
Nonlinear Wave Packet Interferometry
and Molecular State Reconstruction

Travis S. Humble* and Jeffrey A. Cina
Chemistry Department and Oregon Center for Optics

 University of Oregon

Measuring quantum dynamics
with nonlinear optical spectroscopy

*Currently working with Warren Grice
at Oak Ridge National Laboratory



Coherently Controlling Chemistry

Closed-loop, feedback-controlled pulse-shaping techniques can optimize a
pulse spectrum to yield a desired reaction. (Judson and Rabitz, 1993)
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Nonlinear Wave Packet Interferometry

Two-color Nonlinear WPI: Each pulse-pair drives a different electronic transition.

Two pairs of phase-locked pulses:
Cina and Harris 1993, Cina 2000

Two phase-locking angles:
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Measure f-state population.

Initial (g) and intermediate (e) levels are well characterized.

Incomplete information about final ( f ) level.

Akin to four-wave mixing
with heterodyne detection
Groups: Wiersma, Jonas, Fleming, 
             and others



The Electronic Population
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Only one depends on the phase-locking angle difference.
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3rd-order perturbation theory, collecting terms with like phase signature

Phase-cycling measurements: Inverse Fourier transform



Identifying Target and Reference States
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Rotating and vibrating Lithium dimer
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Nonlinear WPI Signal of Li2
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Target State Reconstruction

But what if we don’t know much about the E surface…approximate it!

f = 0.9983

Added 5% Random 
Gaussian Noise to Signal
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and linear transition moment
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Summary and Outlook

Molecular state reconstruction using nonlinear wave packet interferometry (WPI). 

An experimental technique capable of identifying optically-prepared nuclear wave packets.

Simulations of a rotating and vibrating diatomic (Li2) demonstrate accurate reconstructions
of target wave packets, even when the target-state Hamiltonian is unknown.

Future Pursuits

            Strong-field chemistry: Explore non-perturbative matter-field interactions

            Polyatomic systems: Multiple vibrational modes and nonlinear molecules included

            Dissipative systems: A probe of system-bath coupling at the amplitude level?

For more information, please visit my web page:
http://www.ornl.gov/~hqt





The Electronic Amplitude
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State Reconstruction
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The Lithium Dimer (Li2)

Accurate ab initio potentials and transition moments. (Schmidt-Mink et al., 1985)

Recent coherent control experiments use a “launch state”
in the A electronic level. (Ballard et al. 2003)

Rotational and vibrational degrees of freedom.

E state has an anharmonic “shelf” region
   Delocalized, non-rigid-rotor quantum dynamics
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The Rovibrational Target State
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