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Cluster states - multi-particle entangled states and a medium for performing quantum
computations. We consider photonic cluster states.

Fusion gates - an efficient means for preparing photonic cluster states.*

*More efficient means may exist.

Point of the talk - a vignette of cluster states and fusion gates plus my analysis of
how spectral entanglement affects cluster state preparation.

fusion gate



Cluster States

Introduced by Briegel and Raussendorf in Phys. Rev. Lett. 86, 910 (2001)

“Persistent entanglement in arrays of interacting particles”.

Initially, all the (unentangled) qubits are prepared in the diagonal state
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The nearest-neighbor interaction is applied (1d case)
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A distinct class of N-particle entangled states motivated by considering the
d-dimensional spin lattice (quantum Ising model).
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For ϕ = π,

Cluster States
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N = 2, a Bell state:
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N = 3, a 3-particle GHZ state:
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N = 4, not a 4-particle GHZ state:



More generally, a cluster state is a pure quantum state of two-level systems located on a
cluster. The cluster C is a connected subset of a simple cubic lattice.

Cluster States

THE Eigenvalue equation(s)
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The set κ defines the eigenstate. There are       mutually orthogonal eigenstates.
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Two measures of cluster states:

Persistency - minimum number of measurements to completely
    disentangle the system. N/2

Maximal connectedness - any two qubits can be projected into a Bell state.



Cluster States and Quantum Computing

Raussendorf, Browne, and Briegel, Phys. Rev. A 68, 022313 (2003)
“Measurement-based quantum computation on cluster states”

Raussendorf and Briegel, Phys. Rev. Lett. 86, 5188 (2001)
“A one-way quantum computer”

“The cluster states thereby serves as a universal
‘substrate’ for any quantum computation.”.



Fusion Gates

Browne and Ralph, Phys. Rev. Lett. 95, 010501 (2005)
“Resource-efficient linear optical quantum computation”

“…we introduce two ‘fusion’ mechanisms, which allow for the
construction of entangled photonic states, known as cluster states.”

Cluster state are prepared non-deterministically, but efficiently (reduce, reuse, recycle).

In contrast to KLM, no photon-number detectors or elaborate interferometers required. 

“…the interference we make use of is of the simple Hong-Ou-Mandel
‘coincidence’ form, and thus only requires stability over the coherence
length of the photons,…”

Polarization-encoded qubits, initially in biphoton entangled states, are aggregated into
clusters using two types of operations.

Type-I: for making linear chains

Type-II: for making right angles



Type-I Fusion Gate

Start with two entangled pairs
(1,2) and (3,4)

Send 1 and 3 into PBS

Output is in modes 5 and 6

Rotate mode 6 by π/4

Detect polarization in 6

Detection probabilities

0 photons 1/4

1 photon  1/2

2 photons 1/4

2       1        3        4

On a single click, h (+) or v (-),
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On a double click, hh or vv,
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On average, need 4 pairs 
to get a 3-qbit state



Type-I Fusion Gate

Detection probabilities

0 photons 1/4

1 photon  1/2

2 photons 1/4

Next, fuse two 3-qbit states

On a single click, h (+) or v (-),
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0,0,0,0,0 ± 1,1,1,1,1( ) 2

Start with two entangled pairs
(1,2) and (3,4)

Send 1 and 3 into PBS

Output is in modes 5 and 6

Rotate mode 6 by π/4

Detect polarization in 6

On a double click, No click, 

On average, need 16 pairs 
to get to a 5-qbit state
But failure produces Bell states
that are reusable



Type-II Fusion Gate

Redundantly encoded pairs

Output is in modes 5 and 6

Rotate modes 5 and 6 by π/4

Detect polarization in 5 and 6

(1,2) and (3,4)

Rotate modes 1 and 3 by π/4
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Redundant encoding of logical states

Detection probabilities

Entangling 1/2

Unentangling 1/2

h3h4 or v3v4 (1/4)
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These detection schemes do not
require photon number resolution



Type-II Fusion Gate

Redundantly encoded pairs

Output is in modes 5 and 6

Rotate modes 5 and 6 by π/4

Detect polarization in 5 and 6

(1,2) and (3,4)

Rotate modes 1 and 3 by π/4
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Redundant encoding of logical states

Detection probabilities

Entangling 1/2

Unentangling 1/2

Detachable qubits measured

Entangling (1/2) Unentangling (1/2)



Type-I Fusion Gate with Multi-mode Photons
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Type-I Fusion Gate with Multi-mode Photons
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Single-photon detection event, density matrix of remaining three qubits

Reduced density matrix of the polarization state (trace over frequencies)
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Type-I Fusion Gate with Multi-mode Photons

Two expected cases:

1.
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Type-I Fusion Gate with Multi-mode Photons

2.
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σ and σ′ are marginal bandwidths, ρ is the linear correlation, Δτ is temporal delay.


