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Abstract. Hopfield networks are a variant of associative memory that recall

information stored in the couplings of an Ising model. Stored memories are fixed

points for the network dynamics that correspond to energetic minima of the spin

state. We formulate the recall of memories stored in a Hopfield network using energy

minimization by adiabatic quantum optimization (AQO). Numerical simulations of

the quantum dynamics allow us to quantify the AQO recall accuracy with respect to

the number of stored memories and the noise in the input key. We also investigate

AQO performance with respect to how memories are stored in the Ising model using

different learning rules. Our results indicate that AQO performance varies strongly

with learning rule due to the changes in the energy landscape. Consequently, learning

rules offer indirect methods for investigating change to the computational complexity

of the recall task and the computational efficiency of AQO.

Keywords : quantum computing, adiabatic quantum optimization, associative memory,

content-addressable memory, Hopfield networks

1. Introduction

Content-addressable memory (CAM) is a form of associative memory that recalls

information by value [1]. Given an exact or approximate input value, a CAM returns

the closest matching key in memory by making comparisons with stored keys. This

is in contrast to random access memory (RAM), which returns the value stored at

a provided key or address. CAMs are of particular interest for applications tasked

to quickly search large databases including, for example, network switching, pattern

matching, and machine vision [2]. An auto-associative CAM is a memory in which the

key and value are the same and partial knowledge of the input value triggers the recall

of its completed value.

Auto-associative CAMs have proven of interest for modeling neural behavior and

cognition [3]. This is due partly to their properties of operating in massively parallel

mode and being robust to noisy input. Indeed, these connections were part of the

motivation for Hopfield to propose a model for an auto-associative CAM based on a
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network of computational neurons [1, 4]. The Hopfield neural network stores memories

in the synaptic weights describing the connectivity between computational neurons

using an unsupervised learning rule. The initial network state propagates discretely

by applying an update to each neuron based on the synapses and all other neural states.

Hopfield showed that stored memories can become fixed point attractors under Markov

dynamics, thus enabling a new type of CAM. It is now understood that the memory

capacity for a Hopfield network depends strongly on the learning rule used in setting

the synaptic weights [5, 6, 7].

The theoretical underpinning of the Hopfield network is a classical Ising model in

which each binary neuron is mapped into a spin-1/2 system [3]. The synaptic weights

define the coupling between these spins and the susceptibility for a neuron to activate

is set by the applied bias. Because the energy of the Ising model represents a Lyapunov

function, the network dynamics guarantees convergence to a fixed point attractor in the

asymptotic limit [1]. Conventionally, Hopfield networks are formulated in terms of a

stochastic update rule governed by the Ising energy. However, finding stable points of

the Lyapunov function can also be viewed as minimization of the network energy [8]. In

the case of the Hopfield network, spin configurations that minimize the network energy

are the fixed point attractors and solutions to the stochastic dynamics.

In this work, we develop an auto-associative CAM that performs memory recall

using the principle of energy minimization as implemented by adiabatic quantum

optimization (AQO). AQO represents a novel approach to optimization that leverages

quantum computational primitives for minimizing the energy of a system of coupled

spin states [9, 10]. As part of the broader adiabatic quantum computing mode, AQO

has been investigated for a number of applications, including classification [11, 12],

machine learning [13], graph theory [14, 15, 16], and protein folding [17] among others

[18]. In each of these uses, the respective problems have undergone reduction first to

a discrete optimization problem that is subsequently mapped into the AQO paradigm.

By comparison, Hopfield networks offer a direct application of AQO when the latter is

implemented using an Ising model in a transverse field [19]. This is because no reduction

in the original problem is required to apply the principle of energy minimization.

Consequently, our theoretical model does not constitute a quantum neural network

but rather a conventional neural network solved with quantum computing principles.

The use of the AQO algorithm for performing memory recall in a Hopfield network

has been investigated previously by Neigovzen et al. in the context of pattern recognition

[20]. Specifically, they employ AQO to minimize the energy of a Hopfield network

expressed as an Ising Hamiltonian. Neigovzen et al. performed an experimental

demonstration of these ideas using a 2-neuron example in the context of NMR spin-based

encoding. Their results confirmed the recall accuracy using AQO for this small network

and invite questions as to how the details of Hopfield networks influence performance of

AQO. Our investigation complements these efforts by quantifying how different network

parameters, including size, memories, and learning rules, influence recall accuracy.

In a more general sense, Hopfield networks and CAMs are tasked with finding an
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unknown value within an unsorted database suggesting there is a strong connection

between this type of tagged search and Grover’s search algorithm. Previous work

by Roland and Cerf on using the AQO algorithm to perform search tasks makes this

connection clear [21]. In particular, Roland and Cerf show how Grover’s search algorithm

can be mapped into the AQO algorithm and how he terminal Hamiltonian serves the

role of the oracle. Our Hopfield-based CAM using AQO for memory recall is almost

equivalent to the search of Roland and Cerf for a specific learning rule (the Hebb rule).

The primary distinction is that an auto-associative CAM must differentiate between

members of a set of stored memories as well as the set of unstored memories, whereas

the oracle of Roland and Cerf deal with only acceptable states or memories. Our results

extend the search task to the context that the oracle must discriminate between tagged

and untagged keys.

In Sec. 2, we define the task of memory recall using a conventional Hopfield network

and describe the Hebb, Storkey, and projection learning rules for preparing the synpatic

wieghts. In Sec. 3, we introduce adiabatic quantum optimization, its use for memory

recall, and the basis for our numerical simulation studies. In Sec. 4, we present results

for example instances of Hopfield networks that demonstrate the behavior of AQO for

memory recall while in Sec. 5 we present calculations of the average recall success for

an ensemble of different networks. We present final conclusions in Sec. 6.

2. Hopfield Networks

We define a classical Hopfield network of n neurons with each neuron described by a

bipolar spin state zj ∈ {±1}. Neurons i and j are symmetrically coupled by the synaptic

weights wij = wji while self-connections are not permitted, i.e., wii = 0. The energy of

the network in the spin state z ∈ (z1, z2, . . . , zn)T is

E(z; θ) = −1

2

n∑
i,j=1

ziwijzj −
n∑
i=1

θizi, (1)

with θ = (θ1, θ2, . . . , θn)T and θi the real-valued activation threshold for the i-th neuron.

This form for the energy represents a classical version of the Ising model in which the

spin configuration describes the orientation of the n dimensional system. The dynamics

of the Hopfield network are conventionally modeled by the discrete Markov process

zi =

{
1 if

∑
j wijzj > θi

−1 otherwise
(2)

where the state of the i-th neuron may be updated either in series (asynchronously)

or in parallel (synchronously) with all other neurons in the network. The network

is initialized in the input state zi = z0,i and subsequently updated under repeated

application of Eq. (2) until it reaches a steady state

zi = sign

(∑
j

wijzj

)
(3)
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Steady states of the Hopfield network represent fixed point attractors and are local

minima in the energy landscape of Eq. (1) [3]. The stable fixed points are set by the

choice of the synaptic couplings wij and the network converges to the memory state

closest to the initial state z0. However, the network has a finite capacity to store

memories and it is well known that when too many memories are stored the dynamics

converge to a spurious mixture of memories. The emergence of spurious states places

a limit on the storage capacity of the Hopfield network that depends on both the

interference or overlap between the memories and the learning rule used to set the

synaptic weights.

2.1. Synaptic Learning Rules

Learning rules specify how memories are stored in the synaptic weights of a Hopfield

network and they play an important role in determining the memory capacity. The

capacity cn = p/n is the maximum number of patterns p that can be stored in a

network of n neurons and then accurately recalled [22]. Different learning rules yield

different capacities and we will be interested in understanding how these differences

influence performance of the AQO algorithm. Setting the synaptic weights wij for a

Hopfield network is done using a specific choice of learning rule that in turn generates a

different Ising model. Learning rules represent a form of unsupervised learning in which

the memories are stored in the network without any corrective back-action. We make

use of three learning rules that have been previously found to yield different capacities

for Hopfield networks in the classical setting.

2.1.1. Hebb Rule The Hebb learning rule defines the synaptic weights

wij =
1

n

p∑
µ=1

ξµi ξ
µ
j (4)

for a set of p memories {ξ1, ξ2, . . . , ξp}, each of length n with bipolar elements ξµi ∈ {±1}.
Geometrically, each summand corresponds to the projection of the neuron configuration

into the µ-th memory subspace. These projections are orthogonal if all p patterns are

mutually orthogonal. More generally, the Hebb rule maps non-orthogonal memory states

into overlapping projections. This leads to interference during memory recall as two or

more correlated memories may both be close to the input state. In the asymptotic

limit for the number of neurons, the capacity of the Hebb rule is cn = n/2 lnn under

conditions of perfect recall, i.e., no errors in the retrieved state. By comparison, under

conditions of imperfect recall the asymptotic capacity is cn ≈ 0.14 [5]. It is worth noting

that the Hebb rule is incremental as it is a sum over individual patterns. The rule is

also local since the synaptic weights depend only on the value of the adjacent neurons.
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2.1.2. Storkey Rule The Storkey learning rule defines the synaptic weights in an

iterative fashion as

wνij = wν−1ij +
1

n
ξνi ξ

ν
j −

1

n
ξνi h

ν
ji −

1

n
hνijξ

ν
j (5)

where ξν is the memory to be learned in the ν-th iteration for ν = 1 to p and

hνij =
∑

k=1,k 6=i,j

wν−1ik ξνk (6)

is the local field at the i-th neuron [7]. The final synaptic weight storing p memories

is given by wij = wpij. The Storkey rule is found to more evenly distribute the fixed

points and increases the capacity of the network. The asymptotic Storkey capacity

under prefect recall is n/
√

2 lnn, which represents an improvement over the Hebb rule.

As with the Hebb rule, the Storkey rule is incremental and permits the addition of new

memories.

2.1.3. Projection Rule The projection rule defines the synaptic weights for p memories

as

wij =
1

n

p∑
µ,µ′=1

ξµi C
−1
µµ′ξ

µ′

j (7)

where Cµµ′ = 1
n

∑n
k=1 ξ

µ
k ξ

µ′

k is the covariance matrix and C−1 is the inverse of C. This

rule has a theoretical capacity of n for linearly independent patterns and approximately

n/2 for interfering memories [6, 23]. The projection rule is neither local nor incremental

as adding memories to the network requires resetting each element using knowledge of

all other memories. In the limit of orthogonal memories, all three learning rules reduce

to the Hebb rule.

3. Memory Recall by Adiabatic Quantum Optimization

The learning rules defined in Sec. 2.1 offer different methods for preparing the synaptic

weights and the fixed points of a Hopfield network. Conventionally, the network finds

those states that satisfy the equilibrium condition of Eq. (3) by evolving under the

discrete Markov process of Eq. (2). However, the fixed points of a Hopfield network

are also minima of the energy function and hence known as stable fixed points. The

stability of these solutions is due to the quadratic form of the energy function, Eq. (1),

which is a Lyapunov function that monotonically decreases under updates of network

state [3].

As an alternative to fixed point convergence, we apply the principle of optimization

for finding the global minima of the energy function and for recalling a stored memory.

Our formulation uses the same synaptic weight matrix and underlying Ising model of a

conventional Hopfield network. However, we use this information to set the activation

thresholds θi in place of initializing the network into a state z0. This feature casts



AQO for Associative Memory Recall 6

recovery of an unknown memory in terms of minimizing the energy of the network. We

formally define the energy minimization condition as

z = arg min
z′

E(z′; θ). (8)

in which the vector θ represents the activation thresholds θi = Γz0,i and Γ is an

energy scale for the applied bias. The activation threshold θ now serves as an energetic

bias towards network states that best match the partial memory input. The classical

dynamics of the stochastic Hopfield network are recovered by initializing the state of all

neurons to an indeterminate value, i.e., zi = 0, whereupon the first update will prepare

the state z0.

In the absence of any bias, finding the global minima of E(z, θ) is equivalent to

computing the lowest energy eigenstates of the synaptic weight matrix wij with the

constraint zi ∈ {±1} (indeterminate values are not valid output states). Due to the

symmetry of the unbiased energy, the complement of each memory is also an eigenstate.

However, the presence of a non-zero bias breaks this symmetry and leads to a lower

energy for one memory state relative to the other stored memories. Global minimization

then returns the spin configuration that encodes the memory recalled.

Whether the expected memory is recalled depends on several factors. First, if the

applied bias is too large then the input state itself becomes a fixed point and the global

minimum is the input state z0,i. This behavior is unwanted since it does not confirm

whether the input or its closest match were part of the memory. This effect can be

detected by decreasing Γ and monitoring changes in the recall. An upper bound on Γ

can be calculated for the projection rule by comparing network energies of a memory

state ξk with a non-memory state z0, i.e.,

Γ <

∑
i,j ξ

k
i wijx

k
j − z0,iwijz0,j

2(n−
∑

i z0,iξ
k
i )

(9)

In the limit that the memories are orthogonal to each other as well as the input key,

this reduces to the result Γ < 1/(2n) previously noted by Neigovzen et al.[20].

Interference between memories prevents their discrimination when insufficient

knowledge about the aought-after memory is provided by the activation threshold θ

and input state z0. The number of memories stored in the network may also exceed the

network capacity and lead to erroneous recall results. As an example, perfect recall is

observed when using the Hebb rule in a classical network storing p orthogonal memories

provided p ≤ n, since there is no interference in these non-overlapping states. However,

the capacity for non-orthogonal memories is much lower and varies with learning rule,

as described above. In our optimization paradigm, interference manifests as degeneracy

in the ground state manifold. These degeneracies are formed from superpositions of

stored memory states. They are valid energetic minima that corresponding to the

aforementioned spurious states. Differences between learning rules seek to remove the

presence of spurious states while also increasing the network capacity.
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3.1. Adiabatic Quantum Optimization Algorithm

Adiabatic Quantum Optimization is based on the principle of adiabatically evolving

the ground state of an initial well-known Hamiltonian to the unknown ground state

of a final Hamiltonian. By defining the final Hamiltonian in terms of the Ising model

representing a Hopfield network, we use AQO to recover the ground state expressing

a stored memory. The Ising model for AQO will use the same synaptic weights and

activation thresholds discussed in Sec. 2 for the Hopfield network. The recall operation

begins by preparing a register of n spin-1/2 quantum systems (qubits) in a superposition

of all possible network states and adiabatically evolving the register state towards the

final Ising Hamiltonian. Assuming the adiabatic condition has remained satisfied, the

qubit register is prepared in the ground state of the Ising Hamiltonian. Upon completion

of the evolution, each qubit in the register is then measured and the resulting string of

bits is interpreted as the network state, zi.

Formally, we consider a time-dependent Hamiltonian

H(t) = A(t)H0 +B(t)H1 (10)

with piece-wise continuous annealing schedules A(t) and B(t) that satisfy A(0) =

1, B(0) = 0 and A(T ) = 1, B(T ) = 1. Together, the initial Hamiltonian

H0 = −
n∑
i

Xi (11)

and the final Hamiltonian

H1 = −
n∑
i,j

wijZiZj −
n∑
i

θiZi (12)

represent an Ising model in a transverse field. In the latter equations, the Pauli Zi and

Xi operators act on the i-th qubit while the constants θi and wij denote the qubit bias

and coupling, respectively. Of course, the latter quantities are exactly the activation

threshold and synaptic weights of the Hopfield network. We choose the computational

basis in terms of tensor product states of the +1 and −1 eigenstates of operators Zi
denoted as |0〉 and |1〉, respectively. In this basis, the correspondence between the binary

spin label z ∈ {0, 1} and the bipolar spin configuration label s ∈ {±1} is s = 2z − 1.

The quantum state of an n-qubit register is prepared at time t = 0 in the ground

state of H1,

|ψ(t = 0)〉 =
1√
2n

2n−1∑
x=0

|x〉, (13)

with |x〉 = |x1〉 ⊗ |x2〉 . . .⊗ |xn〉 and

x =
n∑
i=1

xi2
i−1, xi ∈ {0, 1} (14)



AQO for Associative Memory Recall 8

the binary expansion of the state label x. The register state ψ(t) evolves under the

Schrodinger equation

i
d |ψ(t)〉
dt

= H(t) |ψ(t)〉 (15)

from the initial time 0 to a final time T . We set ~ = 1. The time scale T is chosen so

that changes in the register state ψ(t) are slow (adiabatic) relative to the inverse of the

minimum energy gap of H(t). The minimum energy gap ∆min is defined as the smallest

energy difference between the instantaneous ground state manifold and those excited

states that do not terminate as a ground state. Provided the time scale T � ∆−1min, then

the register remains a ground state of the instantaneous Hamiltonian and evolution to

the time T prepares the ground state of H(T ) = H1. However, the exact scaling for the

minimal T with respect to Ising model size and parameterization is an open question.

After preparation of the final register state ψ(T ), each qubit is measured in the

computational basis. Because the final Hamiltonian H1 is diagonal in the computational

basis, the prepared ground state may be directly related to a valid state of the Hopfield

network. The state of the i-th qubit is measured in the Zi basis and the result zi ∈ {±1}
is the corresponding solution for the i-th neuron in the network.

3.2. AQO Recall Accuracy

The accuracy with which a memory is recalled using the AQO algorithm can be measured

in terms of the probability that the correct (expected) network state is recovered. We

define a measure of the probabilistic success for recall as

fx =

 1, Pans ≥ x

0, Pans < x
(16)

where Pans is the probability to recover the correct memory and x ∈ [0, 1] is the threshold

probability. Denoting the correct memory state as φans, the probability to recover the

correct memory can be computed from the simulated register state as

Pans = | 〈φans|ψ(T )〉 |2 (17)

We assume in this analysis that the register state is a pure state and therefore neglect

sources of noise including finite temperature and external couplings.

From this definition for probabilistic success, we consider average success for an

ensemble of N instances as

〈fx〉 =
1

N

N∑
i=1

f ix, (18)

where f ix represents the probability for success of the i-th instance of n neurons storing

p memories. This is a binomial distribution with variance 〈∆fx〉 = 〈fx〉(1− 〈fx〉). This

statistic will be used for characterizing the behavior of an ensemble of simulated recall

operations.
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3.3. Numerical Simulations of the AQO Algorithm

We use numerical simulations of the time-dependent Schrodinger equation in Eq. (15)

to compute the register state ψ(T ) prepared by the AQO algorithm. These simulations

provide the information needed to calculate the probabilistic success fx as well as

the average success with respect to network size and learning rule. Our methods are

restricted to pure-state simulations, which provide an idealized environment for the AQO

algorithm and permit our analysis to emphasize how learning rules influence success via

changes to the Ising model.

Our numerical methods make use of a first-order Magnus expansion of the time-

evolution operator

U(tj+1, tj) = exp

[
−i
∫ tj+1

tj

H(τ)dτ

]
(19)

over the interval [tj, tj+1] for j = 0 to J − 1. We use a uniform time step ∆t = tj+1− tj
such that T = J∆t. Starting from the initial state Eq. (13), an intermediate state is

generated from the series of time evolution operators

|ψ(tj′)〉 =

j′−1∏
j=0

U(tj+1, tj) |ψ(0)〉 (20)

In these calculations, the action of the jth time-evolution operator onto the appropriate

state vector is calculated directly [24, 25]. The simulation code is available for download

[26]. In our simulations, we use annealing schedules A(t) = 1 − t/T and B(t) = t/T ,

and we do not place any constraints on the qubit connectivity or the coupling precision.

4. Recall Instances

We present some example instances that demonstrate the behavior of the AQO algorithm

for memory recall. We begin by considering the case of p orthogonal memories. A

convenient source of orthogonal bipolar states is the n-dimensional Hadamard matrix for

n = 2k, whose columns are orthogonal with respect to the usual inner product. We use

these memories to prepare the synaptic weights and corresponding Ising Hamiltonians.

For orthogonal memories, all the learning rules prepare the same weights.

In the absence of any bias, θi = 0 and we expect recall to recover each of the p

encoded memories with uniform probability. The quadratic symmetry of the energy

in Eq. (1) also makes the complement of each memory state a valid fixed point. This

implies a total ground state degeneracy of 2p in the absence of bias. An example of the

time-dependent spectral behavior is shown in Fig. 1 for the case p = n = 4, and all the

eigenstates converge to a single ground state energy. The same case but with θ set to

the first memory and Γ = 1 is shown in Fig. 2. The presence of the bias removes the

ground state degeneracy and, not apparent from the figure, the prepared ground state

matches the biased input state.
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We next consider an instance of non-orthogonal memories, that is, for which the

inner product between memory pairs is non-zero. Interference is expected to cause

failure during recall when the applied bias is insufficient to distinguish between similar

states. With p = n = 4, we use the memory set

Σ =


+1 −1 −1 +1

−1 +1 −1 −1

+1 +1 +1 +1

−1 +1 +1 +1

 (21)

where columns 1, 2, and 3 overlap while columns 2 and 4 are orthogonal. We use an

input state z0 = (1,−1, 1,−1) that most closely matches the first memory Σi,1. For

these simulations, we use an annealing time T = 1000 that was found to yield numerical

convergence in the ground state amplitudes. Both time and energy are expressed in

arbitrary units since all calculated quantities are independent of the absolute energy

scale of the Ising model.

Figures 3 through 6 plot the probability to recall the answer state as a function

of Γ ∈ [0, 1]. The recall probability varies with input bias, number of memories, and

learning rule. For p = 1, there is only one memory stored in the network and any non-

zero bias distinguishes between the memory and its complement. Similarly, all three

rules behave the same for the case of p = 2 in Fig. 4. This is because there are not

significant energetic differences between the rules using the first two memories above.

The Hebb and Storkey rules coincide exactly, while the projection rule is identical for the

lowest energy eigenstates. However, for the case of p = 3 in Fig. 5, there is a distinction

between all three rules. The answer state probability using the projection rule is nearly

the same as was observed for fewer memories while the Hebb rule shows a shift to larger

bias. This is a result of the added memory having a lower unbiased energy than the

answer state for this learning rule. As a result, larger bias must be applied to lower the

answer state below that of the new memory. In contrast, the Storkey shifts to smaller

bias as a result of memory addition. This is because the rule mitigates interference

using the local field calculation. However, with the addition of another memory, p = 4,

the Hebb rule becomes more evenly distributed in energy across the degenerate memory

states while the Storkey rule shows a slight shift to larger bias and the projection rule

remains unchanged.

5. Statistical Recall Behavior

Our results for recall success of individual Hopfield networks indicate there is a large

degree of variability in performance with respect to the stored memory states. We have

found it useful to average performance across a range of problem instances. Under these

circumstances, we use the average success probability defined by Eq. (18) to quantify

the relative performance of each learning rule in terms of neurons n, memories p, and

bias Γ. As noted earlier, these statistics correspond to a binomial distribution with
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parameter 〈fx〉.
We first investigate the average AQO recall behavior with respect to the bias Γ. An

ensemble of problem instances is constructed for n = 5 neurons in which each instance

consist of p memories with elements sampled uniform random from {±1}. Among the p

memories, one is selected as the answer state while the other memories are selected to be

distinct from the answer state. The answer state is then chosen as the input state, which

defines the activation threshold θ. The simulation computes the full quantum state using

an annealing time T = 1000. The probability to occupy the expected answer state is

then computed using Eq. (16) with a threshold x = 2/3. The exact value is not expected

to be significant provided it is above the probability for a uniform superposition.

Figure 7 shows the average success probability for recovering the answer state as

the bias increases from 0 to 1. Relative to the number of p memories, we find the

learning rules exhibit distinct behaviors. For the Hebb rule there is a step-wise decrease

in success as the number of memories increases and none of the Γ values read unit success

except for the trivial p = 1 case. A similar but weakened version of this behavior is seen

for the Storkey rule at values of Γ below 0.25. However, above this value the Storkey

rule recovers unit success. The projection rule demonstrate a very different behavior;

unit success is seen for all non-zero values of Γ for all value of p except the trivial case

which succeeds with Γ = 0 as expected.

The plots in Fig. 7 indicate when the prepared ground state has greater than 2/3

probability to be in the answer state given an input that matches a memory. The better

performance of both the Storkey and projection rules is a result of how they modify the

energy landscape. Both rules effectively raise the energy barrier between fixed stable

points, while the Hebb rule preserves interference between memories. As the number

of memories increases, so does the interference within the the typical problem instance.

This behavior is underscored by the strong dependence of the Hebb rule on the number

of stored memories p.

A related behavior is investigated by providing an input state to the network that

has a Hamming distance 1 from a certain memory state, and all other memory states

are chosen to be at least Hamming distance 2 away from the input state. This can be

interpreted as a case where the input state is noisy or incomplete. In Fig. 8, the success

probability for this case is plotted with respect to Γ, number of memories, and learning

rule. Note the similarity between the behavior of the Hebb and projection rules.

We have also investigated the influence of overbiasing the network toward the input

state. As noted previously, there are loose upper bounds on Γ for the Hebb rule based

on energetic analysis [20]. Figure 9 plots the average failure, which is measured as

the likelihood that AQO recalls the input state. In these plots, the input state is not

among the stored memories and, in fact, is at least Hamming distance 1 away from

all of them. We see that the failure rate increases as Γ increases. This indicates that

the system is overbiased. It is notable that the learning rules exhibit very different

behaviors for failure. Whereas the Hebb rule terminates with lower failure probability

as the memories are increased, both the Storkey and projection rules reach unit failure



AQO for Associative Memory Recall 12

with sufficiently large Γ. A similar plot is shown in Fig. 10 for the case that the input

is at least Hamming distance 2 from all the stored memories. The sensitivity to failure

increases with the increase in Hamming distance due to the decreased interference with

true memory states.

The annealing time T is expected to also play a role in the recall success. Because

the state dynamics must be adiabatic relative to the minimum energy gap, the diversity

of instances used for 〈fx〉 are also likely to support a diversity of ∆min. This implies

that there may be some maximum T for the ensemble which ensures every instance is

quasi-adiabatic. In Fig. 11, we show a series of recall averages for different annealing

times. For small values of T , the average success is low, especially as p approaches n.

This suggests that many instances do not meet the x = 2/3 threshold for success. As T

increases, the average success also increases but only up to a limit that depends on each

learning rule. For the Storkey and projection rule, this limit is after T = 100, while for

the Hebb rule the limits seems to occur after T = 20. For annealing times larger than

these limits, the average recall success for each learning rule does not make a significant

change. This indicates the annealing time is not the limiting factor in recall success

and, therefore, it is likely the adiabatic condition has been met.

6. Conclusions

We have presented a theoretical formulation of auto-associative memory recall in terms

of adiabatic quantum optimization. We have used numerical simulations to quantify

the recall performance with respect to three different learning rules (Hebb, Storkey, and

projection) and we have accumulated statistics on recall accuracy and failure across an

ensemble of different network instances. We have found that the probability to populate

the expected ground state using AQO is sensitive to learning rule, number of memories,

and size of the network. Our simulation studies have been limited in size, but for these

small networks there are notable differences in both the success and failure rates across

learning rules.

As noted in Sec. 1, the use of AQO for memory recall is closely related to its

use for searching an unsorted database [21]. Roland and Cerf constructed the search

problem around an oracle that matches the Hebb rule for the Hopfield network and they

considered the task of recovering any valid memory. By contrast, we have shown how

the activation threshold is interpreted as bias in the Ising model. Thus, the activation

threshold serves as classical input, i.e., a tag, into the oracle construction for unsorted

search. We have not attempted to optimize the annealing schedule associated with

memory recall. We think it is unlikely that the optimized annealing schedule recovered

by Roland and Cerf for untagged search would extend to memory recall due to the

influence of the activation threshold on the energy spectrum. However, we have found

that the Hebb rule is sub-optimal with respect to recall accuracy when the stored

memories are non-orthogonal. This indicates that the optimized annealing schedule

for memory recall also likely depends on learning rule.
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We have observed a significant dependence on recall accuracy and minimal

annealing time with respect to learning rule. These results support recent work by

Katzgraber et al. that argued the relative height of energy barriers play a fundamental

role in determining which Ising Hamiltonian are challenging for AQO [27]. Historically,

learning rules that provide well separated but broad energy basins have been the goal

of classical Hopfield networks. For the projection rule, which performs best of the three

studied here, its known that the classical energy basins are better separated than either

Hebb or Storkey for non-orthogonal memory sets. The dependency of average success

rate with respect to learning rule found here bear out the expectations of Katzgraber

et al. It is therefore interesting to consider as to whether learning rules may provide

implicit control over the complexity of solving specific search tasks.
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Figure 1. Time-dependent eigenspectrum for p = 4 orthogonal memories stored in a

network of n = 4 neurons in the absence of bias, θi = 0. For orthogonal memories, the

spectrum is the same for the Hebb, Storkey, and projection learning rules.
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Figure 2. Time-dependent eigenspectrum for p = 4 orthogonal memories stored in a

network of n = 4 neurons in the presence of bias. We define θ in terms of the first input

memory and Γ = 1. For orthogonal memories, the spectrum is the same for the Hebb,

Storkey, and projection learning rules.
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Figure 3. Recall probability with respect to applied bias Γ for n = 4 neurons and

p = 1 memory from the set in Eq. (21).
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Figure 4. Recall probability with respect to applied bias Γ for n = 4 neurons and

p = 2 memories from the set in Eq. (21).
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Figure 5. Recall probability with respect to applied bias Γ for n = 4 neurons and

p = 3 memories from the set in Eq. (21).
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Figure 6. Recall probability with respect to applied bias Γ for n = 4 neurons and

p = 4 memories from the set in Eq. (21).

Figure 7. Recall success rate when the input is Hamming distance 0 away from a

memory stored using n = 5 neurons.
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Figure 8. Recall success rate when the input is Hamming distance 1 away from a

memory stored using n = 5 neurons.

Figure 9. Recall failure rate when the input is Hamming distance 1 away from all

stored memories with n = 5 neurons. The failure rate increases with Γ because the

input state has formed a fixed point in the network.
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Figure 10. Recall failure rate when the input is Hamming distance 2 away from all

stored memories with n = 5 neurons. The failure rate increases with Γ because the

input state has formed a fixed point in the network.

Figure 11. Recall success rate with increases in annealing time T . In all cases, small

values of T suppress the success implying the adiabatic conditions has not been met.

However, the recall success converges for sufficiently large values of T , an indication

that the adiabatic condition is satisfied.
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