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We present a method for intrusion detection which is based on the Mach-Zehnder interference effect. This
device provides monitored surveillance by continuously measuring the intensity of light collected by a pair of
photodetectors. We find that our protocol allows for the detection of intrusion attempts which employ path-
redirection and/or intercept-resend techniques. Expectation values for the registered output flux are provided
for normal and interrupted operation.

Introduction.– Optical tripwire systems offer quick intru-
sion notification in most scenarios, e.g., fiber cutting or beam
blocking intrusions. The tripwire usually consists of a laser
beam, which in turn consists of a large collection of photons.
This presents a vulnerability which could be exploited in a so-
phisticated attack. By tapping off a small portion of the orig-
inal signal, an adversary can determine, with high precision,
the properties inherent to the surveillance beam while leav-
ing the majority of the signal unaffected [1, 2]. This can be
achieved for both unmodulated and modulated waveforms. If
the interrogated signal strength is sufficiently weak, the char-
acteristics of the tripwire could be determined using direct
detection and dyne detection without causing alarm. A de-
coy source could then be used to mimic the original signal.
The decoy source could be set in place, for instance, during a
forced power outage, and constructed to switch on remotely.
This would provide unannounced entry and exit between the
two sources at any later time.

In this paper, we present a method for intrusion detec-
tion which circumvents this issue. Our method is based on
the Mach-Zehnder interference (MZI) effect [3] and provides
surveillance by continuously measuring the intensity of light
collected by a pair of photodetectors. Under normal condi-
tions, each photodetector output current per signal pulse is ex-
pected to remain constant. When an intruder passes through
the secured perimeter, the output signal drops, signaling an
alarm. This feature is shared with common laser tripwire de-
signs. However, our contribution closes the intercept-resend
vulnerability facing existing optical monitoring techniques by
using MZI to test the integrity and authenticity of the trans-
mitted signal. Thus, our method offers an additional layer of
security relative to classical optical sensors. Like earlier ef-
forts employing related effects [4, 5], a quantum optical sen-
sor can mitigate the redirection and intercept-resent vulnera-
bilities facing their classical counterparts.

Normal operation.— An illustration of the sensor is given
in Fig. 1. The setup consists of a balanced Mach-Zehnder in-
terferometer with a photon source located at port ŝ. The left
L, top T , and right R arms of the interferometer constitute
the secured perimeter (i.e., the fence) while regions specified
with a shaded box are assumed to be secured enclaves. Let
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lL, lT , lR, and lB denote the unperturbed path lengths of the
lower, top, right, and bottom arms. Under normal, uninter-
rupted operation, lL + lT + lR = lB .

The transformation describing the action of the first beam
splitter is given by U1 = exp

[
iπ(â†ŝ+ âŝ†)/4

]
. Using

the Campbell-Baker-Haussdorff formula, we may solve the
Heisenberg equations û1 = U†1 ŝU1 and ĝ = U†1 âU1 to ob-
tain û1 = (ŝ + iâ)/

√
2 and ĝ = (â + iŝ)/

√
2. An input

state of the form |Ψ〉 = |vac〉â ⊗ |1〉ŝ evolves to |Ψ′〉 =

U1 |Ψ〉 = (|1〉û1
|vac〉ĝ − i |0〉û1

|1〉ĝ)/
√

2. For the mo-
ment, let φ1 = φ2 = 0 and û1 = û2 = û3. The second
beam splitter is identical to the first, so the second transfor-
mation U2 = exp

[
iπ(û†3ĝ + û3ĝ

†)/4
]

yields the relations

ŵ1 = (ĝ+iû3)/
√

2 and ŵ2 = (û3 +iĝ)/
√

2. The state which
exits the interferometer is thus U2 |Ψ′〉 = −i |1〉ŵ1

|vac〉ŵ2
. If

the source at ŝ supplies the interferometer with single photons
we should expect to observe

. . . |Ψ〉j+3 |Ψ〉j+2 |Ψ〉j+1 |Ψ〉j . . .
→ . . . (ŵ1)j+3(ŵ1)j+2(ŵ1)j+1(ŵ1)j . . . (1)

In this description, |Ψ〉1 represents the first photon which is
emitted, |Ψ〉2 represents the second, etc. The correspond-
ing detection events are given by (ŵ1)1, (ŵ1)2, etc. Now
suppose an intruder simply crosses the perimeter. The state
of the bottom arm is mixed during the time for which the
fence path is blocked. After tracing over the fence branch
the state of the lower arm is described by |Ψ〉j → ρj =
1
2 (|vac〉g〈vac| + |1〉g〈1|), i.e., the field in the bottom arm is
in a mixed state of zero and one photons. No interference oc-
curs at the second beam splitter during the time for which the
patrol arm is blocked. We will observe a decrease in the out-
put flux at ŵ1 during this time. Specifically, if F denotes the
input flux at ŝ, the output flux at ŵ1 during the time for which
the fence is blocked is given by F/4.

In what follows, we will assume that the sensor is sup-
plied with photons emitted via parametric fluorescence [1, 6].
Specifically, we will associate ŝ with the signal mode of a
down-conversion process. The idler mode î (not shown in
the figure) will then serve as a heralding source for photon
injection. If first-order processes dominate the interaction, a
successful down-conversion can be approximated by the fol-
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FIG. 1: Security protocol based on a balanced Mach-Zehnder in-
terferometer. A side intrusion (SI) path-diversion attempt along the
right side R is indicated with the red line. A cross intrusion (CI)
diversion attempt from side L to T is depicted with the blue line.

lowing two-photon state [6] (neglecting polarization)

|Ψ〉PDC =

∫
dω1dω2Φ(ω1, ω2)ŝ†(ω1)̂i†(ω2) |vac〉 , (2)

where Φ(ω1, ω2) is a suitable spectral amplitude distribution.
Throughout, unless otherwise stated, the limits of integration
are taken to be (−∞,∞). Let |Ψ〉PDC,j denote the jth down-
converted pair. Suppose we detect the jth idler photon at time
t = tj . At this moment, the state of the signal field is obtained
by projecting |Ψ〉PDC,j onto the state [7]

|ψ(tj)〉 = C
∫
dωî†(ω)η(ω)e2πiωtj |vac〉 , (3)

where C is a normalization constant and η(ω) represents the
real spectral transfer function of the idler detector. Condi-
tioned on a detection of the idler at time t = tj , the jth signal
photon is injected into the interferometer in the state

|Ψ〉j = 〈ψ(tj)|Ψ〉PDC,j = C∗
∫
dω1dω2η(ω2)e−2πiω2tj

×Φ(ω1, ω2)ŝ†(ω1) |vac〉 . (4)

Here we have used the continuous mode commutation rela-
tion

[̂
i(ω), î†(ω′)

]
= δ(ω − ω′). For simplicity, we will as-

sume a monochromatic cw pump beam of frequency ωp, i.e.,
Φ(ω1, ω2) ∝ δ(ω1 + ω2 − ωp)h [L∆k(ω1, ω2)] . The phase-
matching function h is given by

h [L∆k(ωj , ω)] = e−iL∆k(ωj ,ω)/2sinc(L∆k(ω1, ω2)/2),
(5)

and L denotes the crystal length. For frequency degenerate
processes, we can apply a first-order Taylor expansion of the
phase mismatch ∆k(ω1, ω2) around ωp/2. This yields

∆k(ω1, ωp − ω1) ≈ (ω1 − ωp/2)× J, (6)

where J := k′idler(ωp/2) − k′signal(ωp/2). The idler pass band

function will be approximated as η(ω) = e−(ω−ωp/2)2/σ2

,

where σ > 0 is a real parameter. We will also approximate
sinc(x) ≈ e−γx

2

, with γ = 0.193 . . . With these approxima-
tions, the jth input state is given by

|Ψ〉j ≈ C̃
∫
dωe−β(ω−ωp/2)2e2πiω(tj+t′)ŝ†(ω) |vac〉 , (7)

with the parameters β := 1/σ2 − γL2J2/4, t′ :=

−LJ/4π, and C̃ := C∗e−2πiωptjeiLJωp/4. The time-
dependent mode operators are related to their frequency-
dependent counterparts via the standard Fourier transform
b̂(t) =

∫
dωb̂(ω)e−2πiωt. This relation holds since we are

assuming narrow band fields [8]. The Fourier transform of
Eq. (7) has the form

|Ψ〉j = M
√
π

β

∫
dte−2πit(ωp/2)e−π

2t2/β

×ŝ†(tj + t′ − t) |vac〉 , (8)

where M is a new normalization constant. Upon detection
of the jth idler at time t = tj , a photon is injected via mode
ŝ with a temporal distribution that oscillates with frequency
ωp/2 under the Gaussian envelope centered at tj + t′. The
additional time advance/delay t′ = −LJ/4π depends on the
characteristics of the nonlinear medium supporting the down-
conversion process. We will assume that t′ has been ac-
counted for by using compensators outside of the crystal and
henceforth neglect its contribution.

The time-dependent mode operators are related by

ĝ(t) =
1√
2

(â(t) + iŝ(t)), û1(t) =
1√
2

(ŝ(t) + iâ(t)),

û2(t) = eiφ1 û1(t− tL), û3(t) = eiφ2 û2(t− tT ),

ŵ1(t) =
1√
2

(ei(φ1+φ2)ĝ(t− tB) + iû3(t− tR)),

ŵ2(t) =
1√
2

(ei(φ1+φ2+π/2)ĝ(t− tB) + û3(t− tR)). (9)

In these expressions tL, tT , tR, and tB denote the time it takes
for a photon to travel through arms L, T,R, and B respec-
tively. Under normal operating conditions tL = lL/c, tT =
lT /c, tR = lR/c, and tB = (lL + lT + lR)/c. We have also
included the phase shifts which will be necessary for the pre-
vention of certain intrusion attacks. For the present discus-
sion, we may set φ1 = φ2 = 0.

Using the relations above, one can calculate the output flux
at ŵ1(t) to be 〈ŵ†1(t)ŵ1(t)〉normal = 〈ŝ†(t − tB)ŝ(t − tB)〉.
This equation can be readily evaluated for |Ψ〉j . We obtain

〈ŵ†1(t)ŵ1(t)〉normal =
π|M|2

β
exp[−2π2(tj + tB − t)2/β].

(10)
As expected, under normal conditions 〈ŵ†1(t)ŵ1(t)〉 is peaked
at time t = tj + tB . Requiring

∫
dt〈ŵ†1(t)ŵ1(t)〉normal = 1

yieldsM = (2β/π)1/4. With the state |Ψ〉j properly normal-
ized, we may calculate the expectation value of the photon
number arriving at ŵ1 within the resolving time TR of the de-
tector. Conditioned on the jth herald, the detector will make a
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measurement centered at time t = tj + tB . We expect to find

I0 :=

∫ tj+tB+TR/2

tj+tB−TR/2

dτ〈ŵ†1(τ)ŵ1(τ)〉normal

= Erf
(
TRπ/

√
2β
)
, (11)

with the definition Erf(x) := 2√
π

∫ x
0
dze−z

2

. The error func-
tion Erf

(
TRπ/

√
2β
)

increases from zero to one as the factor
TR/
√
β > 0 increases. For TR ≥

√
β, I0 ≈ 1. Recall that

β = 1/σ2−γL2J2/4σ and σ determines the pass-band width
of the idler detector. As σ decreases, the idler frequency pass-
band becomes tighter resulting in a broader temporal spread
of the signal photon. Therefore, a smaller value for σ requires
a larger value of the resolving time TR to capture the entire
signal amplitude.

Intrusion detection.— A clever intruder may attempt to fool
the security device using path diversion or intercept-resend

techniques. Let us first examine the case where a path redi-
rection occurs along the same arm, i.e., the two points of con-
tact to the original beam lie on either L, T, or R. Due to
the straight line geometry of each branch, a diversion such
as this will necessarily increase the optical path length. Us-
ing Eq. (9), we may calculate 〈ŵ†1(t)ŵ1(t)〉SI after the path
length has been increased due to a side intrusion (SI):

〈ŵ†1(t)ŵ1(t)〉SI =
1

4
〈
[
ŝ†(t− tB) + e−iξ ŝ†(t− (tB + ∆))

]
×
[
ŝ(t− tB) + eiξ ŝ(t− (tB + ∆))

]
〉 (12)

where ∆ represents the additional flight time introduced as a
result of the redirection, i.e., ∆ = tL + tT + tR− tB . The ad-
ditional phase factor ξ = 2πc∆/λ results from the additional
path length, where c is the speed of light and λ is the signal
photon wavelength. For intrusions of this sort, the measured
intensity is calculated to be

I1 :=

∫ tj+tB+TR/2

tj+tB−TR/2

dτ〈ŵ†1(τ)ŵ1(τ)〉SI =
1

8

[
2 I0 + Erf

[
π(2∆ + TR)√

2β

]
− Erf

[
π(2∆− TR)√

2β

]
+2e−π

2∆2/2β cos (π∆ωp − ξ)
(

Erf
[
π(∆ + TR)√

2β

]
− Erf

[
π(∆− TR)√

2β

])]
(13)

In Fig. 2, we plot an example of the intensity drop as a func-
tion of the intrusion parameter ∆. In this example, we assume
a pump beam centered at 400 nm and a detector resolving time
of TR =

√
β = .1 ns. We find that an additional path length

increase ≥ 1 cm results in a value of I1 equal to I0/4.

0 5.´10-11 1.´10-10 1.5´10-10 2.´10-10
DHsecL0.0

0.2

0.4

0.6

0.8

1.0
I1HDL

FIG. 2: Plot of I1 as a function of ∆. We have taken the pump wave-
length to be λ = 400 nm and have set TR =

√
β = .1 ns. The

intensity drops to 1/4 of the normal value around ∆ = .1 ns, corre-
sponding to a path length increase of≈ 1 cm. The expectation values
〈ŵ†1ŵ1〉SI and 〈ŵ†2ŵ2〉SI oscillate sinusoidally for small values of
∆. Once the diversion length becomes larger than the coherence
length, the detection interval captures amplitudes propagating along
the bottom arm alone. No interference occurs beyond this point and
〈ŵ†1ŵ1〉SI = 〈ŵ†2ŵ2〉SI = 1/4 for increasing ∆.

For completeness, we must consider the unlikely situation

where a photon amplitude propagating through the long path
matches up with a short path amplitude associated with a dif-
ferent photon emitted from a later down-conversion. The two-
photon input state corresponding to the jth and kth heralds is

|Φ〉j,k =

√
2π

β

∫
dχ1dχ2e

−πi(χ1+χ2)ωpe−π
2(χ2

1+χ2
2)/β

×ŝ†(tj − χ1)ŝ†(tk − χ2) |vac〉 . (14)

In what follows we assume the condition tj − tk ≥
√
β is

satisfied. We can enforce this condition with high probability
by adjusting the pump strength. We then calculate

〈ŵ†1(t)ŵ1(t)〉j,k = ||ŵ1(t) |Ψ〉j ||
2 + ||ŵ1(t) |Ψ〉k ||

2. (15)

The expectation value of ŵ†1(t)ŵ1(t) for the two-photon state
|Φ〉j,k is the sum of the expectation values for |Ψ〉j and |Ψ〉k.
The advantage of using a random photon source comes from
the unlikeliness of witnessing a continual sequence of emis-
sions with temporal separation T = c∆m,m ∈ N. Therefore,
in a diversion attack of this sort we expect the output flux to
drop to 1/4 of the normal operating value for path diversion
lengths necessary for human scale entry. When ∆ = 0, the in-
tegral of Eq. (15) over all time yields

∫
dt〈ŵ†1(t)ŵ1(t)〉j,k =

2. As expected, both photons emerge from ŵ1 when there is
no intrusion.

Now consider the case where a diversion occurs between
separate branches, e.g., from L to T . Since the optical path
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length inside the secured region could be determined using
a probe signal, it would be possible for an intruder to per-
fectly match the original fence length in this case. Further-
more, since the sum of the length of the two legs of a right
triangle is greater than the length of its hypotenuse, it would
be possible for an intruder to match the original fence length
while also providing sufficient entry room for an intrusion to
take place. For this reason, we include random phase shifts φi
at the corners of the perimeter. The sequence of phase shift
values in a particular location can be generated before acti-
vation and stored as a string φi = (φi,1, φi,2, φi,3, . . . , φi,N )
(i = 1, 2). Suppose the length of the diverted path perfectly
matches the original path length. In general, each diverted
signal photon experiences an additional phase shift of eiφint .
The mode relation between arms L and T is now given by
û2(t) = eiφint û1(t − tL). For a cross intrusion (CI), we find
the following expectation value

〈ŵ†1(t)ŵ1(t)〉CI =
√
π/2β exp [−2π2(tj + tB − t)2/β]

× [1 + cos (φint − φ1)] , (16)

which reduces to Eq. (10) when φint = φ1. For a fixed φ1,
the average output flux drops to half of the normal rate

1

2π

∫ 2π

φint=0

∫ ∞
t=−∞

dtdφint〈ŵ†1(t)ŵ1(t)〉CI =
1

2
. (17)

Alternatively, we could generate phase shift values at the cor-
ners using quantum random number generators (QRNGs).
Suppose we remove the phase shifts φ1 + φ2 from the bottom
arm and restrict the phase shift values at the corners to the set
{0, π}. As each QRNG randomly selects between the values
φi = 0, π (i = 1, 2) the expectation values for ŵ†1(t)ŵ1(t)

and ŵ†2(t)ŵ2(t) change accordingly. Under normal opera-
tion ŝ → 1

2

[
e−i(φ1+φ2)(ŵ2 − iŵ1)− (ŵ2 + iŵ1)

]
, where

we have suppressed the time dependence for brevity. The
four combinations for (φ1, φ2) lead to the detection events
(0, 0), (π, π) ⇒ ŵ1 and (0, π), (π, 0) ⇒ ŵ2. We can achieve
relativistic security [9] by broadcasting the values (φ1, φ2) af-
ter the detections at ŵ1 and ŵ2 have already been made. In
this way we eliminate the previous requirement of ”keeping
secrets”. In this protocol, the sequence of detections at ŵ1

and ŵ2 are recorded and later compared to the expected val-
ues after the broadcast has taken place.

We now consider the intercept-resend approach. In this
case, the intruder constructs a device that injects a single pho-
ton (vacuum) into the fence branch if a photon is (is not) de-
tected. In either case, the process of measuring the state of
the perimeter ultimately destroys the superposition which was
once present. A single photon will arrive at the second beam
splitter, either from mode ĝ or û3, but it will only have a 50%
chance of arriving at the correct detector. This leads to an
average output flux at ŵ1 equal to I0/2. Any intrusion at-
tempt that determines whether a photon was present in the
fence branch will result in an average flux at ŵ1 less than or
equal to I0/2. Notably, strategies based on teleportation fall
into this category.

Security tolerance.— The analysis above was based on a
perfect, lossless implementation. In practice, this will not be

the case. There will be some probability 0 ≤ pi ≤ 1 for
detecting a photon at port ŵi conditioned on the jth herald∫ tj+tB+TR/2

tj+tB−TR/2

dτ〈ŵ†i (τ)ŵi(τ)〉normal = pi. (18)

The sensor can operate in a realistic environment as long as
p2 remains much smaller than p1 throughout normal, unin-
terrupted operation. These probabilities can be determined
experimentally by examining the statistics associated with
N � 1 heralds. Let nj denote the number of clicks regis-
tered at port ŵj during the N detection intervals. (We assume
no intrusion at this stage.) We can then define pj := nj/N
to be our expectation values. We will also define the expected
and measured averages over any N future heralding events by

Aexp,i :=
1

N

N∑
j=1

∫ tj+tB+TR/2

tj+tB−TR/2

dτ〈ŵ†i (τ)ŵi(τ)〉normal,

Amea,i :=
1

N

N∑
j=1

∫ tj+tB+TR/2

tj+tB−TR/2

dτ〈ŵ†i (τ)ŵi(τ)〉mea,(19)

with Aexp,i = pi. For some values Γi ∈ R, we have
Aexp,i−Amea,i := Γi I0. In an ideal setting, with no photon
loss or dephasing, and no intrusion, Γi = 0 for both i = 1, 2.
In a realistic setting, typical values for Γi associated with spe-
cific intrusion techniques would need to be determined exper-
imentally. Once they were identified, a user could specify se-
curity tolerances εi ≥ 0 that prompt an alarm when |Γi| ≥ εi.
Alternatively, the user could define 0 < ν ≤ 1 to be the se-
curity tolerance and then constantly measure and update the
quantity Θ := n1

n1+n2
for a predetermined value of N . When

Θ < ν, an alarm is set signaling an intrusion.
Conclusion.— We have presented a method for detecting

intrusion across an optically defined perimeter using the MZI
effect. In an ideal setting, any human-scale intrusion attempt
will lead to a decreased value of the output flux emitted from
the ”bright” port of a balanced Mach-Zehnder interferome-
ter by at least half of the normal operating value. In a realistic
setting, the interferometer can still function as an intrusion de-
tection device as long as a large discrepancy remains between
the normal flux values of the two outputs. This work comple-
ments recent studies related to the emerging field of quantum-
based security [4, 5, 10] and closely resembles a similar ap-
proach to realizing intrusion detection using quantum interfer-
ence [10]. However, we assume here that the location of the
tripwire is publicly known, e.g., interlaced with an ordinary
fence via optical fibers. We expect additional work will pro-
vide greater clarity into the sensing power of this approach,
especially with respect to actively tampered optical seals.
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