
ar
X

iv
:1

21
0.

83
95

v1
 [

qu
an

t-
ph

]
31

 O
ct

 2
01

2
C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 1

Adiabatic Quantum Programming:
Minor Embedding With Hard Faults

Christine Klymko*, Blair D. Sullivan†, and Travis S. Humble†

Abstract—Adiabatic quantum programming defines the time-
dependent mapping of a quantum algorithm into an underlying
hardware or logical fabric. An essential step is embedding
problem-specific information into the quantum logical fabric.
We present algorithms for embedding arbitrary instances ofthe
adiabatic quantum optimization algorithm into a square lattice
of specialized unit cells. These methods extend with fabricgrowth
while scaling linearly in time and quadratically in footpri nt. We
also provide methods for handling hard faults in the logical
fabric without invoking approximations to the original pro blem,
and illustrate their versatility through numerical studie s of
embeddabilty versus fault rates in square lattices of complete
bipartite unit cells. The studies show these algorithms aremore
resilient to faulty fabrics than naive embedding approaches, a
feature which should prove useful in benchmarking the adiabatic
quantum optimization algorithm on existing faulty hardwar e.

Index Terms—quantum computing, adiabatic quantum opti-
mization, graph embedding, fault-tolerant computing

I. I NTRODUCTION

Adiabatic quantum optimization (AQO) applies the princi-
ples of quantum computing to solve unconstrained optimiza-
tion problems. In particular, the AQO algorithm interpolates
between two quantum logical Hamiltonians in order to adia-
batically transform an initial quantum state to a computational
solution state [16]. This specialized application of adiabatic
quantum computing has been used to solve a variety of
problems including, for example, instances of satisfiability
(SAT) [15] and exact cover [16], finding Ramsey numbers
[18], classifying binary images [21], training classifiersfor
machine learning [23] and finding the lowest free-energy
configuration in folded proteins [22].

Benchmarking the efficiency of the AQO algorithm is
currently of significant interest in quantum computer science.
Whereas some studies of optimization problems have uncov-
ered runtimes that scale polynomially in problem size, others
suggest worst-case exponential behavior, or even trappingin
local minima [2]. Interpreting these analyses are difficult,
in part, because of the manner in which instance-specific
information alters the implementation of the algorithm, i.e.,
programming. As emphasized by others [2], [11], [12], [15],
choices made in programming the AQO algorithm greatly
impact its runtime and, consequently, the observed scaling
behavior.

*Department of Mathematics and Computer Science, Emory University,
Atlanta, Georgia 30322, USA (cklymko@emory.edu).

†Computer Science and Mathematics Division, Oak Ridge National Lab-
oratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA (sulli-
vanb@ornl.gov, humblets@ornl.gov).

Benchmarking adiabatic algorithms is further complicated
when the design of the logical Hamiltonians is constrained.
Because the AQO algorithm uses a reduction of the classical
optimization problem to a quantum logical representation,
i.e., a Hamiltonian, any constraints placed on this underlying
logical fabric can only limit performance. Understanding the
impact of the logical fabric is especially pertinent since
existing AQO hardware supports a specific topology over a
relatively modest number of qubits [14], [19].

Adiabatic quantum programming has been described pre-
viously as requiring two steps: parameter setting [9] and
minor embedding [10]. Minor embedding, in particular, uses
explicit information about the logical fabric as well as the
problem to generate the implementation of the AQO algorithm.
Choi has demonstrated how an arbitrary input graph can be
minor embedded within one type of highly regular fabric, a
square lattice ofK4,4’s, complete bipartite graphs with eight
vertices. In the current paper, we also present algorithms
for minor embedding into additional logical fabrics, namely,
square lattices ofKc,c with c ≥ 1. We present an attempt at
a brute force embedding via graph isomorphism in maximal
minors (henceforth called maximal minor embedding) as well
as an algorithm for complete-graph embedding. We compare
these algorithms in terms of their complexity as well as the
scaling of the embedding result.

Notwithstanding algorithms for the unit-cell lattice, an open
question in adiabatic quantum programming is how to handle
fabrics containing randomized hard faults. Hard faults refer to
defects in the logical fabric that compromise its regularity. As
their locations are random, the embedding algorithm must han-
dle a variety of target graphs. In the current paper, we present
methods for minor embedding that use heuristics to adapt to
random faults in the logical fabric (hardware). We analyze al-
gorithmic performance in terms of the maximum embeddable
complete graph obtained using numerical simulations. These
studies quantify the impact of faults on the required logical
footprint and provide performance expectations for hard fault-
tolerant adiabatic quantum programming.

The paper is organized as follow: Sec. II defines the role of
minor embedding in adiabatic quantum optimization; Sec. III
briefly reviews previous work; Sec IV defines nomenclature
and presents implications of treewidth on graph embeddability;
Sec. V recounts properties of the unit-cell lattice; Sec. VI
determines treewidth for hardware graphsF ; Sec. VII presents
embedding of a complete graph inF ; Sec. VIII presents two
algorithms for embedding with hard faults and numerical tests
of these algorithms using randomized fault placement; finally,
Sec. IX presents our conclusions.

http://arxiv.org/abs/1210.8395v1

C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 2

II. A DIABATIC QUANTUM OPTIMIZATION

The AQO algorithm is based on the reduction of an uncon-
strained optimization problem to a quantum logical Hamil-
tonian that is diagonal in the computational basis [16]. The
reduction most naturally begins in terms of binary variables
that can then be mapped to the qubits of a logical Hamiltonian
HF . For AQO, the problem Hamiltonian takes the form

HF =
∑

i∈VF

αiZi +
∑

(i,j)∈EF

βi,jZiZj, (1)

whereαi is the weight on thei-th qubit,βi,j is the coupling
between qubitsi and j, and the setsVF andEF denote the
vertices and edges of the graphF describing the logical fabric;
a more formal definition of the hardware graph is found in
Sec. IV. In this setting, the PauliZi operator defines the
computational basis for thei-th qubit.

The 2-local form of Eq. (1) restricts the optimization
problems that can be mapped directly intoHF . Specifically,
any binary optimization problem can be recast to have at most
quadratic interactions, i.e., as a quadratic unconstrained binary
optimization (QUBO) problem. This reduction can be done
by, e.g., substituting the product of two variables with a new
one and adding a corresponding penalty term [8]. The AQO
program input is therefore defined as the QUBO problem

arg min
x∈Bn

x
T
Px, (2)

wherex is a vector ofn binary variables andP is ann-by-n
symmetric real-valued matrix.

In programming the QUBO problem, the interactions be-
tween variables represented byP must be mapped into the
quantum logical fabric. We interpretP as a weighted version of
the adjacency matrix of an input (problem) graphP describing
these dependencies. Hence, programming the AQO algorithm
requires embeddingP in the graphF representing the logical
fabric. We defer the formal definition of minor embedding
to Sec. II.B, but it suffices to say that this yields a graph
F ∗ = (V ∗, E∗) contained within the logical fabric, over which
a HamiltonianHF∗ is defined as

HF∗ =
∑

i∈V ∗

α∗

iZi +
∑

(i,j)∈E∗

β∗

i,jZiZj (3)

with α∗

i and β∗

i,j the corresponding weights and couplings.
Setting these parameters requires both the matrixP and the
embedding into the logical fabric specified byF ∗ [9].

The program for the AQO algorithm is then expressed by
the time-dependent Hamiltonian

H(t;T) = A(t;T)HI +B(t;T)HF∗ , (4)

whereA(t) andB(t) control the time-dependent interpolation
between an initial HamiltonianHI and the final embedded
problem HamiltonianHF∗ . The timeT represents the anneal-
ing time of the algorithm, such thatH(T) = HF∗ . Running
the programH(t) requires initializing the quantum register
state to be a ground state ofH(0). This is followed by
annealing to the timeT after which the register is measured.
Provided the conditions of the adiabatic theorem are met,
the state of the register atT will be a ground state of

HF∗ and a solution to the QUBO problem. In order to meet
these conditions,T must scale inversely with the minimum
spectral gap ofH(t) [16]. The gap, of course, depends on
the programmed implementation and we may expect that the
choice of embedding plays a role in satisfying this condition.

III. PREVIOUS RELATED WORK

In [10], Choi described a hardware graph for minor em-
bedding a large clique,Kn, in a limited number of qubits.
This layout was called TRIAD. Choi also discussed using
the TRIAD scheme on a 128 qubit hardware made up of a
4 × 4 grid of K4,4 cells to achieve the embedding ofK17.
We note the figure in [10] corresponding to this description in
that paper only embeds aK16, but it is possible to embedK17

using the TRIAD scheme. It is also worth noting that while
the text claimed a requirement of only 6 physical vertices
for each logical qubit, this is not achievable with the given
hardware (and is not realized in the example given). Our work
results in the same embedding forK17 on the 4 × 4 grid,
but then extends the algorithm to work on a large family
of related logical fabrics. We also provide a straightforward
algorithm for extending an embedding from ann× n grid to
an(n+1)×(n+1) grid of Kc,c cells. This paper additionally
determines the treewidth of the family of fabric graphs, which
enables better screening of QUBOs for feasible embeddability.
Perhaps most importantly, prior work did not consider the case
of faulty fabric, which we address with two algorithms and a
set of simulations to demonstrate performance.

IV. GRAPH M INORS AND TREE-DECOMPOSITION

A graph G = (V,E) is a set of verticesV and a set of
edgesE formed by unordered pairs of vertices. In this paper,
all graphs are finite, simple (no loops or multiple edges), and
undirected. A graphH = (W,F) is asubgraphof G, denoted
H ⊆ G, if W ⊆ V andF ⊆ E.

A path in G = (V,E) is a sequence of vertices
v1, v2, . . . , vk such that for1 ≤ i < k, (vi, vi+1) ∈ E. A cycle
is a path wherev1 = vk. If there are no repeated vertices, the
path (cycle) is asimple path (cycle).

A graph isconnectedif there is a path fromu to v for every
pair of distinct verticesu, v in V . A tree is a connected graph
which does not contain any simple cycles as subgraphs. We
say a graphH is a subtreeof G if H ⊆ G andH is a tree.

Programming adiabatic quantum computing hardware to
solve a specific problem requires embedding aproblem graph
P = (VP , EP) representing the QUBO problem (elements of
VP correspond to QUBO variables andEP = {(i, j)| Pi,j 6=
0}) into a hardware graphF = (VF , EF) whose vertices
representing the qubits and edges are determined by couplings
in the logical fabric. In some cases, this can be done in a one-
to-one manner through subgraph embedding.

Definition 1: A subgraph embeddingof P into F is a
mappingf : VP → VF such that:

• each vertex inVP is mapped to a unique vertex inVF .
• if (u, v) ∈ EP , then(f(u), f(v)) ∈ EF .

Note that if such anf exists,P is a subgraphof F , P ⊆ F .

C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 3

However, due to design constraints on the underlying logical
fabric, in order to consider a large class of QUBO problems,
P will need to be embedded intoF as a minor.

Definition 2: A minor embeddingof P in F is defined by
a mappingφ : VP → VF such that:

• each vertexv in VP is mapped to the vertex set of a
connected subtreeTv of F .

• if (u, v) ∈ EP , then there existiu, iv ∈ VF such that
iu ∈ Tu, iv ∈ Tv, and(iu, iv) ∈ EF .

If such a mappingφ exists, thenP is minor-embeddablein F

or P is a minor of F , written P ≤m F .
Equivalently,P is minor-embeddable inF if P can be

obtained fromF by a series of edge deletions and contractions
(see [13] for more information on graph minors). Note that
every subgraph embedding is also a minor embedding (since
f(v) is a single node subtree ofF). Furthermore, the property
of being a minor is transitive:G ≤m F andP ≤m G implies
P ≤m F .

Closely related to the idea of a graph minor is the concept
of a tree decomposition, a combinatorial way of measuring
how “tree-like” a graph is. Many early results on graph minors
were first proved for trees [13]. Additionally, certain problems
which have exponential complexity on arbitrary graphs have
been shown to have polynomial complexity on graphs of
bounded treewidth. More importantly, certain properties of
tree decompositions, including upper bounds on treewidth (the
definition of which can be found below), are closed under
the taking of minors. Understanding the tree decompositionof
the hardware graph gives us information about the properties
of the minors the graph has and, thus, what sort of QUBO
problems can be embedded.

Definition 3: Given a graphG = (V,E) let T = (I,D) be
a tree, andV = {Vt}i∈I be a family of vertex sets (also called
bags) with Vi ⊆ V indexed by the elements ofI. The pair
(T,V) forms atree decompositionof G if the following hold:

1) V = ∪i∈IVi.
2) if (u, v) ∈ E, then there existsi ∈ I such that{u, v} ⊆

Vi.
3) for i1, i2, i3 ∈ I, if i3 lies on the path inT between

i1 and i2, thenVi1 ∩ Vi2 ⊆ Vi3 . Equivalently, for any
vertexv ∈ V , {i : v ∈ Vi} forms a connected subtree
of T .

To avoid confusion, the elements ofV are referred to as
the vertices of G and the elements ofI as the nodesof
T . The width of a tree decomposition(T,V) is given by
maxi∈I{|Vi| − 1}. The treewidth τ(G) of a graphG is the
minimum width over all tree decompositions ofG. Note that
the width of any tree decomposition ofG gives an upper
bound onτ(G). The following lemmas are well-known in
graph theory and are useful for using treewidth to analyze
the quantum hardware graphs described in Sec. V.

Lemma 1: If H is a minor of G (i.e. H is minor-
embeddable inG), thenτ(H) ≤ τ(G).

Fig. 1. A 4×4 array ofK4,4 unit cells coupled as in the hardware graph
from [19].

Thus, given the treewidth of a logical fabricF , it is possible
to automatically narrow down the class of QUBO problems for
which it may be possible to find an embedding. The treewidth
of several classic families of graphs is known exactly:

Lemma 2:Let Kn be the complete graph onn vertices and
Kn,n the complete bipartite graph on2n vertices.

1) τ(Kn) = n− 1.
2) τ(Kn,n) = n.
3) The treewidth of ann×m 2-D planar grid is given by

min{m,n}.

For more information on tree decomposition and graph
minors (including the proofs of the above lemmas) see [5],
chapter 12 of [13], and [17].

V. DESCRIPTION OFHARDWARE GRAPH

In this section, we review the hardware graph that has been
the basis for several proposed or demonstrated experimental
studies [4], [14], [18], [22]. The building blocks of this graph
are 8-qubit unit cells whose internal couplings formK4,4 [19].
Unit cells are tiled together with each qubit on the left halfof
a K4,4 connected to its image in the cells directly above and
below, and each qubit on the right half of theK4,4 connected
to its image in the cells directly to the left and right. A
representation of the graph formed by sixteen cells is shown
in Fig. 1. Note that due to the way the qubits are physically
connected [19], when there is a failure, it will be the failure of
a qubit and not an individual coupler. In terms of the hardware
graph, this means vertices (and all their adjacent edges) will
fail, not individual edges.

In our analysis, we consider extensions of the unit cell
design to include an increase in the number of qubits forming
a cell. We also parameterize the hardware fabric to allow

C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 4

for expanding the grid of unit cells. In general, our results
are applicable in the setting where cells consist of2c qubits
forming aKc,c and are attached to form anm × m grid in
the same manner as described above. We denote a hardware
graph of this form asF (m, c). For example, the hardware
graph shown in Fig. 1 corresponds toF (4, 4).

For ease of reference, we define a labeling onVF (m,c). First,
we number a single cell: the vertices on the left half of the
Kc,c as1, 2, . . . , c from top to bottom, and the vertices on the
right half of theKc,c as c + 1, c+ 2, . . . , 2c, again from top
to bottom. See Fig. 5(a) for an example of this numbering in
a K4,4 cell. Each vertex inVF (m,c) is then given a label of
the formvda,b where(a, b) is the (row, column) position of the
cell containing the vertex in them×m grid - with cell (1,1)
in the upper left corner - andd corresponds to the position of
the vertex inside the individual cell, as described above.

VI. T REEWIDTH OF THEHARDWARE GRAPH

As seen in Lemma 1, if the treewidth of the hardware graph
is known, it can be used to a priori rule out the possibility of
embedding certain classes of QUBOs.

However, in general, determining the treewidth of an
arbitrary graphG is NP-complete [6], [7]. In [6], Bodlaender
describes a linear time algorithm to determine whether a
graph has treewidth at mostk, for a given fixedk. However,
the constants for the algorithm are extremely large (and
grow exponentially withk), making it impractical for most
graphs, including the hardware graphs of interest here. Amir
describes a polynomial-time algorithm which finds a factor-
O(log(τ(G))) approximation of the treewidth of a graphG
[3], however we have tighter bounds for the treewidth of the
hardware graphF (m, c), as presented below.

Theorem 1:Let F (m, c) be a hardware graph made up of
an m × m array of cells, attached as described in Sec. V,
where each cell contains2c qubits connected to form aKc,c.
Then,

1) the treewidth of a single cell (m = 1) is c.
2) cm ≤ τ(F (m, c)) ≤ cm+ c− 1 for m ≥ 2.

Corollary 1: Any QUBO problem P of treewidth
τ(P) ≥ cm + c is not minor embeddable in the hardware
graphF (m, c).

Corollary 2: Any QUBO problem which contains a
Kcm+c+1 (either as a subgraph or as a minor) cannot be
embedded into the hardware graphF (m, c).

Corollary 3: Any QUBO problem which contains a
c(m+1)× c(m+1) grid (either as a subgraph or as a minor)
cannot be embedded into the hardware graphF (m, c).

Thus, even though the hardware graph described in
Corollary 2 contains2cm2 qubits, aKcm+c+1, which would
need only c(m + 1) + 1 logical qubits (if they were all
coupled in the fabric), is shown to not be embeddable, due to
its treewidth.

Proof of Thm. 1: The proof of (1) follows directly from
Lemma 2. Furthermore, the lower bound of (2) follows from
using the algorithm in Sec. VII-B to embed aKcm+1 into G,
since by Lemma 2,τ(Kcm+1) = cm, and Lemma 1 implies

cm = τ(Kcm+1) ≤ τ(F (m, c)).

The upper bound is slightly harder to compute. The proof
consists of constructing a tree decomposition ofF (m, c) with
width cm+ c− 1. Then, since the treewidth ofF (m, c) is the
minimum width over all tree decompositions,cm + c − 1 is
an upper bound.

To form a tree decomposition(T,V) of width
cm + c − 1, we start withV1 = {vc+1

1,1 , vc+2
1,1 , . . . , v2c1,1, v

c+1
1,2 ,

vc+2
1,2 , . . . , v2c1,2, v

c+1
1,m , vc+2

1,m , . . . , v2c1,m, v11,1, v
2
1,1, . . . , v

c
1,1}.

That is, V1 contains the right half of every cell in the first
column of the grid plus the left half of the(1, 1) cell.

The idea is to create all other bags of the decomposition by
sequentially dropping/adding the left/right halves of individual
cells. Each new bag will be formed by removing one of
these sets of four vertices from an existing bag, and adding a
(different) set of four - specifically one that is not yet contained
in any existing bag. The large amount of overlap between
the bags is to ensure that the third requirement of Def. 3 is
satisfied.

The bagsV2, . . . , Vm of the decomposition are formed by
dropping the right sides of cells in the first column and
picking up the left sides, one-by-one. That is,Vi contains
the right half of cellsi + 1 throughm in the first column,
the left half of cells 1 throughi − 1, and all of cell i.
More formally, for 2 ≤ i ≤ m, Vi = {vc+1

i,1 , . . . , v2ci,1,

. . . , vc+1
m,1 , . . . , v

2c
m,1, . . . , v

1
1,1, . . . , v

c
1,1, . . . , v

1
i,1, . . . , v

c
i,1}. In

the tree being formed,T , the firstm nodes form a path.
The nextm bags are formed by (again) starting withV1 but

adding the right hand sides of the cells in the second column:
for Vm+1 we drop the remaining four vertices in the left half
of the first column and add the top four in the right half of
the second; forVm+i with 2 ≤ i ≤ m, we addvc+1

2,i , . . . , v2c2,i,
and removevc+1

1,i−1, . . . , v
2c
1,i−1. BagV2m+1 is then formed by

dropping the last four vertices from the first column and adding
the four left vertices of the top cell in the second column. Note
thatV2m+1 is the exact same “shape” asV1, only one column
over. There is an edge between node 1 and nodem+1 in T ,
then nodesm+ 2 through2m continue the path.

At this point, the tree decomposition branches, with two new
bags attached toV2m+1 (analogous toV1). The first isV2m+2,
which starts the branch consisting ofV2m+2, . . . , V3m, with
V2m+i dropping vc+1

2,i−1, . . . v
2c
2,i−1 and addingv12,i, . . . v

c
2,i.

Note this is equivalent to howV1, . . . , Vm were created.
Also attached toV2m+1 is V3m+1, formed by removing the
four righthand vertices from the top cell and adding the
top four vertices from the right half of the third column.
This branch continues to formV3m+2, . . . , V4m analogously
to Vm+2, . . . , V2m, so thatV4m has the same shape asV2m,
only one column over.

The remainder of the tree decomposition is created starting
from V4m+1 (formed analogously toV2m+1), until each col-
umn has been covered with a set of bags which are formed

C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 5

V1

V2

V3

(a)

V4

V5

V6

(b)

V7

V8

V9

(c)

V10

V11

V12

(d)

Fig. 2. The first 12 bags of the tree decomposition of a3 × 3 cell described in the proof of Thm. 1. The last 3 bags (not shown) have the same layout as
the bags in (c), moved to the third column of cells.

like V1, . . . , Vm. This generates a total of2m2 − m bags,
each containing exactlycm+ c vertices ofF (m, c). A small
example of the beginning of this process on a3 × 3 grid of
K4,4 cells can be seen in Fig. 2. The tree associated with this
tree decomposition can be found in Fig. 3(b), along with the
trees associated with the tree decompositions of the2× 2 and
the 4 × 4 grids in Fig. 3(a) and 3(c) respectively. Note that
these three trees have the same general shape, with only the
length of their branches changing, dependent onm.

We now show why(T,V) satisfies the three properties of a
tree decomposition from Def. 3:

1) every vertex ofF (m, c) is in at least one bag.
2) every edge is contained in at least one bag. This can be

verified by noticing that every cell is fully contained
in exactly one bag, covering all edges withinKc,c.
Additionally, for each column, there is a bag containing
all of the left side vertices of the cells in the column,
and thus all the vertical intercell edges in the column.
Finally, as the bags move from one column to the next,
the right halves of each pair of horizontally adjacent
cells are contained in a unique bag, thus covering all
horizontal intercell edges.

C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 6

1

2

3 4 5

6

(a)

1

2

4

3

5 6 7

8

10

9

11 12 13

14

15

(b)

1

2

5

3

4

6 7 8 9

10

13

11

12

14 15 16 17

18

21

19

20

22 23 24 25

26

27

28

(c)

Fig. 3. Trees of the tree decompositions of the hardware graph with a grid
of size (a)2×2, (b) 3×3, and (c)4×4 which satisfy the upper bound from
Thm. 1.

3) Let v be an arbitrary vertex inF (m, c) and letVk be the
lowest index bag in whichv appears. Then, as we walk
alongT starting at nodek and traveling in the direction
of increasing node labels, oncev is dropped from the
bag (on any branch) it is never picked up again. Thus,
the nodes ofT which correspond to bags that containv
form a connected subtree ofT .

Since(T,V) is a tree decomposition ofF (m, c) where every
bag containscm+ c vertices, it has widthcm+ c− 1, so

τ(F (m, c)) ≤ cm+ c− 1.

While these bounds are not tight for all choices ofc, they
are best possible whenc = 1, ascm = cm+ c− 1 = m.

Determining bounds on the treewidth of the hardware graph
is useful because it allows us to automatically dismiss the
possibility of embedding certain classes of QUBO problems,
members of which we might otherwise have spent considerable
time attempting to embed.

If lower bounds on the treewidth of the QUBO problems
are known, these can be combined with the bounds on the
treewidth of the hardware graph to rule out even more QUBO
problems. There are many graph-theoretic methods for finding
lower bounds on treewidth, which use various graph properties
including smallest degree, second smallest degree, girth,and
spectral radius. Applying lower bounds to classes of QUBO
problems is beyond the scope of this paper, but an overview
of common lower-bound algorithms can be found in [7].

VII. E MBEDDING INTO THE HARDWARE GRAPH

In general, determining whether an arbitrary graphH can
be minor-embedded into an arbitrary fabricF is NP-complete.
The best-known general algorithms assume a fixed input
graph H [1], which is the opposite of the situation in the
quantum programming problem. Additionally, although there
are polynomial time recognition algorithms for the existence
of an embedding, they do not produce the embedding and,

in all cases, the hidden constants are prohibitively large [6],
[25]. Algorithms which allowH to vary along withF are no
longer polynomial [1], [27] or are limited to specific classes
of graphs which do not include the hardware graphs described
in Sec. V [20].

A. Maximal Minor Embedding

Given a fabricF on n vertices, the method for finding and
embedding every possible minor-embeddable problem graph
P involves solving an NP-complete problem. First, all the
minors ofF must be found and, second, we must determine
whetherP is a subgraph of any of them. The first step can be
done when fabric is defined but even once all the minors are
known, every new problem graphP must be checked against
them for subgraph containment, which is still NP-complete on
arbitrary inputs.

The brute force algorithm for finding all possible minors
of F involves finding the maximal minors: a set of minors
of F such that every other minor is a subgraph of one of
the maximal minors. The first maximal minor isF itself.
Subsequent maximal minors are found by contracting an edge
in F to form a minor and checking it for subgraph containment
against the list of maximal minors. If it is not a subgraph of
any of these, it is added to the list. Once every minor of size
n− 1 is found (i.e. every possible edge contraction ofF has
been tested), the process is repeated by contracting edges in
these minors. The process is completed at stepk when no new
maximal minors of sizen− k are found. An example of a set
of maximal minors can be found in Fig. 4, which shows the
four distinct maximal minors ofF (4, 4).

Conceptually, maximal minor embedding is very straight-
forward. The input graphP is compared to the known list
of maximal minors forF . However, the comparison requires
testing for subgraph containment, which is a combinatorialin
the number of checks that must be performed. Consequently,

1 5

6

7

8

2

3

4

(a) the original cell

1,5

2

3

4 6

7

8

(b) the wheel graph on 7 vertices with
three extra edges

1,5

2,6

3

4 7

8

(c) K6 with two edges deleted

1,5

2,6

3,74

8

(d) K5

Fig. 4. All minors of a single cell are a subgraph of one of these 4 graphs.

C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 7

1 5

6

7

8

2

3

4

(a) K5 embedded in a sin-
gle K4,4 cell.

1,5

2,6

3,7

4
8

(b) The correspondingK5. The labels
refer to the physical qubits that have
been joined to form one logical qubit.

Fig. 5. A K5 embedding into a singleK4,4 cell of qubits. The labels
correspond to physical qubits.

maximal minor embedding suffers from two distinct bottle-
necks, i.e., finding the maximal minor and finding the embed-
ding. Nonetheless, this method has the benefit of finding the
optimal embedding with respect to the size of the embedded
problem. Because smaller embedding sizes may be expected
to contribute favorably to the scaling of the energy gap, the
effort required must be weighed against its advantages.

B. Algorithm to EmbedKn

Instead of trying to find every possible minor of the hard-
ware graph, we can find an embedding ofKcm+1. Then, for
any QUBO problem of sizecm+1 or smaller, the embedding
problem is solved. The downside of this approach is that it
will fail to embed many problems that are indeed embeddable
in the hardware. For example, although the graphs in Fig. 4(b)
and (c) are embeddable in aK4,4 cell, they are not embeddable
in K5, which is the largestKn minor in the cell. Because of
this, the complete-graph embedding algorithm (as described in
Sec. VII-B) requires a2×2 array of four cells in order to find
an embedding for QUBO problems corresponding to either of
those graphs.

Unlike maximal minor embedding, the complete-graph em-
bedding algorithm is computationally simple albeit at the cost
of increasesd usage of the logical fabric. This illustratesthat
the two methods described here represent a tradeoff between
the computational complexity of the embedding algorithm
and the potential computational complexity of the quantum
program as measured by the area of the computational fabric.

Given a hardware graph as described in Sec. V, our al-
gorithm to embedKcm+1 as a minor in them × m grid of
Kc,c cells is recursive in nature, and constructs the mappingφ

described in Def. 2. For the sake of clarity, in the description
of the algorithm, the elements of theKcm+1 will be referred
to as nodes and the elements of the hardware graph will be
referred to as vertices. Letu1, u2, . . . , ucm+1 be the nodes of
theKcm+1 that we are trying to embed.

The algorithm begins by embedding the firstc + 1 nodes
(forming aKc+1) into the cell in the upper left corner of the
hardware. This is done by pairing left and right verticesc− 1
times.

1 f u n c t i o n V = no fa i l u re em bedd ing (c ,m)
% This f u n c t i o n t a k e s an mxm hardware graph

3 % of K {c , c} c e l l s and o u t p u t s a (2m) x (cm+1)
% m at r i x V where t h e non−zero e n t r i e s of V(: , i)

5 % a r e ph i (u i) f o r u i i n t h e embedded K{cm+1}

7 V = z e r o s(2∗m, c∗m+1) ;
%Almost a l l t h e c∗m−2 s e t s a r e formed s i m i l a r l y

9 f o r i = 1 : c∗m+1
i f i < c

11 %F i r s t g r i d row / column , p o s i t i o n i i n c e l l
r = 1 ; s = i ;

13 e l s e i f i > c+1
%C a l c u l a t e row / column of t h e g r i d

15 r = c e i l ((i −1) / c) ;
%C a l c u l a t e l e v e l w i t h i n c e l l

17 s = mod ((i−1) , c) ;
i f s ==0

19 s=c ;
e l s e

21 c o n t i n u e ; %t h e s e a r e hand led below

23 % f i l l i n t h e h o r i z o n t a l members of ph i (ui)
f o r j =1 :m

25 V(j , i) =2∗ c∗m∗ (r −1)+2∗ c∗ (j −1)+c+s ;
% f i l l i n t h e v e r t i c a l members of ph i (ui)

27 f o r j =1 :m
V(j +m, i) =2∗c∗ (r −1)+2∗ c∗m∗ (j −1)+s ;

29 end
%At i =c and i =c +1 , t h e s e t s d i f f e r , and have s i z e m

31 f o r j =1 :m
V(j , c) = c + (j −1)∗2∗c∗m;

33 V(j , c +1)= j ∗2∗c ;

That is, for 1 ≤ j ≤ c − 1, φ(uj) = {vj1,1, v
c+j
1,1 }. The

next two nodes are each initially mapped to a set containing
a single vertex:φ(uc) = {vc1,1}, andφ(uc+1) = {v2c1,1}. See
Fig. 5 for an example of embeddingK5 in a K4,4 cell of 8
qubits. We provide an instance of this algorithm in a Matlab-
style pseudocode for a function which produces an embedding
into non-faultyF (4, 4) hardware.

After embedding aKc+1 into the first cell of the hardware
graph, them− 1 remaining steps of the algorithm extend the
embedding into the subsequent row and column of them×m

grid. For each step2 ≤ i ≤ m, the embedding forms an
extendableclique minor in thei × i grid. We say a minor is
extendable if it satisfies two conditions: first foruj, 1 ≤ j ≤
c(i− 1) + 1 the setφ(uj) is non-empty. Second, each set has
at least one vertex with an edge into the next row or column.

For all nodesuj, at least one vertex ofφ(uj) is connected
to a cell in the next row and/or column of the grid. These
vertices are added to the setφ(uj). For nodesuc anduc+1,
one vertex is added toφ(uc) andφ(uc+1) at each layeri. For
all other nodesuj , two new vertices are added toφ(uj).

The setsφ(uc(i−1)+2) throughφ(uc(i−1)+c+1) are formed
by picking one of the unclaimed vertices on the right side of
cell (1, i). This is extended by following the edges from cell
to cell along rowi. When columni is reached, one edge is
taken within the cell, then edges from cell to cell are followed
up along columni. At the end of this process, each of these
sets will contain2i vertices: for1 ≤ s ≤ c, φ(uc(i−1)+s+1) =
{vc+s

1,i , . . . vc+s
i,i , vsi,1, . . . , v

s
i,i}.

This process is continued untilKcm+1 is fully embedded
in the m × m grid. See Fig. 6 for an extension of aK13

embedding in a3× 3 grid of K4,4 cells to aK17 embedding

C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 8

(a) K13 embedded in the upper3× 3 sub-grid of cells (b) K17 embedded in the4× 4 grid

Fig. 6. A K13 embedding in a3× 3 grid of K4,4 cells extended to aK17 embedding in a4× 4 grid. Each color represents a single logical qubit.

in a 4× 4 grid of cells.
In the description of the hardware graph in Sec. V, the

vertices were given labels of the formvda,b. In the Matlab-
style pseudocode found below, they are numbered from 1 to
cm2. The numbering starts in the cell in the upper left corner
as described in Fig 5(a) and this numbering is continued across
the row, then across subsequent rows. Given a node position
in the formvda,b, the equivalent number in the code below is
n = 2cm(a− 1) + 2c(b− 1) + d. Given a node numberedn
in the code below, the equivalent label is given byvda,b with

a = ⌈ n
2cm⌉, b = ⌈n−2cm(a−1)

2c ⌉, and d = n mod 2c, with
d = 2c if n mod 2c = 0.

VIII. E MBEDDING WITH FAILED QUBITS

The complete-graph embedding algorithm presented in Sec.
VII-B assumed that there are no failures in the hardware.
However, the hardware may exhibit some percentage of failed
vertices which prevent a fullKcm+1 embedding (e.g. in the
case of any single qubit failure, the biggest clique embeddable
is Kcm). Instead of losing a node from theKcm+1 for each
failed qubit, techniques can be employed to embed in a way
that attempts to minimize the number of setsφ(u) which
contain any failed qubits.

We present two algorithms below in order to handle the case
of fabrics with hard faults. These approaches to embedding test
the different starting points available from the four corners of
the m×m grid and then return the best possible embedding
that results. Additionally, if the largestKn found is smaller

than the largest possible in an(m−1)×(m−1) grid, from each
corner, we drop the first row and column and reattempt the
embedding. This “dropping down” procedure continues until
a large enough clique is found or(m− 1) rows and columns
have been dropped.

At the same time, the grid is scanned and the largestKn

embeddable in a single cell (1 ≤ n ≤ c + 1) is found. If
a complete cell is found, this isKc+1. The reported largest
embeddableKn output by the algorithm is the maximum of
the largest clique embeddable inside a single cell and the four
cliques found from starting at the four corners.

Combining these two procedures yields a “flip and drop-
down” method that we compare to the single, nominal attempt
at embedding, i.e., starting in the upper left corner. In allcases,
the worst performance possible is to embed aK1, since we
assume there is at least one working qubit in the hardware.
Note details of the corner selection and drop-down methods
are not shown in the pseudocode.

A. Dropping to a smaller cell-graph

Given anm×m hardware graph with cells ofKc,c, one way
to deal with failed qubits is to find the largestco, co ≤ c, such
that there is a completem ×m grid of Kco,co ’s and use the
algorithm described in Section VII-B to embed into this sub-
grid. This will lead to an embedding of sizecom+1 ≤ cm+1.
Once theco has been determined, the embedding can be found
by renumbering the vertices of the hardware graph to reflect
the new cell size and running nofailure embedding(co,m).

C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 9

B. Greedy failure algorithm

As can be seen in Fig. 6, given a perfectm×m grid of Kc,c

cells, for each nodeu of the embeddedKcm+1 (other than
nodesuc anduc+1 started in the first cell),φ(u) contains2m
vertices. These consist of two sets ofm vertices: a connected
set consisting of one vertex from the left side of each cell in
the a single column in the grid and a connected set consisting
of one vertex from the right side of each cell in the row
of the same number. Due to the pattern in which cells are
connected, within both of these sets every vertex occupies the
same position in the cell it comes from.

The greedy failure algorithm works to maximize the size of
the completeKn which can be embedded in the hardware
graph with failed vertices, by attempting to pair up sets
containing failed vertices with other sets containing failed
vertices to create full nodes. These “match-ups” occur in the
diagonal cells of the grid. In the case of no failures, each
horizontal set (of vertices from the right halves of cells) is
matched with a vertical set (of vertices from the left halvesof
cells) whose vertices occupy the same ‘height’ inside a single
cell. When there are errors, however, horizontal sets containing
failed vertices attempt to match with vertical sets that also
contain failed vertices, regardless of the ’heights’ at which
the vertices sit inside a cell. By matching sets which contain
failures, the number of complete nodes (all of which except
uc anduc+1 are made up of two sets) containing failures is
reduced and, consequently, a larger embeddedKn is achieved.

The Matlab-style pseudocode for a function which produces
the nodes of the embedding described above and outputs the
number of nodes containing no errors can be found at right.

C. Analysis

A comprehensive set of experiments were run to see how
well the fallback and greedy algorithms from Secs. VIII-A
and VIII-B, respectively, performed under various conditions
of vertex failure. These experiments were run using a single
attempt at embedding that begins in the upper left corner of
the grid of cells as well as a run using the flip and drop-
down scheme described at the beginning of Sec. VIII. In all
cases, the hardware graph was anm ×m grid of K4,4 cells.
The grid sizes tested werem = 4, 8, 16, and 32. For each of
these grid sizes, the algorithms were run with a percentage of
failed vertices ofp = 2, 4, 5, 6, 8, 10, 15, 20 and25. The failed
vertices were uniformly distributed across the hardware graph.
In each of the 148 cases (defined by algorithm, scheme, grid
size, and failure rate), 10,000 randomized instances were run
to compute statistical averages.

A comparison of the results shown by Figs. 7 and 8
illustrates that the flip and drop-down embedding scheme
performs better than a single attempt at embedding from
the upper left corner and that the greedy algorithm performs
better than the fallback method. In both schemes, the greedy
algorithm embeds aKn with n approximately 85% of the
optimum value at two percent failure rate.

f u n c t i o n [V, k] = greedy embedding (c ,m,G)
2 % This f u n c t i o n t a k e s an mxm hardware graph

% of K {c , c} c e l l s and a l i s t G of f a i l e d
4 % v e r t i c e s . Ou tpu ts a r e a (2m) x (cm+1) m at r i x V,

% where non−zero e n t r i e s of V(: , i) a r e ph i (ui)
6 % f o r u i i n t h e embedded K{cm+1} , and k i s t h e

% number of f a i l u r e−f r e e s e t s ph i (u i) .
8

%Helper Func t ion : PAIR (s , t , cv)
10 %s t o r e s t h e un ion of F (: , s) and F (: , t) i n V(: , cv)

12 %F i r s t , we form a l l o f t h e h a l f s e t s in a m at r i x F
F = z e r o s(m, 2∗ c∗m) ;

14 f o r i =1 :m
f o r pos =1: c

16 %dete rm ine columns of F to be f i l l e d
Cnum = 2∗c∗ (i −1)+pos ;

18 Rnum = 2∗c∗ (i −1)+pos+c ;
f o r j =1 :m

20 %h a l f s e t s in c o l i o f hardware graph
F (j , Cnum) =2∗c∗m∗ (i −1)+2∗ c∗ (j −1)+pos+c ;

22 %h a l f s e t s in row i o f hardware graph
F (j , Rnum) =2∗c∗m∗ (j −1)+2∗ c∗ (i −1)+pos ;

24 end %of f o r i =1 :m

26 % Match ha l f−s e t s f o r each row / column to min im ize
% number of f u l l s e t s c o n t a i n i n g f a i l e d v e r t i c e s .

28 V= z e r o s(2∗m, c∗m+1) ;
cv = 1 ; %f i r s t open column of V

30 k =0; %number of f a i l u r e−f r e e f u l l s e t s c r e a t e d

32 f o r i =1 :m
Fi = 2c∗ (i −1) %o f f s e t f o r column i n d i c e s in F

34 %P a i r up s e t s c o n t a i n i n g f a i l u r e s
f o r s =1: c

36 i f i ==1 and cv==c
b reak; %go c r e a t e s i z e m s e t s

38 i f F (: , F i +s) c o n t a i n s a f a i l u r e in G
f o r t =1: c

40 i f F (: , F i+c+ t) c o n t a i n s a f a i l u r e
PAIR(s , c+ t , cv)

42 cv++
break

44 end %of f o r s =1: c

46 %P a i r rem a in ing h a l f s e t s a r b i t r a r i l y u n t i l
%c−1 (i =1) or c (i>1) whole s e t s have been made

48 f o r s =1: c
i f ((i ==1 and cv==c) or (cv==c∗ i +2))

50 break; %c r e a t e s i z e m s e t s or nex t i
i f F (: , F i +s) u n p a i r e d

52 f o r t =1: c
i f F (: , F i +c+ t) u n p a i r e d

54 PAIR (s , c+t , cv)
cv++

56 i f V (: , cv) f a i l u r e−f r e e
k=k+1

58 end %of f o r s =1: c

60 %Crea te two s i z e m s e t s in row / column 1 :
f o r s =1: c

62 i f F (: , s) u n p a i r e d
V(: , cv) <− F (: , s)

64 cv ++;
i f F (: , s) f a i l u r e−f r e e

66 k=k +1;
i f (F : , c+s) u n p a i r e d

68 V(: , cv) <− F (: , c+s)
cv ++;

70 i f F (: , c+s) f a i l u r e−f r e e
k=k +1;

72 end %of f o r s =1: c
end %of f o r i =1 :m

C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 10

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Percent of failed vertices

P
er

ce
nt

 o
f m

ax
im

um
 e

m
be

dd
ab

le
 K

n a
ch

ie
ve

d

m=4, fallback
m=8, fallback
m=16, fallback
m=32, fallback
m=4, greedy
m=8, greedy
m=16, greedy
m=32, greedy

(a) Single attempt at embedding, beginning in the upper leftcorner.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Percent of failed vertices

P
er

ce
nt

 o
f m

ax
im

um
 e

m
be

dd
ab

le
 K

n a
ch

ie
ve

d

m=4, fallback
m=8, fallback
m=16, fallback
m=32, fallback
m=4, greedy
m=8, greedy
m=16, greedy
m=32, greedy

(b) Maximum over embeddings starting in each corner and dropping down
to smaller grids.

Fig. 7. Percent of the maximum embeddableKn achieved for both the fallback and greedy embedding schemesfor various percentages of failed vertices,
averaged over 10,000 trials. This is calculated for both a single attempt at the embedding (left) and multiple attempts at the embedding, starting in all four
corners and, if necessary, dropping to a smaller grid (right). Both methods also search for a whole cell.

At fixed failure rate, the percent of the maximum embed-
dableKn for both algorithms decreases as the grid sizem

grows. This is due to the fact that the number of hardware
vertices mapped to a single node of theKn minor increases
linearly with grid size. On the4 × 4 grid, each setφ(u) is
made up of 8 vertices (except for 2 special cases). Given a
2% failure rate, this means that anyφ(u) on the4 × 4 grid
(with no attempt at a ‘smart’ embedding scheme) has a 16%
chance that the set contains at least one failed vertex (and thus
can not augment the size of theKn embedded). Similarly, on
the 32× 32 grid, eachφ(u) contains 64 vertices, and for 2%
failure having at least one failed vertex per cell is highly likely.

At 2% failure rate, the greedy embedding scheme with flips
and drop-downs achieves embedding of a complete graph of
over 40% the size of the maximumKn embeddable. For
the worst case scenario, and with no attempt at a ‘smart’
embedding, it would only take one failed vertex to destroy
each logical qubit. Even at only a 2% failure rate, the32× 32
grid has on average 163 failed vertices. If the algorithm did
not adapt, this high failure density would completely destroy
the maximum embeddable clique, which is aK129. In the case
of a 25% failure rate, the number of failed vertices jumps to
2048, yet the greedy failure algorithm is still able to embeda
K6 on average.

2 4 5 6 8 10 15 20 25
0

0.5

1

1.5

2

2.5

Percentage of failed vertices

V
a

ri
a

n
c
e

 o
f

n
 (

m
a

x
 K

n
 e

m
b

e
d

d
e

d
)

(a) Fallback algorithm

2 4 5 6 8 10 15 20 25
0

0.5

1

1.5

2

2.5

Percentage of failed vertices

V
a

ri
a

n
c
e

 o
f

n
 (

m
a

x
 K

n
 e

m
b

e
d

d
e

d
)

(b) Greedy algorithm

Fig. 9. Variances of fault-tolerant embedding algorithms (with flip and drop-
down) on the4× 4 grid.

We have also analyzed the variances in embeddability
from these experiments. In the case of a single attempt at
embedding, the distribution of embeddable graphs tends to be

4 6 8 10 12 14 16
0

2000

4000

6000

Size of K
n
 embedded into the hardware

N
um

be
r

of
 ti

m
es

 (
ou

t o
f 1

00
00

 tr
ia

ls
)

p=2

p=4

p=8

p=10

(a) Fallback embedding algorithm

4 6 8 10 12 14 16
0

2000

4000

6000

Size of K
n
 embedded into the hardware

N
um

be
r

of
 ti

m
es

 (
ou

t o
f 1

00
00

 tr
ia

ls
)

p=2

p=4

p=8

p=10

(b) Greedy embedding algorithm

Fig. 10. Histograms for 10,000 trials of the fallback (left)and greedy (right)
embeddings with flipping and drop-down on the4 × 4 grid at p = 2, 4, 8,

and 10 percent failure of the nodes.

C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 11

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Percent of failed vertices

P
er

ce
nt

 o
f m

ax
im

um
 e

m
be

dd
ab

le
 K

n a
ch

ie
ve

d

m=4, single attempt
m=8, single attempt
m=16, single attempt
m=32, single attempt
m=4, flip and drop down
m=8, flip and drop down
m=16, flip and drop down
m=32, flip and drop down

(a) Fallback embedding algorithm

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Percent of failed vertices

P
er

ce
nt

 o
f m

ax
im

um
 e

m
be

dd
ab

le
 K

n a
ch

ie
ve

d

m=4, single attempt
m=8, single attempt
m=16, single attempt
m=32, single attempt
m=4, flip and drop down
m=8, flip and drop down
m=16, flip and drop down
m=32, flip and drop down

(b) Greedy embedding algorithm

Fig. 8. Percent of the maximum embeddableKn achieved in both a single attempt at embedding and multiple attempts (starting in each of the four corners
and, if necessary, dropping down) for various percentages of failed vertices, averaged over 10,000 trials. This is calculated both for the fallback method (left)
and for the greedy method (right).

narrower than when using the drop-down scheme. For larger
grid sizes and for higher percentages of failure, the variance
of the single attempt falls to zero. This is caused by the fact
that the algorithm never does better than embedding aK5

into a single, complete cell. However, this happens less often
for the drop-down embedding scheme, yielding larger average
Kn with higher variances. An example of this behavior is
shown in Fig. 9 for the case ofF (4, 4) when varying the
percent failure rate. It is notable that while the variance of
the fallback method is relatively large for small error rates,
the greedy algorithm maintains a near constant, much lower
variance across all failure rates. In Fig. 10, the distribution
of achieved embeddings over 10,000 trials using the flip and
drop down scheme onF (4, 4), with the percentage of failed
vertices atp = 2, 4, 8, and 10, is shown. The embeddings
achieved by the greedy algorithm are both more clustered and
larger than those achieved by the fallback algorithm. With the
added evidence of panel (b) in Figs. 7 and 8, this demonstrates
the greedy approach is more robust in the presence of hard
faults.

IX. CONCLUSIONS

We have presented methods for adiabatic quantum pro-
gramming that embed problem specific information into an
underlying quantum logical fabric. Our methods include an
embeddability analysis based on the treewidth of anm-by-m
lattice ofKc,c unit cells, which is a generalization of existing
adiabatic quantum hardware. This has provided bounds on the
graphs that can be embedded in a predefined logical fabric and
should be useful for guiding adiabatic quantum programmed
implementations.

In addition, we have presented two new methods for finding
an embedding of a complete graph in faulty fabric. The first
method handles failures by falling back to a set of smaller
available unit cells, while the second searches for embeddings
that minimize the number of affected logical qubits using

matching within cells on the diagonals. The latter was shown
to have greater power for programming implementations of
arbitrary QUBO instances. Numerical studies of embeddability
run against randomized failures further showed the relative
robustness of the second algorithm and the remarkably smaller
variance in embeddable graphs.

In our study of embedding for adiabatic quantum pro-
gramming, we have neglected any question regarding the
subsequent computational complexity. The question of how
a particular embedding algorithm impacts the complexity of
the resulting AQO program is a point for future research.
The current work, however, is expected to support uncovering
the dependency of the computational complexity on both the
embedding and parameter setting methods used. We believe
that the embedding algorithms explored here, which provide
a constructive approach to programming, will be useful for
providing a consistent means of comparing the AQO algorithm
across different problem sizes and hardware.

X. ACKNOWLEDGMENTS

This work was supported by the Lockheed Martin Corpo-
ration under Contract No. NFE-11-03394. The authors thank
Greg Tallant (Lockheed) for technical interchange and Daniel
Pack (ORNL) for help preparing Figure 2. This manuscript
has been authored by a contractor of the U.S. Government
under Contract No. DE-AC05-00OR22725. Accordingly, the
U.S. Government retains a non-exclusive, royalty-free license
to publish or reproduce the published form of this contribution,
or allow others to do so, for U.S. Government purposes.

REFERENCES

[1] I. A DLER, ET. AL , Faster Parameterized Algorithms for Minor Contain-
ment, Theor. Comp. Sci., 412 (2011), pp.7018–7028.

[2] B. A LTSHULER AND H. KARVI AND J. ROLAND, Anderson localization
makes adiabatic quantum optimization fail, Proc. Natl. Acad. Sci. USA
108 (2011). pp. E19–E20.

[3] E. AMIR, Approximation Algorithms for Treewidth, Algorithmica, 56
(2010) pp. 448–479.

C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 12

[4] Z. B IAN AND F. CHUDAK AND W. G. MACREADY AND L. CLARK AND

FRANK GAITAN , Experimental determination of Ramsey numbers with
quantum annealing, arXiv:1201.1842v2 (2012).

[5] H. .L. BODLAENDER, A Tourist Guide through Treewidth, Acta Cyber-
netica, 11 (1993), pp. 1–23.

[6] H. L. BODLAENDER, A Linear-Time Algorithm for Finding Tree Decom-
positions of Small Treewidth, SIAM Journal on Computing, 25 (1996),
pp. 1035–1317.

[7] H. L. BODLAENDER AND A. M. C. A. KOSTER., Treewidth Computa-
tions II. Lower Bounds, Technical Report UU-CS-2010-022, Dept. of
Information and Computing Sciences, Utrecht University (2010).

[8] E. BOROS AND P. L. HAMMER, Pseudo-Boolean Optimization, Dis.
App. Math. 123 (2002), pp. 155–225.

[9] V. CHOI, Minor-embedding in adiabatic quantum computation: I. The
parameter setting problem, Quantum Inf. Process, 7 (2008), pp. 193–
209.

[10] V. CHOI, Minor-embedding in adiabatic quantum computation: II.
Minor-universal graph design, Quantum Inf. Process, 10 (2011),
pp. 343–353.

[11] N. G. DICKSON AND M. H. S. AMIN , Does Adiabatic Quantum
Optimization Fail for NP-Complete Problems?, Phys. Rev. Lett. 106
(2011), art. 050502.

[12] N. G. DICKSON AND M. H. S. AMIN , Algorithmic approach to adia-
batic quantum optimization, Phys. Rev. A 85 (2012) art. 032303.

[13] R. DIESTEL, Graph Theory, Springer-Verlag, Heidelberg, 2005.
[14] D-WAVE SYSTEMS INC., 100-4401 Still Creek Drive, Burnaby V5C

6G9, BC, Canada.http://www.dwavesys.com/.
[15] E. FARHI , J. GOLDSTONE, S. GUTMANN , M. SIPSER,Quantum compu-

tation by adiabatic evolution, arxiv:quant-ph/0001106 (2000).
[16] E. FARHI ET AL ., A quantum adiabatic evolution algorithm applied

to random instances of an NP-complete problem, Science, 292 (2001),

pp. 472–476.
[17] F. V. FOMIN AND D. M. THILIKOS, Dominating Sets and Local

Treewidth, LNCS 2832 (2003), pp. 221-229.
[18] F. GAITAN AND L. CLARK , Ramsey numbers and adiabatic quantum

computing, Phys. Rev. Lett. 108 (2012), art. 010501.
[19] R. HARRIS, ET AL ., Experimental Investigation of an Eight Qubit Unit

Cell in a Superconducting Optimization Processor, Phys. Rev. B, 82
(2010), pp. 024511–024526.

[20] J. KLEINBERG AND R. RUBINFELD, Short Paths in Expander Graphs,
In Proceedings of the 37th Annual Symposium on Foundations of
Computer Science (1996), pp. 86–95.

[21] H. NEVEN, G. ROSE, AND WM . G. MACREADY, Image recognition
with an adiabatic quantum computer I. Mapping to quadratic uncon-
strained binary optimization, arXiv:0804.4457v1 [quant-ph] (2008).

[22] A. PERDOMO-ORTIZ, N. DICKSON, M. DREW-BROOK, G. ROSE, AND
A. A SPURU-GUZIK ,Finding low-energy conformations of lattice protein
models by quantum annealing, Scientific Reports, 2 (2012), art. 571.

[23] K. L. PUDENZ AND D. A. L IDAR, Quantum adiabatic machine learn-
ing, arXiv:1109.0325v1 [quant-ph] (2011).

[24] T. C. RALPH, A. J. F. HAYES, AND A. GILCHRIST, Loss-Tolerant
Optical Qubits, Phys, Rev. Lett., 95 (2005), 100501.

[25] N. ROBERTSON ANDP. D. SEYMOUR, Graph minors. XIII: the disjoint
paths problem, J. Comb. Theory Ser. B, 63 (1995), pp. 65–110.

[26] N. ROBERTSON AND P. D. SEYMOUR, Graph minors. XX: Wagner’s
conjecture, J. Comb. Theory Ser. B, 92 (2004), pp. 325–357.

[27] L. X IONG AND M. J. DINNEEN, The Feasibility and Use of a Minor
Containment Algorithm, Computer Science Technical Reports 171, Uni-
versity of Auckland (2000).

http://arxiv.org/abs/1201.1842
http://www.dwavesys.com/
http://arxiv.org/abs/quant-ph/0001106
http://arxiv.org/abs/0804.4457
http://arxiv.org/abs/1109.0325

	I Introduction
	II Adiabatic Quantum Optimization
	III Previous Related Work
	IV Graph Minors and Tree-decomposition
	V Description of Hardware graph
	VI Treewidth of the Hardware graph
	VII Embedding into the Hardware graph
	VII-A Maximal Minor Embedding
	VII-B Algorithm to Embed Kn

	VIII Embedding with failed Qubits
	VIII-A Dropping to a smaller cell-graph
	VIII-B Greedy failure algorithm
	VIII-C Analysis

	IX Conclusions
	X Acknowledgments
	References

