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Teleportation of a Single-Photon State 
The status quo is teleporting a single degree of freedom, e.g., polarization. 

But consider teleportation of the complete quantum state,  i.e., 
simultaneous teleportation of spectral, angular, and polarization states. 

  Each degree of freedom encodes quantum information; 

  The complete ‘identity’ of the photon is teleported, not a reduced representation; 

  All modes are teleported, side steps poor interference from multimode effects; 

  Every photon is a good photon, side steps filtering to improve source purity. 

How? Synthesize individual teleportation procedures into a single protocol 
that simultaneously teleports each degree of freedom. 

  Spectral, transverse-spatial (momentum), and polarization procedures. 

  Simultaneous teleportation requires hyper-entanglement in these dofs. 

  A common platform is two-photon up-conversion; may be alternatives. 

 
ρ     vs.     ρpol. = Trspec.,spat. ρ[ ]
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Spectral Teleportation 
Transfer the spectral amplitude of one photon to another photon. 

  Encode quantum information into the spectral state of photon 1 

  Use a spectrally entangled photon pair (2, 3) to mediate teleportation 

  Spectral entanglement is quantified using the Schmidt decomposition  
of the joint spectral probability amplitude 
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Spectral Teleportation 
Implemented using down-conversion followed by up-conversion 

  Prepare state of photon 1, prepare spectrally entangled pair 2-3 using SPDC. 

  Up-convert photons 1 and 2 to generate photon 4, e.g., using SFG. 

  Measure up-converted photon w.r.t frequency, i.e., spectral resolution at the detector. 

  Apply measurement-dependent spectral shift Δ, e.g., using an AOM. 

  Spectral state of photon 3 after spectral teleportation 
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Spectral Teleportation with a cw-pump 

For a monochromatic pump at ω0, 

  Joint spectral amplitude is infinitely entangled  

  State of photon 3 prior to spectral shift 

        (Ω ≈ ω0  and  Δ ≈ 0)


  Apply spectral shift, e.g.,  using acoustic optic modulator driven at Δ 

f ω , ′ω( )→δ ω0 −ω − ′ω( )
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See S. P. Walborn, D. S. Ether, R. L. de Matos Filho, and N. Zagury,  
"Quantum teleportation of the angular spectrum of a single-photon field”,  
Phys. Rev. A 76, 033801 (2007). 

How does it work? 
  Prepare angular spectrum of photon 1, spatially entangled photons 2 and 3; 

  Up-convert photon 1 and 2 into photon 4, measure with spatial resolution. 

Transverse-spatial (momentum) Teleportation 

ψ 1 = u q( ) q1 dq∫ ϕ23 = dq d ′q∫ ϑ q, ′q( ) q2 , ′q3∫
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Polarization Teleportation 
See Y.-H. Kim, S. P. Kulik, and Y. Shih, 
"Quantum teleportation of a polarization state with a complete Bell state measurement,”  
Phys. Rev. Lett. 86, 1370-1373 (2001). 

  A complete Bell-state measurement using nonlinear optics; 

  Type-I and type-II SFG (up-conversion) differentiates between the Bell states. 

ψ 1 = a H1 + b V1 ϕ23 =
1
2
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Simultaneous Teleportation 

Integrate all three ‘pieces’; integration based on up-conversion. 

  Overlay spectral, transverse-spatial, and polarization teleportation setups; 

  A single SFG event initiates all three teleportation procedures; 

  The frequency, momentum, and polarization of the up-converted photon will be 
measured. 
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Simultaneous Teleportation Fidelity  
For separable states 
  When the input state and hyper-entangled state are both separable in the physical degrees 

of freedom, e.g.,  

then the total fidelity is the product of the component fidelities: 

 Hence very high component fidelities are needed to get high total fidelity. Alternatively, 
good spectral teleportation does not need good polarization teleportation. 

For cross-correlated states 
  When the input state or the hyper-entangled state are cross-correlated in degrees of 

freedom, e.g., as entanglement between frequency and polarization, then the fidelity 
must be computed using that conjoined Hilbert space. 

  Open questions: Can cross-correlated hyper-entanglemed states mediate teleportation 
fidelities as good or better than their separable counterparts? Does it depend on the  
input state? 

Ftotal = FspecFspatFpol.

ψ 1 = ψ 1
spec ⊗ ψ 1

spat ⊗ ψ 1
pol ϕ23 = ϕ23

spec ⊗ ϕ23
spat ⊗ ϕ23

pol
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Simultaneous Teleportation 

Why? 

•  To use more Hilbert space – it’s already there, so we might as well use it; 

•  To encode more information per photon – increase information capacities; 

•  To relay or distribute large alphabet QKD symbols; 

•  To perform hyper-entanglement swapping; 

•  To teleport more than one qubit in only one photon  

•  like in an intermediate quantum computational state 

ψ 1 ≠ ψ 1
spec. ψ 1

spat. ψ 1
pol.
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Summary 

  We have proposed the idea of simultaneous teleportation of the spectral, 
transverse-spatial, and polarization states of a single photon. 

  We have presented a procedure for performing spectral teleportation that uses 
up conversion of a photon pair. 

  We have incorporated previous schemes for teleportation of polarization and 
transverse-spatial states. 

  We have synthesized these three schemes together to form a single procedure 
for implementing total teleportation. 

  We expect simultaneous teleportation of multiple dofs to further expand the 
alphabets accessible for photon-based quantum communications and 
computation. 
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