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In this talk, we discuss the implementation of quantum optical 
communication protocols within the GNU Radio framework. We report 
on efforts to develop single-photon optical receivers at infrared and 
visible wavelengths that interface directly with GNU Radio, and our 
development of a quantum information tool kit for application testing 
built on top of GNU Radio.  

While the physics underlying quantum communication distinguish it 
from conventional radios, we conclude that GNU Radio provides a 
convenient means for prototyping research-grade implementations of 
various quantum applications and, subsequently, for diagnosing 
relative performance 

This presentation has been authored by a contractor of the U.S. Government under 
Contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a non-
exclusive, royalty-free license to publish or reproduce the published form of this 
contribution, or allow others to do so, for U.S. Government purposes. 
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GNU Radio for  
Quantum Optical Communication 
•  Purpose:  

–  Develop a toolkit within the GNU Radio framework for processing quantum 
communication protocols; prototype quantum applications 

–  Develop quantum optical hardware capable of talking with GNU Radio 

•  Challenges: 
–  Interfacing with optical detectors 
–  Partitioning quantum communications into GR ‘blocks’ 
–  Two-way communication 
–  Securing the implementation 

•  Current Status: 
–  Prototype optical receivers interface with GR over Ethernet 
–  Developed multiple specialty blocks; prototyping simple applications 
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Oak Ridge National Laboratory 

•  Department of Energy Research and Development Center 
–  Largest DOE open science lab; population 4,800 across 1809 hectares 
–  Emphasis in computer science, material science, neutrons, and energy 

•  Quantum Information Science Working Group 
–  Locus of research in quantum information 
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•  Quantum computation 
•  Quantum imaging 

•  Quantum communication 
•  Quantum sensing 

Multi-user Quantum Key Distribution 
Quantum Optical Seals 
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Why GNU Radio? 

•  Leverage advantages of software-defined radio paradigm 
–  Replace traditional, dedicated hardware with software-based systems 

–  Advantage of being reusable, replicated at reduced cost 

–  Advantage of being reconfigurable, tunable, exploratory 

•  The advantages for quantum communications 
–  Avoid developing research-grade hardware that is quickly obsolete 

–  Avoid hardcoding guesses to questions that are not answered yet 

–  Rapidly prototype new applications, protocols, and error models 

–  Provide a robust research-focused toolkit for enabling discovery 
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•  Quantum Optical Communication 
–  Encoding information into the quantum state of light 

•  polarization  
•  angular momentum 
•  frequency 

–  Special features of quantum information 
•  No cloning: cannot be copied 
•  Non-local correlations: spooky action at a distance 
•  Squeezing: sub-shot noise limited detection 

•  Promise of Quantum Optical Communication 
–  Quantum Key Distribution: Securely distribute cryptographic keys 

–  Quantum Teleportation: Relaying quantum information 

–  Quantum Optical Seals: Authenticating the integrity of an optical transmission 

Why Quantum Optical Communication? 

•  spatial mode 
•  temporal mode 
•  field quadratures h 

v 
+ – 
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•  Quantum Communication is relatively young 
–  < 20 years of laboratory research 
–  Lacks industry standards, but efforts are underway 
–  Very few commercial implementations 
–  Few commercial users 

•  Quantum Key Distribution 

The Current State of  
Quantum Optical Communication 

1911: quantum theory of 
           blackbody radiation 

1926: ‘photon’ invented 

1936: quantum logic invented 

1957: optical laser invented 

1980: entanglement observed 

1970: conjugate coding invented 

1984: BB84 QKD 

2003: QKD Network Test beds 
2011 

1994: Shor’s factorization alg. 



7  Managed by UT-Battelle 
 for the U.S. Department of Energy 

Free-space Optical Channel 

Point-to-point free-space QKD over the Canary Islands, 1.8 bit/s 
@ 144 km by European consortium, 2006-2007 
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Fiber-based Computer Network 

Fiber-ring network in Vienna support QKD base stations, 11kbps 
@ 20 km by SECOQC consortium, 2004-2010 



9  Managed by UT-Battelle 
 for the U.S. Department of Energy 

Fiber-based Commercial System 

Quantum Stadium project at 2010 World Cup South Africa, 
1kbps @ 25 km by IdQuantique Cerberis 
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Tokyo QKD Research Network 

Metro-area fiber-based network demonstrated by NEC, Mitsubishi, 
NTT, Toshiba, and others, 40-300 kbps @ 24-90 km 
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Turn over example 
•  Figure 3 from “Time-cost analysis of a quantum key distribution system clocked at 

100 MHz”, Z. E. Mo et al., Optics Express 19, 17729-17737 (2011) 

Processing can’t keep up 
with acquisition 
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Adopting a GNU Radio Paradigm 

•  Hardware Frontend 
–  Detector converts photons to 

electrical signals 
–  Material varies with wavelength 

•  Hardware Backend 
–  Process raw electrical signals 
–  Clocking/synchronization 
–  Some logic 
–  Normalizes output 

•  Software backend 
–  Device driver for hardware 

backend 
–  Handle setups, shutdowns, data 

transfers 

•  Software frontend 
–  Software-defined signal 

processing applications 
–  Standardized API 
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Quantum Optical Hardware 

•  ORNL single-photon detectors 
•  DEED: Duncan Earl’s Everything Detector 

–  Duncan Earl, Oak Ridge National Laboratory 

•  Hardware frontend 
–  Single-photon detectors 
–  InGaAs: Infrared/Telecomm 
–  Si-APD: Visible/Free-space 

•  Hardware backend 
–  Self-differencing circuit 
–  Amplifier, comparator 
–  Coincidence counting 
–  Timestamping 
–  FPGA+Microcontroller 

Internal InGaAs 
Detectors (with 
TEC Cooler) 

Rabbit MicroProcessor 
and Cyclone III FPGA 

External 
Optical Inputs 

External 
Detector/Trig 

Inputs 

Ethernet 
Communication 

Port 



14  Managed by UT-Battelle 
 for the U.S. Department of Energy 

Software-defined Quantum Comms 
•  Quantum Information Tool Kit for Application Testing (QITKAT) 

–  GNU Radio-based quantum communication library 
–  Developed at ORNL, ongoing (10 Months in) 
–  Specialty blocks for handling time-stamped data measured in conjugate bases 
–  64-bit data type: 60-bit counter/metadata, 4-bits for measurements 
–  Use _q for quad word (unsigned long long int) 
–  List of Blocks from dir(qitkat) 

•  visibility_ff() 
•  detection_ff() 
•  correct_qq() 
•  encode_qq() 
•  sendlist_qq() 
•  fetchlist_qq() 
•  coset_qq() 
•  checkbits_qq() 
•  discard_qq() 

•  timestamp_source_q() 
•  timestamp_sink_q() 
•  random_symbols_b() 
•  entangled_symbols_b() 
•  fpga_source_q() 
•  timesync_qq() 
•  entropy_bf() 
•  ber_bf() 
•  bsc_bf() 
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QITKAT Classes 
// output entries of data as timestamps

timestamp_source_q(uint64_t &data);


// store entries of data as timestamps

timestamp_sink_q(uint64_t &data); 


// output uniform random entries of alphabet

random_symbols_b(uint64_t &alphabet, uint32_t seed);


// output uniform random, but correlated entries of alphabet

entangled_symbols_b(uint64_t &alphabet, float correlation, uint32_t seed)


// fetch packetsize data from ipaddr:port using sockets

fpga_source_q(char *ipaddr, char *port, char *packetsize);


// cross-correlate two input streams using sync_length samples every sync_period

timesync_qq(uint sync_length, uint sync_period);


// output either single (joint) entropy of one (two) input stream(s)

entropy_bf(uint32_t num_items);


// output bit error rate between two input streams

ber_bf(uint32_t num_items);


// output result of binary symmetric channel

bsc_bf(float error_rate, uint23_t seed);
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QITKAT Classes 
// output visibility contrast over window_size samples every step_size samples

visibility_ff(uint32_t window_size, uint32_t step_size);


// output prob. of detection, prob. of false alarm for noise and threshold

detection_ff(float noise, float threshold);


// output error correction using n-by-m generator matrix g

decode_qq(uint32_t n, uint32_t m, uint32_t &g);


// output error encoding using n-by-m generator matrix g

encode_qq(uint32_t n, uint32_t m, uint32_t &g);


// output input after sending list of size element to ipaddr:port

sendlist_qq(char *ipaddr, char *port, uint32_t size);


// output input and list of size elements retrieved from ipaddr:port

fetchlist_qq(char *ipaddr, char *port, uint32_t size);


// output coset of C2 in C1 with input

coset_qq(uint32_t n, uint32_t m, uint32_t &g);


// output unchecked bits after sending errors to ipaddr:port

checkbits_qq(char *ipaddr, char *port);


// output good bits after receiving errors from ipaddr:port 

discard_qq(char *ipaddr, char *port)
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Example: Quantum Optical Seals 
•  Monitoring integrity of fiber-based transmission of entanglement 

–  Absence of non-local correlations indicates intercept-resend attack, intrusion 
Fiber Transmission MZI Detectors Time-bin Entanglement Source 
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Quantum Seals QITKAT Results 

•  Entanglement Monitoring: sensing intrusions 

fpga_source_q(n)  visibility_qf(n)  detec8on_ff(n)  alarm_sink_f(n) 

# visibility.py

...

# Source of data

src = gr.vector_source_f(data);


# Compute visibility as (max - min)/(max + min)

vis_window = 120;

vis_step = 30;

vis = qitkat.visibility_ff(vis_window, vis_step);

vissnk = gr.vector_sink_f();


# Compute pdet, pfar

threshold = 1.;

noise = 0.1;

det = qitkat.detection_ff(noise, threshold);


# Sink for running average

snk0 = gr.vector_sink_f();

snk1 = gr.vector_sink_f();
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Output of visibility.py 
running average 120/30 

visibility.py source code 
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Example: Quantum Key Distribution 

•  Quantum Communication Protocol: 
–  Two separated users, Alice and Bob, securely distribute a one-time pad 
–  Consists of 5 distinct phases 

•  Transmission 
•  Basis Announcements 
•  Channel Error Estimate 
•  Information Reconciliation 
•  Privacy Amplification 

–  Many different variants 
•  Interaction/communication 
•  Processing power 
•  Error corrections codes 
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Example: Quantum Key Distribution 

Alice Bob 
Alice selects 4n states;  
Alice makes preparation list 

Alice transmits 4n photons Bob measures 4n photons, 
announces arrival times 

Alice picks c in C1 

Alice sends preparation list Bob receives list 

Bob discards photons 

Alice selects 2n bits to use; 
sends n bits to check 

•  BB84 point-to-point quantum communication (Bennett and Brassard, 1984) 

Bob checks n bits 
Alice computes error rate t 

Alice sends c + n bits 

Alice computes c + C2 in C1 

Bob receives c + n bits 

Bob corrects c + err 

Bob computes c + C2 in C1 

TRANSMISSION 

BASIS 
ANNOUNCEMENTS 

CHANNEL ERROR  
ESTIMATE 

PRIVACY  
AMPLIFICATION 

INFORMATION 
RECONCILLIATION 
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QKD QITKAT Flow Graph 

•  BB84 Server Side (Alice) 

TRANSMISSION 

ANNOUNCEMENTS 

CHANNEL ERROR  
ESTIMATE 

PRIVACY  
AMPLIFICATION 

INFORMATION 
RECONCILLIATION 

fpga_source_q(4n+m)  sendlist_qq(m) 

sendlist_qq(4n) fetchlist_qq(2n) 

sendlist_qq(n) 

sendlist_qq(n) 

coset_qq(n) 

fetchlist_qq(4n) 

ber_qq(n) 

discard_qq(2n) 

randomlist_qq(n)  fetchlist_qq(n) 

encode_qq(n) 

secret key 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QKD QITKAT Flow Graph 

•  BB84 Client Side  (Bob) 

TRANSMISSION 

ANNOUNCEMENTS 

CHANNEL ERROR  
ESTIMATE 

PRIVACY  
AMPLIFICATION 

INFORMATION 
RECONCILLIATION 

fpga_source_q(4n+m)  fetchlist_qq(m) 

fetchlist_qq(4n) discard_qq(2n) 

checkbits_qq(n) 

correct_qq(n) 

coset_qq(n) 

8mesync_qq(m)  sendlist_qq(4n) 

sendlist_qq(2n) 

fetchlist_qq(n)  sendlist_qq(n) 

fetchlist_qq(n) 

secret key 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GNU Radio for 
Quantum Optical Communication 

•  Summary: Developed QITKAT and DEED’s for demonstrating 
software-defined quantum communication protocols 
–  DEED: Single-photon detector integrated with microcontroller 
–  QITKAT: GNU Radio-based toolkit for prototyping quantum protocols 
–  Quantum Optical Seals 
–  Quantum Key Distribution 

•  The Road Ahead:  
–  Demonstrations with DEED’s 
–  Expansion of QITKAT to other protocols 

•  Less interactive QKD protocols 
Travis S. Humble 
Oak Ridge National Laboratory 
865-574-6162 
humblets@ornl.gov 
www.ornl.gov/~hqt 


