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Abstract. Adiabatic quantum computing is a promising route to the
computational power afforded by quantum information processing. The recent
availability of adiabatic hardware raises the question of how well quantum
programs perform. Benchmarking behavior is challenging since the multiple steps
to synthesize an adiabatic quantum program are highly tunable. We present an
integrated development environment for adiabatic quantum programming called
JADE that provides control over all the steps taken during program synthesis.
JADE captures the workflow needed to rigorously benchmark performance while
also allowing a variety of problem types, programming techniques, and processor
configurations. We have also integrated JADE with a quantum simulation engine
that enables program profiling using numerical calculation. The computational
engine supports plug-ins for simulation methodologies tailored to various metrics
and computing resources. We present the design, integration, and deployment of
JADE and discuss its potential use for benchmarking adiabatic quantum programs
by the quantum computer science community.
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1. Introduction

The discovery of quantum algorithms with significant speed-ups over their classical
counterparts has spurred interest in the research and development of quantum
computing systems. Several different but computationally equivalent models for
quantum computing have emerged including the model of adiabatic quantum
computing (AQC) [1]. Notionally, the AQC model for universal quantum computation
corresponds to adiabatic (i.e., slow) changes in the state of a quantum physical system.
While computationally equivalent to other models, AQC promises some intrinsic
benefits for ensuring fault-tolerant computation and reducing system complexity [2].

Additional attention to the AQC model has been stimulated by the recent
commercial realization of a special purpose processor that implements the adiabatic
quantum optimization (AQO) algorithm [3]. The processor, manufactured by the
Canadian firm D-Wave Systems, Inc., realizes a programmable Ising spin-glass model
in a transverse field [4]. Although the available hardware is not capable of universal
quantum computation, it does provide the first complete realization of a quantum
information processing system. Moreover, because the AQO algorithm is broadly
applicable to combinatorial optimization problems, it has garnered attention for use
in a number of application domains. Examples include problems in classification [5, 6],
machine learning [7], graph theory [8, 9, 10], artificial neural networks [11], and protein
folding [12] among others [13].

The availability of quantum hardware allows for benchmarking performance
relative to both quantum and classical metrics of computational power. Understanding
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benchmarks requires a detailed consideration of how the program and hardware
interact as well as how the benchmark metrics represent performance. For example,
it is known that performance of the AQO algorithm depends strongly on the specific
programming and hardware operation schedules as well as the problem input [14, 15].
Indeed, whereas some studies of the AQO algorithm have reported runtimes that scale
polynomially in problem size, others have suggested worst-case exponential behavior
or trapping in local minima [16]. An essential step in understanding these analyses
is to capture the influence that different programming choices have on these observed
behaviors [3, 16, 17, 18, 19, 20].

Figure 1. A flowchart highlighting the multiple steps taken to synthesize an
adiabatic quantum program for the AQO algorithm. A QUBO problem serves as
the classical input while the computed QUBO solution represents the returned
result. Each block in the diagram corresponds to an intermediate representation
of the program that depends on the choices made in the previous steps.

A significant source of the complexity in analyzing implementations of the AQO
algorithm arises from the multiple steps undertaken to synthesize the adiabatic
quantum program. The adiabatic quantum programming process illustrated in Fig. 1
begins with the reduction of a classical combinatorial optimization problem to a
quadratic unconstrained binary optimization (QUBO) problem that can be mapped
into the parameters of an equivalent Ising Hamiltonian. The Ising Hamiltonian must
then be mapped onto the processor. This transformation of the reduced problem into a
physically realizable program depends on both the hardware layout and the available
hardware controls. Ultimately, the computed solution will depend on all previous
decisions as well as the actual physics underlying the processor.

It is currently poorly understood how modifications at the various stages in
Fig. 1 impact the correctness and efficacy of the computed solutions. Reconciling
the seemingly contradictory results from previous studies as well as understanding
more recent experimental benchmarks requires investigating how these programming
choices impact performance. Motivated by this, we have developed a programming
environment that captures each step and synthesizes them together in an integrated
workflow. This workflow includes the development of adiabatic quantum programs
as well as the collection of diagnostic information for addressing questions about
performance. In the absence of actual hardware, we use numerical simulation to
evaluate the variety of programming and operational choices that can effect program
behavior. With the publication of recent benchmarks from available hardware [19],
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we are able to make comparisons between simulated and experimental results.
In this paper we describe the Jade Adiabatic Development Environment (JADE).

JADE follows the programming steps highlighted in Fig. 1 and captures both the
high-level problem input as well as the low-level quantum physical programming. In
addition, we have integrated JADE with a quantum simulation engine that supports
user-defined methodologies for running diagnostic analyses. In the current context,
we specialize the description of JADE to the case of the AQO algorithm, however, the
overall software framework extends to other adiabatic algorithms as well.

This paper is organized as follows. In Sec. 2, we summarize the theoretical
background leading to Fig. 1 including the quantum physical basis for AQO. In
Sec. 3, we present the model-based design of JADE including the system context,
implementations of each component, and our test-driven framework for program
verification and validation. We present usage results for the case of a recent benchmark
problem in Sec. 4 and we offer conclusions in Sec. 5.

2. Adiabatic Quantum Programming

In this section, we provide a summary of the physical theory and computer science
underlying adiabatic quantum programming. This includes the quantum physical
description of AQC as well as the steps taken to map the AQO to a hardware control
schedule.

2.1. Quantum Computational Model

The physical basis for the AQC model was first established in terms of quantum
annealing by Kadowaki and Nishimori [21]. Farhi et al. later formalized these ideas
as a means of solving a discrete optimization problem [1]. Several efforts have since
shown the equivalence between the AQC model and other quantum computing models
[22, 23]. In a generalized AQC algorithm [3], a quantum physical system of n qubits
is evolved under the Schrödinger equation

ih̄
∂ |ψ(t)〉
∂t

= H(t) |ψ(t)〉 (1)

according to a time-dependent Hamiltonian

H(t) = A(t)HI +B(t)HP (2)

that interpolates between the initial and final (problem) Hamiltonians, HI and HP ,
respectively, from an initial time t = t0 to a final time t = T . We shall assume t0 = 0.
In Eq. (2), the schedules A(t) and B(t) satisfy the boundary conditions A(0)� B(0)
and A(T )� B(T ), while the quantum system is initially prepared in the lowest-energy
eigenstate of HI . Given the instantaneous eigenvalue equations

H(t)
∣∣∣φ̃j(t)〉 = Ej(t)

∣∣∣φ̃j(t)〉 , (3)

with j = 0, 1, . . . 2n − 1 labeling states of monotonically increasing energy, the initial

state condition implies |ψ(0)〉 =
∣∣∣φ̃0(0)

〉
.

If the energy gap between the ground and excited states

∆(t) = min
j 6=0

Ej(t)− E0(t) (4)
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is always strictly greater than zero, i.e., ∀t : ∆(t) > 0, then the state |ψ(t)〉may remain
in the instantaneous ground state with high probability provided certain bounds on
the rate of change of the Hamiltonian are satisfied [1]. Consequently, evolution under
Eq. (1) to the time T prepares the final state |ψ(T )〉 in the lowest energy eigenstate
of HP . By making a judicious choice of the final Hamiltonian HP , the prepared final
state may encode the solution to a computation. In order to ensure the computation
is correct, the adiabatic condition must be satisfied. This implies that the final time T
is chosen to be much larger than the inverse of the minimum spectral gap of H(t) [1].
Failure to ensure this condition risks the possibility that the final state will not belong
to the ground state manifold of HP but rather to an excited state. It is notable that
the spectral gap depends not only on the problem to be solved, but also on how the
problem is implemented as a quantum program. Understanding input influence on a
program run time and error rates is an open question in quantum computer science.

2.2. Adiabatic Quantum Optimization

In specializing to the AQO algorithm, we require a quantum logical system of n qubits
with an initial Hamiltonian

HI = −
∑
i∈VP

Xi (5)

and final Ising Hamiltonian

HP = −
∑
i∈VP

αiZi −
∑

(i,j)∈EP

βi,jZiZj , (6)

where Xi and Zi are the Pauli operators for the i-th qubit, αi is the bias on the i-th
qubit, and βi,j is the coupling between qubits i and j. The graph GP = (VP , EP )
with vertex set VP and edge set EP defines the input problem as described below.
The final Hamiltonian is diagonal in the basis defined by the tensor products of the
±1 eigenstates of the Zi operators. This basis will also serve as the computational
basis. For comparison, the ground state of the initial Hamiltonian (and initial state
of the AQO algorithm) is the symmetric superposition of these computational basis
states and has an eigenvalue −n.

2.3. Quadratic Unconstrained Binary Optimization

Any binary optimization problem (BOP) can be mapped into the form of the final
Hamiltonian in Eq. (6). In doing so, we define the classical input to the AQO algorithm
as a quadratic unconstrained binary optimization (QUBO) problem. This is because
non-binary as well as constrained optimization problems can be reduced to QUBO
[24], and because QUBO has a natural correspondence with the Ising model. The
QUBO problem is to find

arg min
x∈Bm

xTPx, (7)

where x is a vector of m binary variables with xi ∈ {0, 1} and P is an m-by-m
symmetric real-valued cost matrix. We interpret P as a weighted version of the
adjacency matrix for the input (problem) graph GP , introduced in Eq. (6), with
m ≡ |VP | and (i, j) ∈ EP iff Pi,j 6= 0. From this point of view, programming the
AQO algorithm requires mapping the matrix P to the biases and couplings of the
Ising Hamiltonian. It has been shown previously by Choi that parameterization of the
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logical Ising Hamiltonian in Eq. (6) may be given in terms of the QUBO problem as
[14]

αi =
1

2
Pi,i +

1

4

m∑
j=1

Pi,j for i = 1 to m, (8)

and

βi,j =
1

4
Pi,j for i < j = 1 to m. (9)

We may also add an energy shift to the Ising Hamiltonian in Eq. (6) of the form

γ =
1

4

m∑
i,j=1

Pi,j +
1

2

m∑
i=1

Pi,i (10)

in order to match the energies of the solution state. Although this shift does not affect
the solution obtained using AQC, it must be accounted for in reporting the minimal
value in Eq. (7).

2.4. Hardware Embedding

Whether or not the logical Hamiltonian in Eq. (6) is supported directly on a given
hardware depends on the available connectivity of that hardware. We express the
connectivity of a targeted processor in terms of its hardware graph GH = (VH , EH).
When any vertex can be coupled to any other vertex and |VH | ≥ |VP |, then it is
possible to support all possible input problems using a one-to-one mapping between the
logical and physical qubits and the biases and couplings of the physical Hamiltonian.
However, when GH is less than fully connected, then there are certain input problems
that will not map directly into hardware. In such circumstances, it may be possible to
embed the problem graph GP into the hardware graph GH via graph minor embedding
[25, 15].

We formally define the minor embedding of a graph GP into a graph GH as a
mapping φ : VP → VH such that:

(i) each vertex i in VP is mapped to the vertex set of a connected subtree Ti of GH .

(ii) if (i, j) ∈ EP , then there exist τi, τj ∈ VH such that τi ∈ Ti, τj ∈ Tj , and
(τi, τj) ∈ EH .

If such a mapping φ exists, then GP is minor-embeddable in GH , or GP is a minor of
GH . In subsequent discussions, we simply use the term embedding as a reference to
minor embedding.

In adiabatic quantum programming, the vertices of the input graph Gp represent
the bits of a candidate solution to the QUBO problem, while the edges represent the
presence of nonzero coupling coefficients, as defined in Eqs. (7) and (6) respectively.
The vertices of the hardware graph GH represent the physical qubits and the edges
represent the couplings between qubits that are available in the hardware. An
embedding maps each vertex in VP to a subset of VH and each edge in EP to
edges between these subsets. When an embedding exists, then the resulting subgraph
G∗ = (V ∗, E∗) of the hardware graph defines the physical Ising model

HG∗ = −
∑
k∈V ∗

α∗kZk −
∑

(k,`)∈E∗

β∗k,`ZkZ` (11)
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The bias and coupling coefficients α∗k and β∗k,` depend on the selected embedding φ per
the requirements (i) and (ii) listed above. The physical Ising coefficients are defined
as [25]

α∗k = αi/|Ti| for each k ∈ VTi
(12)

and for k 6= `

β∗k,` =

 βi,j/edges(Ti, Tj) for k ∈ Ti and ` ∈ Tj and i 6= j
J for k ∈ Ti and ` ∈ Tj and i = j
0 otherwise

(13)

where edges(Ti, Tj) is the number of edges between trees Ti and Tj and the constant
J is chosen sufficiently large to force the qubits in each tree to be strongly correlated.
Setting these coefficients requires knowledge of the matrix P and the selected
embedding implied by G∗ [25, 15]. The embedding need not be unique and,
consequently, different instances of the Hamiltonian in Eq. (11) may correspond to
the same logical problem of Eq. (7).

A key dependency in finding an embedding is the target hardware graph GH .
The hardware graph defines the vertices and connectivity that are available to express
the Ising model. An example hardware graph is shown in Fig. 2. Finding those
graphs that can be embedded into a fixed hardware graph is an example of subgraph
isomorphism, which is known to be NP-Complete in difficulty. For small hardware
graphs, it is tractable to calculate the maximal minors of the graph, i.e., the minors of
GH whose subgraphs represent all other graphs contained in GH [15]. However, this
is a brute force approach and therefore does not scale favorably with hardware size.
Alternatives include heuristic algorithms that incorporate knowledge of GH or that
limit the types of input problems.

Figure 2. A hardware graph for the Rainier processor produced by D-Wave
Systems, Inc. The design is a 4× 4 lattice of interconnected unit cells, with each
unit cell is expressed as a K4,4 graph. The geometry of the hardware plays an
important role in determining which graphs can be embedded.
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2.5. Hardware Schedules and Program Execution

We restrict our discussion to AQC programs that use a time-dependent Hamiltonian
fitting the form of Eq. (2), which interpolates between an initial Hamiltonian HI and
the problem Hamiltonian HP according to the time-dependent annealing schedules
A(t) and B(t). More generally, individual biases and couplings can be time-dependent,
e.g., αi = αi(t). In either case, the time-dependent schedules specify the rate at which
the total Hamiltonian H(t) changes and, consequently, they play an important role in
the computational error rates. In particular, the final time T needs to be sufficiently
large to ensure the validity of the adiabatic condition, namely,

T � E
∆∗

(14)

where ∆∗ = mint ∆(t) is the global minimum of the spectral gap defined in Eq. (4)
and E = maxt〈dH(t)/dt〉 is the maximal rate of change during evolution [1]. In the
absence of information about ∆(t), it is difficult to ensure the adiabatic condition is
satisifed. This uncertainty is one source of the difficulty in benchmarking adiabatic
quantum programs. Recent results on amplifying spectral gaps [26] and developing
fault tolerant programs [27] suggest new methods for mitigating this uncertainty.

Although the annealing schedules are sufficient for coarsely specifying program
execution, it is ultimately necessary to provide the physical implementation of those
schedules in terms of hardware controls. The hardware controls that are available
for tuning the biases and coupling of a processor must be capable of expressing
programmed schedules. However, available controls are highly dependent on the
physics underlying a processor and ensuring the exact implementation of an arbitrary
annealing schedule may not be possible. Limitations on annealing schedules arising
from constraints and dependencies of control values creates additional uncertainty in
the benchmarking effort. Accounting for control constraints and quantification noise
is necessary to provide a clear picture of how processor differences impact program
behavior. For example, in the case of the family of processors from D-Wave Systems,
Inc., biases and couplings can be mapped directly to models for the underlying
superconductor Josephson-junction. However, the precision of this mapping is limited
by the resolution of the on-board digitial to analog converters (DAC’s) [4, 28].

In addition to the constraints expected from hardware design, it is also necessary
to anticipate the influence of noise on program behavior. Two types of noise affecting
quantum dynamics are classical noise in the controls and quantum noise in the system
dynamics. Quantum noise may be modeled as an undesired interaction between
computational qubits and non-control elements of the hardware. A specific example
is the case of thermal influences on the quantum dynamics, which invalidate the pure
state description in Sec. 2 and undermine the adiabatic conditions [29]. Similarly,
classical noise in the hardware controls yields a mixed-state description of the quantum
dynamics and may bias program execution away from the solution of interest.

Once the time-dependent behavior of the Hamiltonian H(t) has been fully
specified, it remains to execute the program. As noted before, the typical sequence
begins by initializing the quantum computational register in the ground state of the
initial Hamiltonian HI . How initialization is implemented varies with processor and,
more important, it may not be implemented perfectly. This additional source of noise
must also be accounted for in evaluating program behavior as it is likely to influence
the computational result. The remaining step in execution is to carry out the hardware
control schedule and, therefore, the programmed computation.
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2.6. Computational Readout and Problem Solution

After evolving to the final time T , the state of the computational register is determined
using a suitable measurement or readout method. For the case of the AQO algorithm,
the ground states at time T are computational eigenstates and, therefore, readout
implies a direct measurement in the computational (Z) basis. As with program
execution, it is more realistic to describe the readout process in terms of the
hardware controls. This description includes capturing any noise or uncertainty in
the measurement process.

The bit string generated from computational readout is the result of the quantum
annealing process. However, mapping this result back to a solution for the original
QUBO problem requires decoding measurements according to the inverse of the
embedding map. For those cases where a tree of physical qubits represents a single
logical qubit, it is necessary to check the value of all such qubits. In cases where
measurement results within a tree disagree, then various strategies can resolve the
uncertainty. One simple example is to use a majority vote. After decoding the
computational readout, a solution to the original QUBO problem is produced and
the program is complete. It may be necessary to repeat the execution of the program,
for example, to gather statistics on the readout or solution states, however, the steps
performed are similar to those described above.

3. Jade Adiabatic Development Environment

As presented in Sec. 2, programming the AQO algorithm for an arbitrary QUBO is a
highly tunable process. In this section, we describe a software-based implementation of
the process that provides control over each of the programming steps shown in Fig. 1.
We also describe the integration of this environment with a computational engine that
uses numerical simulation for profiling these programs. The simulator is intended for
providing insights into how program choices impact program performance.

The Jade Adiabatic Development Environment (JADE) is motivated by the
need to provide theoretical benchmarks for current and future adiabatic quantum
computing devices. In particular, it was designed to capture insights into the behavior
of processor architectures. This is accomplished by using a numerical simulator
backend to calculate the time-dependent processor state with respect to programmed
algorithm. JADE provides both an engine for simulating the programs that run on
adiabatic quantum computing devices and a development environment for specifying
program input. In addition, JADE provides methods for constructing adiabatic
quantum processor configurations, i.e., the quantum hardware, and for debugging
the implementation.

JADE is built using model-driven development, a software development
methodology with a strong focus on system use cases as well as architectural
extensibility and stability [30]. This methodology allows developers to manage system
complexity and rigorously verify and validate the final product implementation.
Our model-based approach uses the Unified Modeling Language (UML) to capture
design decisions and trace requirements [31]. We also rely heavily on an object-
oriented programming paradigm and software design best practices, such as test driven
development [32].
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3.1. Use Cases

JADE is designed to provide infrastructure for developing AQC programs and a
computational engine for simulating them. This includes functionality for parsing
input optimization problems, configuring new quantum hardware, and performing
program profiling. Given this broad scope in functionality, JADE was designed for
two distinct actors: the Analyst and the Engineer.

Figure 3. The Analyst and Engineer actors are distinguished by how they
use JADE. The Analyst is exposed to only a high-level input problem and
its computed solution. The Engineer has the ability to tune the low-level
programming steps and to analyze the computational readout.

An Analyst represents a JADE user whose primary goal is to solve a discrete
optimization problem. The Analyst requires a development environment that
automates programming choices and execution sequences. In contrast, an Engineer
expects to perform additional programming tasks such as customizing low-level
Hamiltonian parameters, constructing specialized processor configurations, and
defining embedding maps or annealing schedules. As seen in Fig. 3, this desired
JADE functionality is encapsulated by the following use case model:

• Create a Problem - the Analyst constructs a discrete optimization problem as
either a BOP or QUBO problem. In the case of the former, JADE converts the
BOP to its corresponding QUBO representation. This use case creates a Problem
entity.

• Solve a Problem - the Analyst selects a previously created Problem to solve using
AQO. This use case returns a Solution entity, which is the computed solution to
the input problem.

• Create a Processor - the Engineer creates a processor configuration by specifying
the number and connectivity of physical qubits. The Engineer may also customize
the processor by specifying classical and quantum noise models as well as
hardware control constraints. This use case creates a Processor entity.

• Create a Program - the Engineer creates a quantum program that is either a
logical program or a physical program. A logical program is synthesized from
selected Problem, Processor, and Embedding entities, while a physical program
is synthesized only from a Processor. For the physical program, the Engineer
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Figure 4. The JADE system context represents the interactions between the
Analyst and Engineer actors with the top-level data entities and the software.

sets the parameters of the final Ising Hamiltonian including biases, coupling, and
annealing schedules. Both instances of this use case create a Program entity.

• Execute a Program - the Engineer executes a Program. With JADE, the
Engineer submits the Program for simulation along with any profiling and
simulations options. This use case creates a Result entity that corresponds to
the computational readout following program execution.

3.2. System Context

Alongside the use case model, we also present the system context model in Fig. 4.
The system context describes the communication between JADE and its environment
as driven by the use case model. The system context details how the Analyst and
Engineer interact with the various input-output (I/O) data. As shown in Fig. 4,
the six types of I/O data are: Problem, Processor, Embedding, Program, Result and
Solution. These I/O entities are further specified in Sec. 3.3.

An Analyst only has access to Problem and Solution entities. However, we
anticipate that JADE must synthesize other entities internally, for example, a
Program is required to generate a Solution. Consequently, JADE will need private
non-interactive methods for internal synthesis of the remaining entities. Although
Processor, Embedding, and Program are generated by the system during the Analyst
workflow, we do not explicitly model that dependency in Fig. 4.

3.3. Component Architecture

JADE comprises three distinct components: JadeD, Sapphire, and NiCE. The JadeD
component is responsible for data creation, management, synthesis, and verification,
i.e., domain logic. The Sapphire component is responsible for the simulation of
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quantum programs according to user-defined plug-ins. The NiCE component, a pre-
existing open source project, is used to integrate the JadeD and Sapphire components
and to manage the computational work flow [33]. Each component provides an
independent API.

Figure 5. JADE comprises three components: JadeD, NiCE, and Sapphire.
The interfaces presented for each component are used to manage component
interactions and maintain the separation of concerns between domain logic
(JadeD), workflow management (NiCE), and numerical simulation (Sapphire).

Figure 5 highlights the interactions between the three components and the
associated interfaces. Both JadeD and Sapphire couple to NiCE, which provides a
user-driven coupling between program development and program execution. There is
a dependency between JadeD and Sapphire due the latter’s need to parse Program
data structures. This dependency is restricted to a very narrow subset of the JadeD
functionality and we expect future versions will isolate it in a separate shared library.

3.4. JadeD

The JadeD component handles creation and manipulation of quantum programming
by exposing a basic create, retrieve, update, and delete interface. This interface
enables generation, manipulation, and persistence of Entity data objects, which
represent high-level abstractions of the various types of I/O data. The functional
scope of JadeD includes parsing user-provided input into verified formats, validating
that input, and generating subclasses of Entity tailored to specific input types. We
define an IJadeD interface to specify how the JadeD component interacts with clients.
By defining a formal interface, we are able to offer the option of supporting multiple
JadeD variants.

As shown in Fig. 6, the IJadeD interface includes a number of methods for
creating and storing entity instances. The JadeD class is a realization of this interface
that provides a concrete implementation of the defined functionality. The JadeD
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Figure 6. The IJadeD interface defines the methods exposed to the user or
external application. JadeD implements this interface by making use of various
data entities that can be generated using a factory pattern and managed using a
common registry.

implementation presented here uses a variety of object-oriented design patterns with
the factory design pattern being the most significant. The factory pattern is used to
create and modify entities in an abstract manner, which pushes the underlying details
of construction to the varying entity subclasses. A registry enhances this factory
pattern by permitting the sharing of objects across domain boundaries. The use of
factories and a data registry allows future developers to add new entity specializations
in an easy and efficient manner. In Fig. 6, the factory pattern and the corresponding
data registry are implemented as EntityFactory and EntityRegistry, respectively.

3.4.1. Graph The graph data structure represents a set of vertices together with a
set of edges coupling those vertices. Graph structures are common to the Problem,
Processor, Embedding, and Program entities. The JadeD Graph model shown in Fig. 7
provides an abstraction of this structure in a way that promotes customization and
extensibility with respect to a given entity type.

In supporting this versatility, the Graph class utilizes two factory design patterns
for generating vertices and edges [30]. This ensures object polymorphism by allowing
custom subclasses to inject specialized edges and vertices. For example, this
mechanism allows the production of static graphs for Problem, graphs that evolve in
time for Program, and graphs that alter their state according to predefined conditions
or controls for Processor.

3.4.2. Problem The Problem class is a subclass of Entity that encapsulates the input
data describing a discrete optimization problem. It is created by either an Analyst or
Engineer in order to define the logical problem that the system will solve.

The current implementation of JadeD permits users to construct two distinct
types of Problem. The first is a weighted or pseudo-Boolean optimization problem.
The user inputs an arbitrary number of Boolean clauses in terms of the literals bi,
e.g., ((b1 AND b2) OR NOT b3), and each clause also has an associated real-valued
weight wi. The pseudo-Boolean function is then cast into an equivalent BOP by



An Integrated Development Environment for Adiabatic Quantum Programming 14

Figure 7. The Graph class encapsulates vertices and edges, whose respective
implementations use the VertexFactory and EdgeFactory factory patterns.

converting each Boolean literal to a corresponding binary variable, e.g., bi 7→ xi,
True 7→ 1 and False 7→ 0. The Boolean clauses are then recast into equivalent
binary arithmetic expressions. Denoting the i-th binary arithmetic clause as fi and
the corresponding weight as wi, the equivalent BOP over n bits is

arg min
x

∑
i

wifi(x), (15)

where x ∈ {0, 1}n is an n-bit vector [24]. In JADE, the BOP class stores
both the original Boolean clauses and the reductions to algebraic expressions with
corresponding weights.

The second type of Problem supported by JadeD is the QUBO problem defined
in Eq. (7). For this type, the input corresponds to the elements of the matrix P. The
matrix P is then interpreted as a weighted adjacency matrix and parsed by JadeD
into a Graph. Accordingly, the QUBO class is a subclass of Graph. The dependencies
between the various Problem subclasses are illustrated in Fig. 8.

As discussed in Sec. 2, a BOP of the form in Eq. (15) can be reduced to a
corresponding QUBO problem of the form in Eq. (7). The reduction, however,
requires introduction of penalty terms to replace multilinear terms with quadratic
or linear terms [24]. Expressing these penalties ultimately requires additional ancilla
bits which enlarge the binary state space. When JadeD instantiates a BOP, the
corresponding QUBO is immediately generated as part of the Problem. The relevant
BOP information is maintained as part of the Problem in order to facilitate developing
the Solution entity returned to the Analyst.

3.4.3. Processor The Processor entity encapsulates the structure and behavior of a
quantum hardware configuration. It generalizes Graph by using an adjacency matrix
with unit diagonal entries to indicate vertex availability and unit off-diagonal entities
for available connections between qubits. Processor wraps a subclass of Graph referred
to as Hardware and provides methods to query and manipulate its structure. The
Hardware subclass can also implement the embedding of an input Problem into the
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Figure 8. The dependencies of Problem on BOP and QUBO entities. Problem
generates QUBO from an input BOP. Alternatively, the QUBO may be supplied
directly.

hardware. This produces an Embedding entity, which subclasses Graph to express the
graph G∗ that defines the embedded HG∗ from Eq. (11).

Processor also allows users to specify a functional time dependence for the bias
and coupling parameters of vertices. The Control class encapsulates a set of functions
that give users the ability to manipulate physical quantities that directly influence
the physics of the quantum hardware. Custom noise models can also be added to
Processor through the Noise class, which can express both classical and quantum
noise functions.

Figure 9. The dependencies of the Processor class, which includes Hardware,
Noise, and Control entities. The Embedding entity is instantiated after a QUBO
is embedded into the Processor.
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3.4.4. Program The Program class is a subclass of Entity that is used to synthesize
specific instances of Problem and Processor into an implementation of the adiabatic
quantum optimization algorithm. A Program is the primary input to the Sapphire
simulation component and two different types can be constructed, physical or logical.
The main difference between these two types for Program is the presence or absence
of a high-level logical Problem definition.

Figure 10. The dependencies of the Program class. The presence of a Problem
distinguishes a logical program from a physical program, while both class types
have an associated Processor.

As shown in Fig. 10, type-switching is accomplished by composing Program
with two classes: Logical Part and Physical Part. The physical part of a Program
encapsulates the physical representation of the time-dependent Hamiltonian defined
in Eq. (2). This includes a reference to a Processor and the parameters defining
the final Ising Hamiltonian as well as the annealing schedule for each qubit. The
logical part of a Program encapsulates a physical program as well as a reference to the
specified Problem entity that is being solved. While the physical part of a Program
entity is always required, the logical part it is not. For Analyst use cases, the Program
always has a logical part. In the absence of a logical input, the Program corresponds
to an Engineer defined instance of an Ising Hamiltonian.

The mapping of the Logical Part into the Physical Part generates an Embedding
of the Problem into the Processor. As described in Sec. 2, embedding generates a map
between each logical vertex and a subgraph in the Processor. Within JadeD, this is
accomplished using a subclass of Graph called Embedding. The Embedding class finds
an embedding of the Logical Part into the provided Processor and Hardware. The
current Embedding class supports the maximal minors methods described by Klymko
et al. [15]. Its use is limited to a K4,4, but the extensibility of Embedding means that
the additional, greedy methods described by Klymko et al. can also be incorporated.

3.5. NiCE

The NiCE component is responsible for accepting user input, returning JADE output,
and managing the computational workflow. It also provides a graphical frontend
for JADE. NiCE is an existing open-source project that was leveraged for reducing
development time and ensuring extensibilty. In addition to I/O management, the
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NiCE component orchestrates the interactions between the JadeD and Sapphire
components. It enables users to create input files, launch simulations and examine
program metrics.

NiCE is based on a client-server model, where the server handles primary data
management and the client acts as the user frontend. It is also possible for the server
to manage remote workloads including, for example, simulations launched on remote
hosts. We use the NiCE server as the primary means for launching and monitoring
numerical simulations on both local and remote machines.

We have developed several plug-ins for NiCE that allow direct interaction with
the JadeD component for the creation and revision of the Problem, Processor, and
Program entities. A screenshot of one such NiCE form is provided in Fig. 11. NiCE
is based on the Open Source Gateway Initiative (OSGI) framework that, among other
things, permits dynamic registration of services. We use NiCE ’s implementation of
dynamic registration to recognize and load user-defined plug-ins into JADE. This
feature permits, for example, user-defined methods for simulation that are developed
independently from JADE to be added during runtime. Additional information about
NiCE is available from its website [33].

Figure 11. A cropped screenshot from the NiCE client for JADE showing the
synthesis of a Program from a logical Problem and a selected Processor.

3.6. Sapphire

Sapphire is the JADE component responsible for profiling Program entities. This
includes carrying out numerical simulations of the quantum dynamics as well as
other characterizations such as computing the time-dependent energy eigenspectra
and computational error rates. While its primary use is to compute the Result of
a Program, Sapphire permits a robust set of possible use cases. This is a result
of our use of a plug-in architecure to support user-defined extensions to Sapphire.
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For example, numerical simulation techniques can be tailored to specific questions
or physical assumptions. This promotes analysis at any desired fidelity and gives
the user the ability to compare different simulation techniques against experimental
benchmarks.

Figure 12. The ISapphire interface expresses both the Sapphire and
SapphireMPI classes. Sapphire makes use of the factory design pattern for
generating Simulations that are labeled by the type argument to execute.
SapphireMPI has an identical structure.

The extensibility of Sapphire is achieved through the interplay of a number
abstractions and design patterns, as shown in Fig. 12. Sapphire only exposes a few
methods to external clients through the ISapphire interface. This decoupling between
behavioral definition and actual implementation allows Sapphire to take on a number
of varied forms. For example, JADE currently provides a Sapphire implementation for
multi-threaded, shared memory architecture. We have also implemented SapphireMPI,
which uses the MPI (Message Passing Interface) library to execute simulations
on distributed architectures. The most significant difference between the two
implementations is the MPI dependency and the need to perform unique initialization
steps for SapphireMPI prior to beginning the numerical simulation.

All implementations of Sapphire must define the method execute. When execute is
invoked, Sapphire utilizes the JadeD file-parsing capabilities to construct the Program
object defining the parameters of the numerical simulation. Sapphire next parses
the simulations options provided by the user to create a Simulation object using the
SimulationFactory. The Simulation class is the basis for the extensibility of Sapphire
using plug-in libraries. A plug-in is essentially a subclass of Simulation that provides
a specialized numerical or algorithmic approach to simulation.

3.7. Simulation Plug-ins

The Simulation class is the primary unit of functionality within Sapphire and it is
used to encapsulate a specific mathematical evolution of a quantum state. The factory
design pattern allows Sapphire to remain completely agnostic to simulation details.
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However, there is a specific sequence of execution statements that are part of Sapphire.
Program execution always begins with an initialization statement followed by a loop
over a time-dependent solver. Once the exit condition is met, i.e., when t = T ,
the computational state undergoes readout before the program issues finalization
commands. All plug-ins for Sapphire must adhere to the Simulation class functionality
defined below.

• initialize: This method is used primarily to initialize quantum state of the
simulation. Additional task include setting up any pre-simulation conditions or
parameters.

• anneal : This method is called every time step by Sapphire to advance the system’s
quantum state. Developers should implement this method to update the state
vector with the mathematics inherent to their specific technique for solving the
time-dependent Schrödinger equation.

• queryState: This method is used to query the state of the simulation, including
the computational state of the simulated program. The output generated by
this method is highly variable and it can include the internal representation of
the quantum computational state or the complete eigenenergy spectrum can be
written to an output file. These output files can then be used as checkpoints for
restarting the simulation.

• measure: This method is called after anneal completes and it represents
measurement of the final computational state.

• finalize: This method is used for any final calculations or clean up routines.

Developers of simulation plug-ins must subclass Simulation and implement the
purely virtual anneal method. All other methods have default implementations that
can be overwritten for specialized functionality. JADE also provides a specialized
HamiltonianGenerator abstraction that permits decoupling of numerical dynamics
from the actual form of the Hamiltonian describing the system.

3.7.1. Plug-in Examples The Sapphire plug-in architecture maintains extensibility
to new simulation methodologies. A plug-in represents a user-created library that
implements the Simulation class defined above. JADE users are therefore able to
tailor quantum computing simulation techniques to specific problems or metrics of
interest. We provide examples of plug-ins that implement Simulation below.

• SimulationZero: This plug-in provides a zero-th order approximation about
the state of the computational register. Specifically, this simulation calculates
the time-dependent eigenspectrum and instantaneous eigenstates of the time-
dependent Hamiltonian defined by a Program. SimulationZero does not provide
information about the quantum dynamics but essentially diagonalizes the
Hamiltonian at each time step. This analysis provides information about the
time-dependent energy gap. Our implementation makes use of the Eigen library,
which is an open-source C++ template library for linear algebra [34].

• RK4Simulation: This plug-in provides a fourth-order Runge-Kutta solver for the
time-dependent Schrödinger equation as in Eq. (1). RK4Simulation uses two
time steps, one for the outer anneal method which updates the Hamiltonian
and a second for the inner evolve loop that numerically solves a finite-difference
equation. For each evolve time step, the plug-in updates the quantum state
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Figure 13. Examples of the plug-ins that implement the Simulation class.
SimulationZero and RK4Simulation both implement subclass Simulation and also
make use of IsingHamiltonianGenerator, a subclass of the HamiltonianGenerator.

and for each anneal it computes the instantaneous eigenspectrum. The plug-
in also implements the queryState method to provide a Snapshot output that
contains details about the computational state and eigenspectrum. Simulation
options include the time steps, number of Snapshot files created, and number
of eigenstates reported by queryState. This plug-in also makes use of the linear
algebra functionality provided by the Eigen library.

• FOPSimulation: The FOPSimulation plug-in is based on a first-order
perturbative solution to the time-dependent Schrödinger equation. It evolves
a pure state according to a first-order Magnus expansion for the time-dependent
propagation operator. Numerically, the propagation operator is diagonalized
by the anneal method and applied successively to the state during the evolve
method. This method has an error of O(∆t3). Similar to the other simulation
methods, Eigen is used to perform the matrix exponential and matrix-vector
multiplications.

3.8. Testing Framework

The design and implementation of JADE relies heavily on test-driven development.
A formal and rigorous testing model was defined before any actual product code
was developed. This has ensured that (1) the functionality of each test unit was
defined prior to its implementation and (2) the implementation of each source unit
was fully compliant with the predetermined functionality. We employed test-driven
development by modeling and designing surrogate classes whose sole purpose was for
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unit testing critical behavior in actual JADE classes. An example is shown in Fig. 14,
where we test the Simulation class using surrogates for most objects in the Sapphire
component. There is a corresponding SimulationTester class. Every class in JADE
has a corresponding test class in order to provide the greatest assurance that the code
adheres to design requirements.

Figure 14. SimulationTester is external to Simulation but capable of accessing
its methods.

4. Benchmark Demonstrations

As an example of how JADE can be used for benchmarking quantum programs, we
present results based on the recent experimental benchmarks reported by Boixo et al.
[19]. Their work was performed on the Rainier processor from D-Wave Systems, Inc.
and used the 8-qubit Ising model represented in Fig. 15.

Figure 15. The graphical representation of the 8-qubit Ising model
investigated by Boixo et al.[19]. Vertices 1-4 (green) represent biases of
+1 and vertices 5-8 represent biases of −1. All the edges represent +1
couplings between connected vertices.
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Boixo et al. showed both theoretically and experimentally that the 8-qubit model
in Fig. 15 exhibits a unique behavior. This particular 8-qubit problem exhibited a
distinctive behavior that differentiates between the quantum and classical annealing
dynamics. The Ising Hamiltonian has a 17-fold degenerate ground state. They used
multiple runs of the developed program on the Rainier processor to recover all 17
ground states from computational readout.

We have used the benchmark developed by Boixo et al. to demonstrate the
functionality of JADE. Specifically, we defined an 8-qubit Processor supporting the
K4,4, (bipartite) connectivity familiar from the unit cell in the Rainier processor as
shown in Fig. 2. We used an Embedding entity based on the maximal minor method
discussed by Klymko et al. [15] and we matched the mapping taken by Boixo et al.
We programmed linear annealing schedules, i.e., A(t) = t/T and B(t) = 1−t/T , and a
final time of T = 30. We neglected constraints on the controls, as the Ising parameters
were very simple, and we neglected all forms of noise in the hardware.

The developed Program entity was then simulated using the RKSimulation plug-in
described in Sec. 3.7.1. The simulation options given to this fourth-order Runge-Kutta
finite-difference solver invoked a quasi-static approximation for the Hamiltonian.
That is to say, we used an evolve time step of 0.0001 time units with updates to
the Hamiltonian made during every anneal with a time step of 0.05 time units.
The computational registers were initialized to the exact ground state of the initial
Hamiltonian in Eq. (5). For diagnostics, we computed the complete eigenspectrum
every 3 time units and output both the spectrum and the complete quantum state as
part of a Snapshot. The measure method returned an ordered listing of the output
states with their associated probabilities in the generated Result entity.

Figure 16. (left) The complete time-dependent eigenspectrum of the 8-qubit
benchmark. (right) Time-dependent spectrum for those states terminating in
computational ground states. Spectra are computed every 3 time units for a total
of 11 points for each of the 256 spectra lines.

The complete time-dependent eigenspectrum computed by JADE is shown in the
left panel of Fig. 16. This consists of 28 = 256 lines representing the time-dependent
energies of the 256 eigenstates of the Hamiltonian. At the final time T , there are 17
ground states with eigenenergy −8. This matches the eigenenergy and degeneracy
derived by Boixo et al. The 17 time-dependent spectra that result in a ground state
at the final time are shown in the right panel of Fig. 16. The presence of kinks in the
plot indicate that several states undergo avoided crossings with higher energy levels.
We also see that the definition of the spectral gap ∆(t) in Eq. (4) did not distinguish
between those instantaneous excited states that terminate in the final ground state
manifold from those excited states that remain excited at time T . States terminating
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Table 1. Degenerate ground states of the 8-qubit model and their computed
probabilities.

Decimal Binary Probability

0 0000 0000 0.0582245
1 0000 0001 0.0598409
2 0000 0010 0.0598409
3 0000 0011 0.0620211
4 0000 0100 0.0598409
5 0000 0101 0.0627384
6 0000 0110 0.0620211
7 0000 0111 0.0651488
8 0000 1000 0.0598409
9 0000 1001 0.0620211

10 0000 1010 0.0627384
11 0000 1011 0.0651488
12 0000 1100 0.0620211
13 0000 1101 0.0651488
14 0000 1110 0.0651488
15 0000 1111 0.0677486

255 1111 1111 4.79745× 10−4

in the ground state are not computational errors, but transitions from those states to
higher lying excited states can contribute to the observed error rate.

The computed populations for the 17 ground states at time T are presented in
Table 1 alongside the corresponding computational basis state. It is evident that the
first 16 states, i.e., the manifold of states with qubits 1-4 in the 0 (spin down) state,
have approximately equal probability while the 17-th state is roughly two orders of
magnitude less. However, all the ground states are significantly more likely than the
18-th most probable state, which has a probability much less than 10−6.

The time-dependence of the instantaneous population in the computational basis
is shown in Fig. 17. Recall that the system is initialized in the singular computational
ground state, as indicated by maximum probability at time t = 0. As time progresses,
the population remains in the instantaneous ground state until t ≈ 0.9T At this point
in the program schedule, the energy gap between the ground state and the lowest
lying excited states has narrowed sufficiently to permit population transfer, thereby
violating the adiabatic condition. Here, the lowest-lying excited states represent
instantaneous states that will terminate in the ground state at time t = T . There
are 16 such states participating in the apparent convergence to approximately 15/16
of the total probability and, as shown in Table 1. The 17-th ground state is not
visible in this plot, due to the scale of its contribution, however it undergoes a similar
behavior and contains approximately 1/162 of the population. The final 15/256 of
probability is distributed over the remaining 239 excited states.

Our simulation of the 8-qubit benchmark appears to be in qualitative agreement
with the experimental and theoretical results of Boixo et al. [19]. However, there are
several key differences between their program and ours. First, the annealing schedules
used by Boixo et al. are not linear and we expect that impacts our comparison
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Figure 17. Time-dependence of the population in the computational basis.
The resolution is 11 points for a range of T = 30.

of observed and computed probabilities. Second, we have not incorporated any
sources of noise into our simulation studies, whereas previous experiments on the
Rainier processor have suggested the influence of thermal noise may be significant.
Nevertheless, our intention of this demonstration has been to provide a verifiable
example that JADE is useful for benchmark analyses.

5. Discussion

The present availability and continuing development of adiabatic quantum computing
hardware opens up new avenues of research for defining methods of quantum
programming and computational benchmarking. Benchmark studies are necessary for
measuring actual computational power of processors and for improving programming
practices. Test vectors appropriate for benchmark studies must be well-defined
and the associated difficulty well-understood in order to reliably measure the
influence of programming and processor methodologies. We have developed a
software environment that offers an interactive approach to adiabatic quantum
programming. Most important, JADE parameterizes the programming process and
offers opportunities for tuning each step. JADE also provides a plug-in architecture to
enable extension to functionality through user-defined programming, simulation, and
diagnostic methodologies.

The adiabatic quantum programming sequence summarized in Fig. 1 is sufficient
for our current paradigm. However, we do not claim that it is necessary. The current
approach is certainly insufficient for other models of quantum computation, such
as gate-based models, where fault-tolerant protocols and quantum error correction
(QEC) add significant overhead and management complexity. Nevertheless, JADE
exemplifies the type of programming environment currently needed by the quantum
computer science community.
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