) X ₁ +X ₂ +X ₃	Accept	Accept	0.9363	0.964	155.2	-1.8	166.3 yrs
(c) X ₁ +X ₂ +W*X ₃	f Ene Reject	Reject	0.0923	0.963	585.9	17.5	29.5 yrs

Flexibility of the Multivariate Approach

Frequency of Flood Considering Dam Regulation

Flood Frequency before and after dam regulation

Conclusions

- The multivariate flood frequency is more flexible, especially for river confluences considering dependence structure (comparing to the univariate statistical approach)
- It requires minimal data and moderate computation efforts (comparing to the modeling approach)
- Challenges and Future Works
 - What will be the best criteria to construct dependence structure for multivariate flood frequency analysis?
 - Dimensionality remains a major challenge. Gaussian (and t) copulas are the easiest but may not be the best solution.
 - How can we consider climate and land use / land cover change into this framework?

Thank you Questions?

Shih-Chieh Kao

kaos@ornl.gov; http://www.ornl.gov/~5v1/

13 Managed by UT-Battelle for the U.S. Department of Energy