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Abstract: Software-defined networking (SDN) offers robust and flexible strategies for 

managing diverse network devices and uses. We adapt the principles of SDN to the 

deployment of quantum networks, which are composed from unique devices that operate 

according to the laws of quantum mechanics. Quantum networks must classically exchange 

complex metadata between devices in order to carry out information for protocols such as 

teleportation, super-dense coding, and quantum key distribution. We show how quantum 

metadata can be managed within a software-defined network using the OpenFlow protocol. 

We begin by defining a quantum physical layer QPHY within the classical network stack to 

express the quantum communications channel and we then describe how OpenFlow 

management of classical optical channels is compatible with emerging quantum 

communication protocols. We next give an example specification of the metadata needed to 

manage and control QPHY behavior and we extend the OpenFlow interface to accommodate 

this quantum metadata. We conclude by discussing near-term experimental efforts that can 

realize SDN’s principles for quantum communication. 
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Introduction 

Software-defined networking (SDN) is an emerging and fast growing technology for interconnecting 

network devices and forwarding packets based on unified policies and security enforcements. SDN 

offers deep programmability of the network at all layers and even extends the network state into 

applications for enabling better pathing decisions. The OpenFlow protocol plays a key role in enabling 

SDN architectures through its simple, flexible and adaptable programming interface [1]. OpenFlow 

provides a clean implementation of data and control plane separation that is essential to the success of 

the SDN paradigm. Its external, centralized control plane enables programing of unified forwarding and 

security policies and supports the creation of flexible, reconfigurable networks as illustrated in Fig. 1. 

OpenFlow was originally designed for working with packet switched networks. Later versions of 

OpenFlow included support for circuit switched networks making it more comprehensive in creating a 

converged control plane architecture for dynamically switching circuits and forwarding packets.  

OpenFlow has even proved to be more efficient than GMPLS label switching for managing optical 

networks [2].  
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Figure 1. A schematic overview of SDN implemented with OpenFlow. 

The OpenFlow protocol is rapidly developing to provide additional functionality. OpenFlow version 1.3 

offers IPv6 support [3], while optical extensions are one significant feature added in version 1.4. In 

particular, optical port properties added in OpenFlow 1.4 offers opportunities to configure and monitor 

optical frequencies and power of transmitter lasers [4]. This new feature is a key element in bringing the 

SDN framework closer to optical network management and programming. In addition, optical network 

management functions enable OpenFlow to compete with 3-way handshake (3WHS) protocols for 

providing dynamic path discovery and path setup for optical networks. OpenFlow also supports topology 

discovery and network instrumentation for measuring performance statistics. These qualities have made 

OpenFlow one of the single most important standards-based protocols driving SDN architectures today. 

In particular, OpenFlow makes it easy to create network architectures that interconnect new types of 

network devices. 

Recently, several new optical communication models have emerged from research in the field of 

quantum communication. Quantum communications makes use of quantum optical signals to encode 
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and transmit information [5]. This offers unique features such as non-local correlations (entanglement), 

teleportation of quantum states, and the ability to discern when channel eavesdropping has occurred. 

While multiple experimental demonstrations have validated these ideas, demonstrating the integration 

of quantum communication methods with existing network protocols, channels, and data forwarding 

mechanisms remains an open challenge. Various ideas and models to propagate information related to 

quantum communication metadata are being postulated, including software-defined communication 

models to transport quantum state information [6]. However, there is still no information about how 

software-defined quantum metadata transport could be implemented. Building robust quantum network 

architectures and protocols is clearly a complex task and involves coordination between both the 

quantum and classical channels [7].  

 

In this paper, we address the inclusion of quantum metadata communication in the SDN paradigm by 

showing its compatibility with the OpenFlow protocol. We investigate how quantum communication 

networks can be built using SDN principles and how the OpenFlow protocol can be extended to account 

for the metadata that is specific to quantum networks. Because of its programmability and compatibility 

with management of optical networks, OpenFlow is highly suitable to control the new attributes defining 

the classical channel that carries metadata between various quantum devices. In particular, OpenFlow 

version 1.4 extensively supports attributes specific to lambda switching in optical networks that we will 

show allows the ability to manage quantum optical channels interconnecting quantum network devices. 

However, development of network protocols and channel access specifications are needed to integrate 

quantum metadata communications within OpenFlow. We use OpenFlow extensions to transport 

quantum metadata attributes between quantum devices and the centralized OpenFlow controller. 

Quantum metadata extensions to OpenFlow enable attributes to be forwarded to other devices and 

applications in a quantum network by using a media agnostic classical channel on an optical network. 

 

The paper is organized as follows. In Sec. 2, we provide an introduction to the principles of quantum 

communication including the unique concerns of encoding and protecting quantum states. We introduce 

a new networking layer, QPHY, to express the quantum physical layer used to transmit and receive 

quantum optical signals. We then define the quantum metadata attributes expected for two different types 

of quantum network devices, i.e., quantum repeaters and quantum memories. In Sec. 3, we discuss how 

quantum metadata for these devices can be managed by the OpenFlow protocol and we provide specific 

prototype extensions for doing this. We also present models for the link layer interaction between 

quantum devices that account for the role of the OpenFlow agents and controller in the network. These 

models provide implementations of the OpenFlow protocol that tested using a network controller.  We 

then conclude in Sec. 4 by discussing additional extensions to OpenFlow needed to manage the quantum 

metadata attributes that are likely to arise in future quantum networks. 

1. Software-defined Networking for Quantum Communication and Quantum Metadata  

Quantum communication is distinguished from conventional (classical) communication by its use of 

quantum physical phenomena for encoding, transmitting, and decoding information [8]. In particular, 

photons, as quantum mechanical particles, may encode information that is not accessible in a classical 
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context. This includes normalized superpositions of binary values, i.e., 0’s and 1’s, expressed as qubits, 

as well multi-photon entangled states that exhibit non-local correlations. Indeed, entanglement has been 

hailed as the essence of quantum physics as it leads to unexpected correlated behavior between spatially 

remote photons. With respect to communication, entanglement may be viewed as a resource that is 

generated and consumed during a protocol [9]. The presence of entanglement is necessary for the unique 

features of quantum communication, including teleportation, dense-coding, and secure key distribution. 

Perhaps unsurprisingly, these quantum resources are also prone to errors and noise that do not occur 

within a classical context. This includes decoherence, which is the loss of entanglement, as well as bit-

flip and phase-flip errors in the qubit values. Overcoming these errors has led to the development of 

quantum error correction (QEC) codes and control techniques to either correct or circumvent information 

loss during noisy transmission environments [10, 11]. Thus, a quantum communication protocol 

operating on a realistic quantum channel must incur some resource overhead associated with error 

correction code and control mechanisms. 

 

A notable use of entanglement is quantum teleportation, which permits the non-local exchange of a 

quantum state between two users. Quantum key distribution (QKD) is another example, in which the 

non-local correlations observed between photons in an entangled state can be used to generate a 

correlated sequence of bits. These bits then serve as a synchronized entropy source between two uses for 

purposes of encryption. Super-dense coding is a third example, in which entanglement is used to perform 

a unique function, in this case compression. Finally, distributed quantum communication is a general 

example in which multiple users coordinate their individual processing efforts by using entangled 

resources. These types of quantum networks may be used for distributed quantum computation or 

quantum sensing protocols. The distribution of entanglement between users plays a fundamental role in 

establishing the resources needed for quantum communication. In light of decoherence and photon loss 

mechanisms, there are practical limits on the distance over which an entangled photon state can be 

transmitted. Due to the quantum no-cloning principle, it is not possible to ‘amplify’ an entangled state 

or to ‘repeat’ the state as is typically done for extending the range of classical transmission. Instead, 

several schemes for extending transmission distance based on entanglement purification methods have 

been developed. These approaches distill multiple noisy copies of an entangled state into a single high 

fidelity resource. Concurrent storage of quantum states is challenging and the development of quantum 

repeater networks is currently a focus of intense research. 

 

Even without quantum memory, there have been numerous demonstrations of quantum communication 

systems. The majority of these have been limited to point-to-point communication systems and typically 

with a focus on proof-of-principle demonstrations. However there have also been efforts to mature 

networking within a quantum communication context. One of the first significant efforts at quantum 

networking was by DARPA in 2002 [12] with more recent efforts in Europe [13], Japan [14], and China 

[15]. These efforts have previously addressed the question of how to integrate quantum communication 

within a network by using dedicated dark fiber, wavelength division multiplexing, or a mixture of 

quantum optical channels. However, all of these networks have targeted application-specific designs, 

most notably, QKD. This has left open the question of how quantum networking can be made adaptive 

and developed in line with more modern networking approaches, such as SDN, as well as how to 
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integrate these communication models with existing infrastructure Application-specific networks, such 

as a QKD network, provide a dedicated service that can be designed to minimize complexity and 

optimize functionality. But there is also a need to develop quantum networks that are robust and 

reconfigurable. This is beneficial for communication engineering as it can help reduce the effort needed 

to upgrade network functionality at minimal costs. Software-defined networking has previously been 

shown as an efficient method for designing and managing classical optical networks, but the extension 

of these ideas to quantum networks and their associated differences has not yet been realized. 

 

Our design of SDN for quantum communications begins by decomposing the capabilities provided by 

quantum protocols into the traditional networking layers [5, 6]. These layers however must be extended 

to accommodate the unique behaviors required for quantum networking. This includes entanglement 

distribution, entanglement purification, and quantum error correction. In addition, we must define a 

quantum physical layer within this stack that expresses quantum channel access. This so-called QPHY 

layer has been realized previously in many state of the art network testbeds but its role in the networking 

stack has not been explicitly defined. We further develop an interface for the QPHY layer through which 

metadata defining the quantum physical behavior is passed. Ultimately, it is this interface that permits 

management of the quantum network using the principles of SDN. In particular, we emphasize that the 

generation of entanglement within a quantum network arises from coordination of the classical and 

quantum control planes defining the network. 

 

Many previous experimental and theoretical efforts have focused either on the development of high-

fidelity network parts or on the development of fixed-utility networks, e.g., for QKD systems. This 

includes experimental implementations of several matter-based systems as nodes as well as optical 

systems for communicating between nodes. These are important milestones in the development of 

quantum networks, but they do not address the development of integrated networks. Rather they serve 

as source material for implementing a network’s quantum layer. Although quantum network 

development has received significantly less attention than nodal and link engineering, there is substantial 

research in the field of quantum network science [19-22]. Quantum network science investigates the 

capabilities that quantum information carriers add to network based applications [23, 24]. More directly 

related to the development of quantum network architecture is the work of van Meter and Touch, who 

have discussed the relevance of separating concerns in the design of a quantum repeater network [25, 

26]. Those results support our claim that the protocol layers required for quantum networking must 

separately account for functional concerns. In the case of a quantum repeater network, van Meter and 

Touch provide a protocol stack that includes purification and error correction operations as separate 

layers. Moreover, Van Meter, Touch, and Horsman have elaborated on the design of recursive quantum 

repeater networks [27], which can be used for achieving scalability in the repeater networks. 

 

In addition, there has been considerable theoretical and experimental effort surrounding the engineering 

of quantum key distribution (QKD) networks [12, 13, 14, 15, 16, 20]. These have been heroic efforts to 

demonstrate possible capabilities for secure communication. Results from those systems, however, are 

specific to the QKD application. They represent fixed-point solutions and, in the broad sense of quantum 
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network science, they have limited functionality. Nonetheless, the integration techniques used in QKD 

networks offer insights into the problems faced with developing quantum-classical hybrid systems.  

As an example of the potential for software-defined methods in quantum communication, we have 

recently demonstrated a preliminary implementation of software-defined quantum communication [6]. 

That work was limited in context to a single quantum network application, namely classical 

communication using super-dense coding. The quantum physical layer was based on polarization-

encoded qubits, while the control and data layers were software defined. Our implementation of the 

super-dense coding protocol permitted a sender Alice to transmit a classical message to the receiver Bob. 

The software-defined data layer was then used to implement the encoding and decoding procedures for 

the transmission. 

We continue this section by first defining the quantum physical sublayer and its metadata specification. 

We then discuss the role that the metadata plays in the generating entanglement within the network and 

then consuming that entanglement as part of a communication protocol. 

2.1 Quantum Physical Sublayer (QPHY) Definition 

A typical quantum network of interacting devices, such as transmitters, receivers, repeaters and routers, 

may be decomposed into major functional layers based on separations of concerns. As with conventional 

networks, quantum networks require management, control, data, and physical layers [5]. Links between 

devices establish quantum communication channels that are then used for transmitting quantum states 

of information. Network nodes must also make use of classical communication channels to carry 

information characterizing the usage of the quantum channel, leading to the definition of quantum 

metadata [6]. More broadly, quantum metadata specifies the attributes needed by a network to 

accommodate applications requesting access to the quantum communication channel.  

 

The quantum physical layer, abbreviated by QPHY, is the expression of the quantum communication 

channel within the networking hierarchy. The QPHY layer is realized by the network device responsible 

for encoding and decoding, transmitting and receiving, repeating and routing quantum information. We 

focus exclusively on the use of quantum optics for expressing QPHY. In this context there are two 

variants of quantum channels for consideration, namely, discrete and continuous variable optical modes. 

Both types are capable of supporting quantum information but they differ significantly in the physical 

encoding. A typical example of a discrete variable channel uses the orthogonal states of photonic 

polarization to encode binary values. A continuous variable channel performs the same task, for 

example, using quadrature variables of a weak optical field. In both cases, these encodings support 

coherence and entanglement between channel uses due to quantum physical phenomena. We will not 

address further the distinctions between discrete and continuous variable channels, as our approach to 

quantum network management intends to offer a flexible separation of these physical details. 

 

Functionally, QPHY represents the translation of classically encoded information into a quantum 

encoding, or vice versa. For a quantum transceiver, this means mapping classical input symbols to 

elements of an alphabet of quantum states or, conversely, projecting a quantum state via measurement 
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into a classical value. For a quantum memory or repeater device, QPHY must implement operations that 

include storing intermediate quantum states and performing quantum logic across multiple channel uses. 

A typical example is an entanglement distillation protocol used to overcome decoherence by 

transforming many lossy channels into a single high-fidelity channel. This requires parsing the 

purification protocol into the operational sequence and reporting the successful channel creation back to 

the upper layers. More generally, the functionality of the underlying quantum optical hardware 

determines the diversity of the QPHY interface. The ability to standardize a common interface to the 

QPHY layer is needed for supporting the extension of SDN to reconfigurable quantum networks.  

 

As an example of the functional requirements for quantum network devices, we consider a network 

composed from quantum memory and repeater nodes. Representations of the data layers expressed by 

these nodes are shown in Fig. 2. A quantum memory node stores quantum information that may be acted 

upon remotely by a read or write request or locally by a measurement request. In between requests, the 

memory node maintains the coherency of the stored information. This is accomplished using a quantum 

error correction (QEC) protocol, which protects against information loss to the surrounding environment. 

The implementation of a QEC code must be tailored to the physical layer of the node as well as the 

period of time for which information is stored. In addition, a storage node may apply a control 

techniques, such as state stabilization, to suppress environmental noise. These protocols must be 

executed using nodal resources that are resolved to particular storage locations, i.e., network addresses. 

Intra-node address resolution is also required for carrying out read/write requests from other nodes. By 

comparison, a quantum repeater node links quantum communication channels between remote devices 

by performing entanglement swapping or teleportation operations. The repeater node may also use QEC 

and control protocols for improving the quality of service of the quantum channel, i.e., for increasing its 

entanglement. A repeater node uses state preparation methods that applies purification and entanglement 

swapping stages. Each stage is responsible for preparing the resources needed to ensure transmission 

quality. Our example has differentiated between the storage and repeater operations. Of course, an actual 

network node may support both storage and repeater functionality. In this case, the design of the node 

will determine how these functionalities are merged, e.g., as single, mixed or independent interfaces. 

We shall assume that a network node functioning as both a memory and a repeater supports each 

interface independently.  

 

  

Figure 2. A representation of the logical operations performed by two quantum network devices (left) 

a quantum storage node and (right) a quantum repeater node. 
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As indicated by the description of the storage and repeater nodes, the different behaviors of a quantum 

network device can be controlled within a software-defined networking environment. For both the 

storage and repeater nodes, the QEC and control protocols represent metadata information that tunes 

functionality. Read/write requests will be part of the conventional data message, while channel access 

specifications, including channel wavelength and routing information will be part of the control plane. 

 

Finally, as a point of comparison, the physical layer in a conventional optical network, abbreviated as 

PHY, expresses the optical communication channel including hardware for encoding and transmitting 

classical states of information. The PHY layer is also essential for the operation of a quantum network, 

where it may be used for standalone and handshaking protocols, or used to carry side-channel 

information for quantum transmissions. Standards and interfaces for conventional PHY layers are well-

defined for a variety of transmission medium including optical communication, e.g., IEEE 802.3 

standards. 

2.2 Quantum Metadata Specification 

Quantum metadata specifies the attributes needed by QPHY to accommodate specific uses of the 

quantum channel. This is classical information that moves through the network and characterizing how 

applications intend to make of the quantum network. Each type of network device may have different 

metadata requirements, e.g., a router versus a transmitter, but the metadata should be consistent across 

devices of the same type. In Table 1, we present a prototype specification of the quantum metadata 

needed to manage the behavior of quantum network storage and repeater devices. These specific 

metadata fields include identifiers and specification for the communication protocol, the error correction 

protocol, and the quantum channel access. For example, the QCHANNEL field is a provided as a unique 

identifier that specifies the quantum channel to which the metadata applies. This would include quantum 

network address information that signifies the source and destination of the quantum signal. The 

QCHANNEL_SPEC field specifies additional parameters used for characterizing the transmission and 

reception of the quantum signals. This may include wavelength, power, symbol rate, etc. A quantum 

network device must be capable of supporting transmission of the requested specification in order for 

communication to be successful.  

 

In Table 1, the QCOM field identifies the type of protocol to be implemented between devices. Example 

tasks include QKD, quantum teleportation, and dense coding. The QCOM_SPEC field identifies 

additional specifications for how the protocol should be implemented. This may include specifying the 

protocol needed for QKD, the remote-state and gate preparation steps for quantum teleportation (QT), 

and the encoding and decoding tables used for super-dense coding (SDC). For the repeater and storage 

nodes, the QEC field identifies the quantum error correction protocol that should be used for detecting 

and correcting errors in the hardware. Examples include specific error correction strategies. The 

QEC_SPEC field would specify the encoding and decoding methods as well as verification circuits to 

be used during the correction procedure. These indicated methods and circuits implicitly impose 

requirements on how and when the quantum channel is access but the metadata does not define how the 

physical layer should achieve this implementation. 
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Table 1. Quantum Metadata Specification. 

Metadata Field Description 

QCHANNEL Unique identifier for channel on 

quantum network 

 

QCHANNEL_SPEC QCHANNEL parameters for TX and RX 

 

QCOM Identifier for information theoretic 

protocol  

QCOM_SPEC Parameters for QCOM field 

 

QEC Quantum error correction protocol 

identifier 

QEC_SPEC Quantum error correction protocol 

specification 

2. OpenFlow Based Quantum Metadata Communication Model 

Given a quantum metadata specification, a quantum network must manage the flow of this metadata 

between network devices to support application requests. This can be accomplished using the OpenFlow 

specification. In this model, the metadata fields for each node are polled by the OpenFlow controller 

and, when necessary, are changed by the node when a request from the OpenFlow controller is received. 

 

 

Figure 3. A schematic of the flow of metadata between an OpenFlow-enabled 

quantum network device and an OpenFlow controller managing network protocols. 
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Humble and Sadlier have previously suggested a possible software defined transport model for 

transmitting the metadata [6]. We extend this previously postulated quantum communication model to 

accommodate SDN functionality to transport quantum metadata across the network and make it available 

to other components through an SDN controller. As shown in Fig. 3, the middleware within a quantum 

network device (node) interfaces with the underlying quantum hardware that receives quantum optical 

transmissions. The network device performs quantum data processing, for example, by measuring single 

photon state and recoding their arrival times to classify any associated quantum state attributes.  

 

Metadata generated by the network device is converted to OpenFlow flags by a flow module within the 

OpenFlow agent. A modified OpenFlow controller polls and collects these quantum metadata attributes 

from those devices capable of providing such data. The flow module extracts metadata from the 

middleware and transforms these attributes into the corresponding OpenFlow statistics (Fig. 4). 

Extensions to the OpenFlow statistics tables are written to accommodate the new set of statistics specific 

to quantum metadata. The OpenFlow flags are handed over to OpenFlow daemon for passing the 

metadata in the OpenFlow format to the controller. 

 

Quantum 
Hardware

Middleware

Software

Qflow openflow

Quantum 
Hardware

Middleware

Software

openflow qflow

Quantum Channel

Quantum Metadata Quantum Metadata

Control Channel

Applications

Controller
Control Channel

 

Figure 4. Proposed Quantum Network Device Model with OpenFlow Control Channel 

 

Quantum metadata can be encoded as part of the OpenFlow statistics and information between the device 

and the controller can be exchanged synchronously via a set of request and response directives.  Quantum 

metadata can also be transferred to the controller asynchronously from the device whenever the local 

metadata counters are changed or modified by the device middleware. In OpenFlow, state information 

and statistics are exchanged using multi-part messaging directives to accommodate information need to 

break down larger messages into multiple messages, each not exceeding the size of 64Kb.  Metadata for 

quantum communication can follow the multipart messaging format to make sure all the attributes are 

accommodated. 
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 3.1 OpenFlow Extensions to carry quantum metadata 

Extending the OpenFlow layer of a quantum network device requires that a new OpenFlow table be 

defined to hold quantum metadata metrics.  This table, denoted as QCM, will hold the current quantum 

metadata state of the device and may be overwritten by the local middleware due to changes in the 

underlying quantum communication channel (Fig. 5). The QCM table is queried by the OpenFlow 

controller for poling the QCM state of each device within a given topology to establish a unified view 

of each device QCM under its control. From the controller, other devices and applications can learn 

about the QCM state of any of all of the devices managed by the controller. 

 

OpenFlow Controller

Standard 
Flow Tables

Device ID QCM_AttributesTime_Stamp_1

QCM Table
(Custom)

Actions
Packets In Packets Out

Control Plane 
Communication
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P
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Figure 5. A new OpenFlow table to accommodate metadata attributes 

 

The controller can establish QCM synchronization either by synchronous or asynchronous methods that 

are defined in the OpenFlow specification. Synchronous communications are a set of request and reply 

messages to exchange the QCM table state between the quantum device and the controller using a multi-

part message format. Asynchronous methods are used when the QCM state changes and a device needs 

to update the controller without waiting for an upstream request. Asynchronous updates will propagate 

the new QCM data as it arrives without any delay. 

 

The default request/response message primitives in OpenFlow are sufficient to accomplish 

synchronization for quantum network devices. A new OpenFlow table called OFPMP_QCM is created 

to hold all the metadata attributes. However, it is necessary to modify the response messages to include 

the QCM table states. In particular, the request headers of the multi-part message response must be 

changed to support quantum metadata attributes. As shown in Figs. 6 and 7, new attributes are stored in 
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the QCM group table for processing and applying necessary actions to the incoming traffic. The newly 

defined OpenFlow table will be added to the pipeline for processing the traffic hitting the controller 

during the packet-in events. If there is a match on any of the QCM table attributes, the programmed 

actions will be applied to the flows.  

 

Request-Header  Request-Body 

struct ofp_qcm_request{ 

struct ofp_header header; 

uint16_T type; 

uint8_t pads[4]; 

uint16_t flags; 

uint8_t body[]; 

}; 

OFP_ASSERT(sizeof(struct 

ofp_multipart_request) == 16); 

enum ofp_multipart_request_flags{ 

OFPMPF_REQ_MORE = 1 << 0}; 

 struct ofp_qcm_stats{ 

uint16_t QCHANNEL 

uint16_t QCHANNEL_SPEC 

uint16_t QCOM 

uint16_t QCOM_SPEC 

uint16_t QEC 

uint16_t QEC_SPEC 

}; 

OFP_ASSERT(sizeof(struct ofp_QCM) == 

56); 

 

Figure 6. Modified OpenFlow multi-part message request header and body  

 

 

Response-Header  Response-Body 

struct ofp_qcm_reply{ 

struct ofp_header header; 

uint16_T type; 

uint8_t pad[4]; 

uint16_t flags; 

uint8_t body[];  

}; 

OFP_ASSERT(sizeof(struct 

ofp_multipart_reply) == 16); 

enum ofp_multipart_reply_flags{ 

OFPMPF_REQ_MORE = 1 << 0 /* more 

replies to follow */ 

}; 

ofp_qcm_multipart_request 

OFPMP_QCM = 17 

 struct ofp_qcm_stats{ 

uint16_t QCHANNEL 

uint16_t QCHANNEL_SPEC 

uint16_t QCOM 

uint16_t QCOM_SPEC 

uint16_t QEC 

uint16_t QEC_SPEC 

}; 

OFP_ASSERT(sizeof(struct ofp_QCM) == 

56); 

 

Figure 7. Modified OpenFlow Multi-part message response header and body  
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We have used the quantum metadata attributes to define an SDN model for a classical control channel 

to transport, centrally store and distribute the quantum metadata in SDN enabled network topology 

containing quantum devices. In order to verify the functionality of the control channel, a simple 

simulation of the proposed channel is created using python based discrete event simulation framework 

which is suited for rapid simulation of proposed protocol operations and network states. Quantum 

metadata attributes exchange is simulated by writing a custom python class called QDC that simulates 

communication between the SDN controller and the quantum network device. Each of the attributes 

exchanged between the controller and the quantum devices is printed out to the standard output as 

confirmation about the state of the device. The current simulations do not yet model the underlying 

protocols but instead serves as a fundamental demonstration of how the quantum device can be 

integrated with the SDN controller.  Every time an attribute is changed or updated, the OpenFlow agent 

on the device updates the SDN controller with new metadata that is in turn made available to all other 

quantum devices under its control as needed. It is also possible and makes sense to build an 

authentication process before the device are allowed to read from and write to the controller to ensure 

security.  

 

 

Figure 8: OpenFlow based quantum metadata channel simulation output  

3. Conclusions 

SDN provides a flexible approach to managing a network of diverse devices, and its continued evolution 

highlights an opportunity to include emerging technologies. We have taken advantage of this flexibility 

to show that the OpenFlow protocol is capable of extending SDN principles to the emerging field of 

quantum networking. We have described a broad set of use cases for quantum networks and defined how 

the QPHY layer needed for quantum communication channels can be integrated with the management 

of existing network layers. We provided a prototype specification for the types of quantum metadata 



 14 

 

 

expected to be shared between network devices used to store and forward quantum information, i.e., 

quantum memories and repeaters. We have also developed the OpenFlow specifications need for the 

controller to request updates from devices and the responses those devices would send. The current 

specification offers management of mid-level device behaviors, including communication encoding and 

error correction methods as well as transmission specifications such as channel frequency. 

Within the OpenFlow paradigm, a quantum network device exchanges metadata with the network 

through the OpenFlow controller. This permits polling of the quantum network using the OpenFlow 

controller and the extension to the flow tables. We have presented a prototype specification for how this 

metadata exchange would define attributes of quantum network devices. We have also described 

modifications for how the OpenFlow framework can permit other network devices to share this quantum 

metadata, where our specification has explicitly taken advantages of the extensible nature of the 

OpenFlow specification. In particular, we have used OpenFlow to generate a programmable network 

that can manage the transport of quantum metadata. Although our initial demonstration has focused on 

very simple aspects of quantum networking, i.e., managing protocols between devices, it should be 

apparent that the extensible nature of the specification provides a broad applicable framework. This work 

establishes how to leverage SDN principles within quantum networks by integrating quantum metadata 

with existing management methods. 

OpenFlow provides the necessary programmable network interface for creating quantum 

communication channels and with the recent inclusion of SDON management features in OpenFlow 

version 1.4 this programming may make use of existing optical devices.  Our simulation shows that 

OpenFlow is viable for quantum metadata transport via classical channels. By leveraging the principles 

of SDN, we believe this framework can also extend benefits to applications using north bound API. 

Future integration with applications, such as super-dense coding and QKD for efficient and secure 

messaging, offer the possibility to accelerate deployment of novel quantum communication methods. 

The OpenFlow implementation we have developed eases the acceptance of new hardware and algorithms 

into existing and future networks. 

Future uses of OpenFlow for quantum networking will require tracking of additional metadata, most 

notably, metadata to define the state of quantum switches and routers. Quantum switches represents a 

component of the quantum network responsible for connecting devices over established input and output 

paths. Because quantum optical states can not be copied or probed during transmission, management of 

network switching and routing must occur by sharing metadata across the network. This includes 

network discovery of the quantum devices as well as change in states of the switch itself. The OpenFlow 

protocol explicitly supports this type of metadata sharing, but the procedures by which the network 

informs both the conventional and quantum switches has yet to be determined. Future studies of quantum 

metadata are needed to identify the necessary extensions to the OpenFlow tables. 
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