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We present an optical device which is capable of heralding a variety of DFS states which protect
against collective noise. Specifically, it can prepare all three basis states which span a DFS qutrit
as well as an arbitrarily encoded DFS qubit state. We also discuss an interferometric technique for
determining the amplitudes associated with an arbitrary encoding. The heralded state may find use
in coherent optical systems which exhibit collective correlations.
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Introduction.— Error-avoiding quantum codes offer
a passive approach to the protection of quantum in-
formation [1]. (For reviews of this subject, see [2–
4].) Decoherence-free subspaces, or more generally,
decoherence-free/noiseless subsystems (DFSs/NSs), pro-
vide a promising avenue for protection when a symmetry
in the system-environment interaction decouples the NS
from the environment. Methods for identifying noiseless
subsystems have been presented [5–8] and the predicted
immunity to specific noise processes have been verified
experimentally in various settings. In particular, exper-
iments using trapped ions [9–12], nuclear magnetic res-
onance (NMR) systems [13–15], and photonic systems
[16–18] have shown the benefits of using decoherence-free
subspace or subsystem encodings to limit the effects of
decoherence.

The first experimental investigation of a decoherence-
free subspace was performed and reported by Kwiat
et al. [16]. Using linear optics, parametric down-
conversion (PDC), and postselection, they were able to
demonstrate the resilience of the singlet state |ψ−〉 =

(|V H〉 − |HV 〉)/
√

2 to engineered collective-dephasing
channels thereby establishing an excellent agreement be-
tween experiment and theory. Later, Mohseni et al., us-
ing optical rail qubits [17], and Ollerenshaw et al., using
NMR [15], independently provided the first experimental
demonstrations of how decoherence-free subspaces could
be used to improve the performance of quantum algo-
rithms. In both of these experiments, noise was induced
in a non-collective way by the authors. During that same
year, Eibl et al. recognized that a particular state which
is naturally emitted during a double-pair PDC emission
process [19] remains invariant under the collective inter-
actions [20] (see footnote therein). This state was first
introduced by Kempe et al. [21] as a four-qubit collec-
tive decoherence free subspace. Both of the singlet states
which span the four-qubit DF subspace were postselected
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in Ref. [18] along with a particular superposition of the
two. Later, a proposal was made for the postselection of
some, but not all, of the superposition states spanned by
the two singlets of the four-qubit DF subspace [22]. This
effort was extended by Gong et al. with a proposal for
an optical device which is capable of preparing, through
a postselection strategy, an arbitrary four-qubit DF sub-
space qubit state [23]. However, polarization-insensitive
beam-splitters of variable reflectivity are required for use
as the singlet state amplitudes are functionally depen-
dent on them. In practice, changing the reflectivity of a
beam-splitter amounts to replacing the beam-splitter al-
together. This feature limits the switching rate between
different qubit states. Furthermore, postselected states
in general suffer from several disadvantages. The most
significant drawback comes from the fact that state veri-
fication inherently destroys the state which was selected.
This limits the extent of utilization in many practical in-
stances. For example, a postselected state may be used
to transmit information from one point to another, how-
ever, the sender has no way of knowing when the message
state was transferred until the receiver actually measures
it. Postselection also limits the degree to which one can
scrutinize a quantum state since the measurement pro-
cess typically becomes difficult in more than one basis.

Here, we present a proposal for an optical device capa-
ble of heralding an arbitrary decoherence-free qubit state
encoded into the triply-degenerate four-qubit DFS. Suc-
cessful state preparation is heralded by coincident detec-
tion of two auxiliary photons. Rotation over the entire
Bloch sphere can be achieved using a single phase shifter
and a single polarization rotator. By including two ad-
ditional wave-plates, the device can further prepare all
three basis states of a DFS qutrit. This encoding pro-
tects the data qubit from arbitrary collective noise ef-
fects; collective rotations, collective phase drifts, as well
as combinations of both types. In order to read out these
encodings, we provide a method for distinguishing each
of the three DFS qutrit basis states in the logical basis.

We will begin with a discussion of the mathematical
structure inherent to the four-qubit DFS. We emphasize
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that we are encoding into a subsystem rather than the
four-qubit DF subspace mentioned above. The details
concerning the DFS state generator as well as the decod-
ing interferometer will then be provided. We will use the
terms noiseless subsystem and decoherence-free subsys-
tem interchangeably throughout the text.

The logical states.— Using Young’s tableau [24, 25],
we find the following decomposition of the state space
of four physical qubits: 2 ⊗ 2 ⊗ 2 ⊗ 2 = 1 ⊕ 1 ⊕ 3 ⊕
3⊕ 3⊕ 5. Here N denotes an N -dimensional irreducible
representation of SU(2). The singlet states arising in this
decomposition were considered in the works of Refs [18,
22, 23]. We will instead consider the triply-degenerate 3
representations and use four physical qubits to support
an encoded collective-DFS qutrit |ΨDFS〉 = ν0 |0L〉 +
ν1 |1L〉 + ν2 |2L〉, with |ν0|2 + |ν1|2 + |ν2|2 = 1. Each
logical basis state can be expanded as

|0L〉 = ω0,1

∣∣01L〉+ ω0,2

∣∣02L〉+ ω0,3

∣∣03L〉 , (1)

|1L〉 = ω1,1

∣∣11L〉+ ω1,2

∣∣12L〉+ ω1,3

∣∣13L〉 , (2)

|2L〉 = ω2,1

∣∣21L〉+ ω2,2

∣∣22L〉+ ω2,3

∣∣23L〉 , (3)

where
∑3
k=1 |ωi,k|2 = 1 (i = 0, 1, 2). The physical qubits

we consider are photons, each of which being described in
the polarization basis {|H〉 , |V 〉}. The eigenstates |j,m〉
of the angular momentum operator J2 can be calculated
using standard Clebsch-Gordan algebra. For the logical
zero region we find∣∣01L〉 = (

∣∣ψ+
〉
⊗ |V V 〉 − |V V 〉 ⊗

∣∣ψ+
〉
)/
√

2,∣∣02L〉 = (|HHV V 〉 − |V V HH〉)/
√

2,∣∣03L〉 = (|HH〉 ⊗
∣∣ψ+

〉
−
∣∣ψ+

〉
⊗ |HH〉)/

√
2, (4)

with |ψ±〉 = (|V H〉 ± |HV 〉)/
√

2. (We will also refer to

the states |φ±〉 = (|HH〉±|V V 〉)/
√

2 later.) Those which
span the logical one and two states are given by∣∣11L〉 = |V V 〉 ⊗

∣∣ψ−〉 , ∣∣21L〉 =
∣∣ψ−〉⊗ |V V 〉 ,∣∣12L〉 =

∣∣ψ+
〉
⊗
∣∣ψ−〉 , ∣∣22L〉 =

∣∣ψ−〉⊗ ∣∣ψ+
〉
,∣∣13L〉 = |HH〉 ⊗

∣∣ψ−〉 , ∣∣23L〉 =
∣∣ψ−〉⊗ |HH〉 . (5)

There is a great deal of freedom in the DFS encoding
process. The only requirement is that

∑3
k=1 |ωi,k|2 = 1

for i = 0, 1, 2. For the moment, we will restrict our atten-
tion to the space spanned by {|1L〉 , |2L〉} and present
a method for heralding an arbitrary DFS qubit state
cos θ |1L〉 + sin θeiφ |2L〉. We emphasize here that this
paper discusses a method for heralding an arbitrary DFS
qubit state as well as all three basis states which span a
DFS qutrit. We have not found a way to herald an arbi-
trary DFS qutrit state. That being said, we find it conve-
nient to initialize the noiseless subsystem using the states∣∣12L〉 = |ψ+〉 ⊗ |ψ−〉 and

∣∣22L〉 = |ψ−〉 ⊗ |ψ+〉, i.e., we will

choose to encode |Ψinitial〉 := cos θ
∣∣22L〉 + sin θeiφ

∣∣12L〉.

Explicitly, these states take the form∣∣12L〉 := (|V HV H〉 − |V HHV 〉+ |HV V H〉
− |HVHV 〉)/2 (6)∣∣22L〉 := (|V HV H〉+ |V HHV 〉 − |HV V H〉
− |HVHV 〉)/2 (7)

This encoding protects against arbitrary collective

noise processes Herror =
∑
j=0,x,y,z

∑4
α=1 cjσ

(α)
j , where

the coefficients cj govern the relative strength of the jth

collective Pauli operation
∑4
α=1 σ

(α)
j (with σ

(α)
0 := 1l(α)).

In fact, the state |ΨDFS〉 is invariant under the transfor-

mation U(τ) = exp (−iHerrorτ/~) = Ũ ⊗ Ũ ⊗ Ũ ⊗ Ũ

for some unitary Ũ . The initial coefficients νi re-
main unchanged as the system evolves under the col-
lective interactions. Although νi 7→ νi, the coefficients
ωi,j generally change, i.e., |QL〉 =

∑
k ωQ,k

∣∣QkL〉 7→∑
k ω
′
Q,k
∣∣QkL〉 , (Q = 0, 1, 2). The normalization condi-

tion
∑
k |ω′Q,k|2 = 1 is satisfied throughout the evolution.

Although the structure of each logical basis state may
change as the system experiences collective noise, each
logical basis state remains confined to its protected sub-
space.

Heralding an arbitrary DFS state.— It can be seen that∣∣12L〉 and
∣∣22L〉 are related through the transformation∣∣12L〉 = (σz)2(σz)3

∣∣22L〉 , (8)

with σz |V 〉 = |V 〉 and σz |H〉 = − |H〉. Since
∣∣12L〉 and∣∣22L〉 are tensor products of Bell-states they can each

be heralded using two independent heralded Bell-pair
sources [26–33]. We will assume that a particular imple-
mentation has been arranged to herald the logical state∣∣22L〉. Our objective is to describe an optical circuit which
performs the operation

O := cos θ1l + sin θeiφ(σz)2(σz)3. (9)

Our joint phase operation (σz)2(σz)3 relies on an exten-
sion of the work reported in Ref. [34]. There, Pittman,
Jacobs, and Franson (PJF) present probabilistic CNOT
and C-Phase gates using polarizing beam splitters. An il-
lustration of the PJF C-Phase design is provided in Fig.
1. This setup consists of two polarizing beam splitters
and two photon detectors. PBSs sketched with a box
and a diagonal line are assumed to transmit |H〉 and
reflect |V 〉. The beam splitters sketched with a box, a
diagonal line, and a circle are constructed to transmit
the polarization state |F 〉 := (|H〉 + |V 〉)/

√
2 and re-

flect the state |S〉 := (|V 〉 − |H〉)/
√

2. We will refer
to these beam splitters as HV-PBSs and FS-PBSs, re-
spectively. PJF presented this arrangement as a means
for performing probabilistic quantum parity check opera-
tions. For our purposes, we will view this device as way to
implement probabilistic C-Phase operations on the tar-
get qubit states entering via mode b. The target state
|in〉 = α |Hb〉+ β |Vb〉 enters the device along with a sec-

ond photon prepared in the state |Fa〉 = (|Ha〉+|Va〉)/
√

2
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FIG. 1: Schematic of the Pittman, Jacobs, and Franson quan-
tum parity check protocol [34]. For our purposes, we will view
this setup as a way to realize probabilistic C-Phase operations.

entering via mode a. The combined initial state |Ξ〉 =

(α |Hb〉+ β |Vb〉)⊗ (|Ha〉+ |Va〉)/
√

2 evolves to

|Ξ〉 → 1

2
[|FDF

〉 (α |Hd〉+ β |Vd〉)

+ |SDS
〉 (−α |Hd〉+ β |Vd〉)] +

1√
2
|Orej〉 , (10)

where |Orej〉 is a normalized state composed of ampli-
tudes which will result in zero or two photons being de-
tected. This device therefore allows for the probabilistic
application of a σz operation on the target state.

U

m1
m2
m3

m4
m5
m6

o1

o2

o3

o4

a1

a2

a3

a4

d1

d2

HNSG

d3

d4
V

FIG. 2: Circuit for generating a heralded and arbitrary DFS
qubit state. Successful state preparation is achieved by de-
tecting one and only one photon in modes d1 and d2 while
detecting zero photons in modes d3 and d4.

We can realize the joint operations 1l⊗ 1l and σz ⊗ σz
on two photons by combining two C-Phase gates at a
central FS-PBS. This arrangement is incorporated into
the heralded noiseless-subsystem generator (HNSG) in-
troduced in Fig. 2. In order to clearly explain the de-
tails concerning the joint phase operation we will tem-
porarily ignore spatial modes m1 and m6 and focus on
the evolution of input states originating from modes
m2, . . . ,m5. Suppose two arbitrary initial single pho-
ton encodings |inm3

〉 = α |Hm3
〉+ β |Vm3

〉 and
∣∣in′m4

〉
=

α′ |Hm4
〉+β′ |Vm4

〉 enter the HNSG along with two pho-
tons prepared in the states |Fm2

〉 and |Fm5
〉. The com-

bined system evolves to

|inm3〉
∣∣in′m4

〉
|Fm2〉 |Fm5〉 →

1

4
[|Fa3〉 |Fa4〉 |χ1〉+ |Sa3〉 |Sa4〉 |χ2〉] +

√
7

8

∣∣O′rej〉 ,
(11)

with

|χ1〉 = (α |Ho2〉+ β |Vo2〉)(α′ |Ho3〉+ β′ |Vo3〉),
|χ2〉 = (−α |Ho2〉+ β |Vo2〉)(−α′ |Ho3〉+ β′ |Vo3〉),

(12)

and
∣∣O′rej〉 is a normalized state which does not contain

any terms having one and only one (1AO1) photon in
modes a3 and a4. We see from Eq. (11) that a measure-
ment of 1AO1 photon at each detector with polariza-
tion |F 〉 leaves the target states unchanged. A measure-
ment of |Sa3〉 |Sa4〉 effectively applies the joint operation
|outo2〉 ⊗ |outo3〉 = σz |inm3

〉 ⊗ σz
∣∣in′m4

〉
. We can selec-

tively produce the logical states
∣∣12L〉 and

∣∣22L〉 using this
method.

In order to produce superpositions of the two logical
basis states we transform states occupying modes a3 and
a4 according to the circuit depicted in Fig. 2. After pass-
ing through the central FS-PBS, photon polarization is
projected to either |F 〉 or |S〉. Photons in mode a3 are
equally likely to be detected at d1 or d3. This measure-
ment is completely unbiased. The amplitudes of the su-
perposition encoding result from the measurement bias
imposed by the polarization rotation

U(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(13)

which rotates

|F 〉 7→ cos θ |F 〉 − sin θ |S〉
|S〉 7→ sin θ |F 〉+ cos θ |S〉 . (14)

This rotation allows one to specify the relative proba-
bility of applying either 1l ⊗ 1l or σz ⊗ σz to the states
entering via modes m3 and m4 by deeming the prepa-
ration stage successful upon measuring 1AO1 photon in
mode d2 and none in d4. In order to apply a relative
phase shift associated with these joint operations we first
apply the unitary operation

V (φ) =

(
1 0
0 eiφ

)
(15)

to states in mode a4 before applying U(θ). The polariza-
tion states |F 〉 and |S〉 are assumed to be ordered such
that V (φ) |F 〉 = |F 〉 and V (φ) |s〉 = eiφ |S〉.

As mentioned above, we assume that two heralded
Bell-pair generators have been triggered so that the state



4∣∣22L〉 = |ψ−〉⊗|ψ+〉 is emitted into the four spatial modes
m1,m3,m4,m6, i.e.,∣∣∣ĩn〉 = (|Vm1

Hm3
Vm4

Hm6
〉+ |Vm1

Hm3
Hm4

Vm6
〉

− |Hm1Vm3Vm4Hm6〉 − |Hm1Vm3Hm4Vm6〉)/2.
(16)

The total input state evolves according to∣∣∣ĩn〉 |Fm2
〉 |Fm5

〉 7→
1

4
√

2

[
|Fd2〉 |Vd3〉

(
cos θ

∣∣22L〉− eiφ sin θ
∣∣12L〉)

+ |Fd2〉 |Hd1〉
(
cos θ

∣∣22L〉+ eiφ sin θ
∣∣12L〉)]

+

√
15

4

∣∣O′′rej〉 , (17)

where
∣∣O′′rej〉 is a normalized state which is rejected. We

can therefore herald a general DFS qubit state

|Ψinitial〉 := cos θ
∣∣22L〉+ sin θeiφ

∣∣12L〉 (18)

conditioned on the measurement of the state

|Fd2〉 |Hd1〉 |vacd3〉 |vacd4〉 . (19)

In order to herald the logical state |0L〉 we first recog-
nize that∣∣02L〉 = (σx)1(σx)4

[
1√
2

(∣∣12L〉+
∣∣22L〉)] . (20)

The third DFS qutrit basis state can be heralded by set-
ting θ = π/4, φ = 0 and placing wave plates in modes m1

and m6 in order to rotate |H〉 ↔ |V 〉. The HNSG there-
fore has the ability to prepare all three basis states of a
DFS qutrit. The efficiency of successful state prepara-
tion, assuming two Bell-pairs and two unentangled pho-
tons each in the state |F 〉 have in fact entered the de-
vice, is roughly 3.1%. This probability should be multi-
plied by the probability of witnessing two simultaneously
heralded Bell-pairs, as well as as two |F 〉 states, in or-
der to obtain the overall preparation efficiency. The rate
of state generation will be low using current technology
since heralded Bell-pair schemes typically produce pairs
with a low probability of success.

Decoding the logical states.— Although there is a great
deal of freedom in the DFS initialization process, a decod-
ing mechanism must have the ability to distinguish every
form of a given basis state from the other logical basis
states. In other words, we must take into account all pos-
sible collective-noise channels |QL〉 =

∑
k ωQ,k

∣∣QkL〉 7→∑
k ω
′
Q,k
∣∣QkL〉 , (Q = 0, 1, 2). In general, a receiver can

expect to receive

|1L〉 =
(
α1 |V V 〉+ β1

∣∣ψ+
〉

+ γ1 |HH〉
)
⊗
∣∣ψ−〉

|2L〉 =
∣∣ψ−〉⊗ (α2 |V V 〉+ β2

∣∣ψ+
〉

+ γ2 |HH〉
)
.

(21)

o1

o2

t1
t2

t3

t4

o3

o4

b1
b2

b3

b4

FIG. 3: Schematic of an interferometer which can decode the
logical basis states of a four-qubit noiseless subsystem. The
setup consists of several HV-PBSs, two ordinary 50/50 beam-
splitters, and eight photon detectors.

Fortunately, these states are separable. A de-
coder which can distinguish |ψ−〉 from the set
{|V V 〉 , |HH〉 , |ψ+〉} will suffice for decoding in one ba-
sis. The interferometer depicted in Fig. 3 has this abil-
ity. This setup consists of two identical parts, one for
modes o1 and o2, and the other for o3 and o4. Since
these parts are identical, we will only focus on one of
them. Consider the top portion consisting of two input
modes o1 and o2, an HV-PBS, an ordinary 50/50 beam-
splitter, two additional HV-PBSs, and four detectors. It
can be shown that the input state

∣∣ψ−o1,o2〉 leads to detec-

tor clicks at either (t1, t2) or (t3, t4). The states within
the set {|V V 〉 , |HH〉 , |ψ+〉} can be shown to yield the
following detection events: |Vo1Vo2〉 ⇒ (t1, t1) or (t4, t4),
|Ho1Ho2〉 ⇒ (t2, t2) or (t3, t3), and

∣∣ψ+
o1,o2

〉
⇒ (t2, t4) or

(t1, t3). Here, (t1, t1) means that two photons are de-
tected at t1, (t3, t4) means that one photon is detected
at t3 and another at t4, etc. Identical results hold for
the bottom portion. This setup can easily distinguish
the states |1L〉 and |2L〉 since these measurement out-
comes are distinct. Furthermore, it can decode |0L〉 as
well given the fact that the space which spans |0L〉 does
not contain a |ψ−〉 contribution.

Conclusions.— We have presented a proposal for an
optical device that is capable of heralding an arbitrar-
ily encoded decoherence-free qubit. Our device takes as
input two heralded Bell-pairs, as well as two unentan-
gled photons, and outputs the appropriate state condi-
tioned on the detection of two auxiliary photons. Ar-
bitrary state preparation is achieved using a single po-
larization rotator and a single birefringent phase shifter
along with four number-resolving photon detectors. Al-
ternatively, the setup can also be used to postselect an
arbitrary DFS qubit state with a higher efficiency com-
pared to the heralding case. For postselection, modes
m1,m3,m4 and m6 are matched to the signal and idler
modes of two down-conversion sources. Successful post-
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selection results from the simultaneous detection of one
and only one photon in modes o1, o2, o3 and o4, along
with the appropriate detector clicks which accompany
the heralding scheme. The setup can tolerate unwanted
multiple down-conversions in a single crystal since modes
m1 and m6 never overlap with any other photon paths.

An interferometric decoding device which can distin-
guish all three DFS basis states in the logical basis was
also provided. This allows one to determine the ampli-
tudes associated with an arbitrary superposition encod-
ing. The problem of decoding the logical qubit state in
three mutually unbiased bases remains an open question.

Finding a proper configuration which will allow for the
preparation of an arbitrarily encoded DFS qutrit state
remains to be seen as well.
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M. Riebe, C.F. Roos, H. Häffner, W. Hänsel, M. Hen-
nrich, and R. Blatt, Phys. Rev. Lett. 103, 200503 (2009).

[13] L. Viola, E.M. Fortunato, M.A. Pravia, E. Knill, R.
Laflamme, and D.G. Cory, Science 293, 2059 (2001).

[14] E.M. Fortunato, L. Viola, J. Hodges, G. Teklemariam,
and D.G. Cory, New. J. Phys. 4, 5 (2002).

[15] J.E. Ollerenshaw, D.A. Lidar, and L.E. Kay, Phys. Rev.
Lett. 91, 217904 (2003).

[16] P.G. Kwiat, A.J. Berglund, J.A. Altepeter, and A.G.
White, Science 290, 498 (2000).

[17] M. Mohseni, J.S. Lundeen, K.J. Resch, and A.M. Stein-
berg, Phys. Rev. Lett. 91, 187903 (2003).

[18] M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A.
Cabello, and H. Weinfurter, Phys. Rev. Lett. 92, 107901
(2004).

[19] H. Weinfurter and M. Żukowski, Phys. Rev. A 64,
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