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We describe the use of quantum-mechanically entangled photons to sense both intrusions and attempts to 
spoof sensor receivers. We present theoretical arguments and experimental results that demonstrate the 
principle of entanglement-based detection for a sensor derived from polarization-entangled photon pairs.
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Intercept-resend Attack (Classical)


Motivation: A laser tripwire

•  Transmit a beam across �

a protected boundary


•  Measure the state of transmitted beam

Classically defined EM field


•  Changes in beam properties signal intrusion


Problem: Classical information cloned.

•  Measure the state of transmitted beam


Classically defined EM field


•  Resend a perfect replica.


•  How do you tell the difference?


Similar situations:

•  Fiber communication, containment and surveillance, locks, seals. 

Source 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Solution: The no-cloning principle and entanglement

•  No cloning: An arbitrary quantum of information cannot be reliably copied.


•  Entanglement: Non-local correlations exist between measurement outcomes.


Transmit, but verify

•  Entangled photon pair source distributes patrol and guard photons: 


Patrol photon traverses boundary; Guard photon remains secured.


•  Receivers measure local observables, communicate outcome to monitor (alarm)


•  Monitor validates transmission of entangled photons

Monitor quantifies entanglement


Entanglement-based Detection
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Polarization correlations

•  Local measurements made at patrol and guard receivers, polarization analyzers.


•  Basis-dependent results – basis choice coordinated by the monitor


Polarization-entangled Photon Pairs


SPDC 
source  Patrol Photon 

SPD 
Guard Photon 

SPD 

PBS 

SPD 

SPD 

PBS 

λ/2 λ/2 

Statistics Observed


ϕPG = 1
2

hP , vG + vP ,hG( )
RC
h/v θP ,θG( ) = sin2 θG +θP( )

RC
+/– θP ,θG( ) = sin2 θG +θP + π / 2( )

h / v basis:


+ / – basis:


State Prepared


V = RC
MAX − RC

MIN

RC
MAX + RC

MINVisibility quantifies entanglement 
V +/– = 1

V h/v = 1

h / v basis:


+ / – basis:
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Binary Decision Problem

•  Discriminate between two hypotheses


Gaussian random noise with zero mean and variance σ 2


•  Probability for detection and false alarm


                      vs.


Unentangled 
 
 
    Entangled


Quantifying Sensor Performance


H 0 : si = V0 + n H1 : si = V1 + nV0 = 0 V1 = 1

Qd = erfc x1( ) Q0 = erfc x0( )

erfc y( ) ≡ 2π( )−1/2 exp −x2 / 2⎡⎣ ⎤⎦ dx
y

∞

∫

d = M 1/2 V1 −V0( ) /σDisplacement


x0 =
lnλ
d

+ d
2

x1 =
lnλ
2

− d
2

For threshold λ and M measurements


σ = 1 / 4
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Experiment to Simulate Intrusion


Setup

•  Entanglement source: type-II SPDC cross-ring configuration 


1-mm BBO cw-pumped at 351.1 nm, degenerate down conversion at 702 nm

Patrol and guard photons travel 60 cm to polarization analyzers


•  Entanglement detection: polarization-correlation visibility

Polarization analyzers for h/v and +/– bases, half-wave plate fixes basis

Single-photon detectors collect transmitted photons

Coincidence counter monitors statistics, 1-s collection windows


BBO Beta Barium Borate

PBS   Polarization Beam Splitter

λ/2    Half-wave plate


basis
 count rate
 visibility


h / v
 188 pairs/sec
 0.98±0.02


+ / –
  35 pairs/sec
 0.91±0.08
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Experiment to Simulate Intrusion


Results

•  Acquired two time-series to simulate an intrusion


1.  Visibility of entangled photons in +/– basis (normal)

2.  Visibility of unentanlged photons in +/– basis (intrusion)


•  Concatenated the times series to simulate an intrusion
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Long-range Performance


Extrapolate the results

•  Losses from atmospheric attenuation


Assume error scales as (count rate)-1/2 and count rate scales with range

Attenuation rates from 0.2 dB/km (clear) to 20 dB/km (fog) at 800 nm


•  Detection probability Qd for fixed false-alarm rate Q0 = 10-3


•  0.2 dB/km loss, Qd > 0.9999 to 3 km. 


•  20 dB/km loss, Qd > 0.999 to 120 m.
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Intercept-resend Attack (Quantum)


Quantum teleportation avoids cloning, preserves entanglement


•  Intruder can employ quantum techniques to avoid (classical) information

Quantum teleportation of patrol photon state transferred to doppelganger photon.


•  Two caveats

1.  Required Bell-state measurement has probabilistic success, probabilistic outcome.


2.  Required local corrective action delays transmitted doppelganger
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Impair the quantum teleportation attack


•  Engineer patrol-guard state to exhibit good visibility but to teleport poorly

Spectrally multimode, polarization-entangled photons


Joint spectral probability amplitudes are highly entangled (Schmidt modes)


•  Polarization-correlation visibility


For very large K, the visibility vanishes after the intruder attempts teleportation.


Intercept-resend Counterattack (Quantum)


ϕPG = 1
2

dω d ′ω f ω , ′ω( ) hP ω( ), vG ′ω( ) + g ω , ′ω( ) vP ω( ),hG ′ω( )⎡⎣ ⎤⎦∫∫

f ω , ′ω( ) = λn
1/2un ω( )vn ′ω( )

n
∑ K −1 = λn

2

n
∑ K measures entanglement


V = 1

V = K −1

Before teleportation attack


After teleportation attack
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Concluding Remarks


·  A Quantum Fence

•  Detects intruders and their attempts to spoof the sensor


•  Monitors the non-local correlations measured by patrol and guard receivers


•  Theoretical and experimental demonstrations of sensor performance

High probability of detection at low false-alarm rate for a very modest experiment


•  Exploits the larger biphoton Hilbert space to ‘impair’ teleportation


•  Does not need to be free space; fiber-based applications also possible. 


•  Other degrees of freedom of interest.
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