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We present one-color nonlinear wavepacket interferometry (WPI) signal calculations for a system of two
electronic levels and one vibrational degree of freedom. We consider two cases, a displaced harmonic oscillator
system, which can be treated analytically, and a model photodissociative system, whose WPI signal must be
calculated by numerical wavepacket propagation. We show how signals obtained with different combinations
of intrapulse-pair phase shifts can be combined to isolate the complex-valued overlap between a given one-
pulse target wavepacket and a variable three-pulse reference wavepacket. We demonstrate that with a range of
inter- and intrapulse-pair delays the complex overlaps and variable reference states can be used to reconstruct
the target wavepacket. We compare our results with previous methods for vibronic state reconstruction based
on linear WPI and discuss further generalizations of our method.
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Introduction

Wavepacket interferometry signals differ from conventional
(homodyne detected) ultrafast optical measurements because
they are linear, rather than bilinear, in an excited-state
wavepacket prepared by a given laser pulse. Linear1 and
nonlinear2 WPI signals can be expressed in terms of the
complex-valued overlap between the given one-pulse (target)
wavepacket and a variable one- or three-pulse reference
wavepacket, respectively. We have argued previously that the
overlaps measured in a nonlinear WPI experiment can in
some cases be used to exhaustively characterize the target
wavepacket.2 In this paper we show explicitly how this
vibronic state reconstruction procedure can be carried out.

State reconstruction has been an objective in quantum
physics for some time. Pioneering work by Vogel and Risken
showed theoretically that the measurement of marginal
probability distributions for the rotated quadrature phase can
be inverted to determine a quasiprobability distribution
function that is formally equivalent to the density matrix.3

Smithey et al. implemented this technique by using balanced
optical homodyne tomography to measure quadrature-field
amplitudes for vacuum and squeezed states of the radiation
field.4 The data were then inverted to reconstruct the Wigner
distribution function for a single mode of the radiation field.

Attempts at molecular state determination have been more
recent. As a means of characterizing photoinduced dynamics,
vibronic state determination for molecular systems could
provide a useful diagnostic tool in coherent and/or optimal
control experiments capable of identifying a shaped wave-
packet created by an unknown waveform. In addition, under
conditions where the driving pulses are well known, state
determination has the potential to characterize dynamics on

unknown excited-state potential energy surfaces by extracting
nuclear amplitude level information from the measured
signal.

Walmsley and coworkers used optical heterodyne tomo-
graphy for the determination of vibrational wavepackets in
diatomic molecules.5 This form of emission tomography
measures time- and frequency-resolved fluorescence but is
restricted to diatomic molecules with nearly harmonic
potentials. A method of “quantum state holography” was
recently proposed to characterize vibrational wavepackets.6

Using a pair of phase-locked pulses and measuring the time-
and frequency-integrated fluorescence, quantum state holo-
graphy is a form of linear WPI that could be used to
reconstruct an object state from a set of complex overlaps
with variable one-pulse reference wavepackets. 

In this paper we further examine a recently proposed
approach to state determination by nonlinear WPI,2 an
application of time-domain multi-dimensional electronic
interference spectroscopy,7-10 which has some features in
common with earlier methods, but is much more flexible and
more generally applicable. We begin by reviewing the
theoretical background for the calculation of nonlinear
WPI signals and show how combinations of signals obtained
with different intrapulse-pair phase-locking angles can be
used to isolate the complex-valued overlaps between a one-
pulse target wavepacket and a large set of three-pulse
reference wavepackets. Next we formulate a state recon-
struction scheme based on singular value decomposition
with back-substitution using the nonlinear WPI signal as
input. To demonstrate nonlinear WPI, we derive an ana-
lytical expression for the signal in the case of the displaced
harmonic oscillator model and numerically calculate the
signal using wavepacket propagation techniques for the case
of a model photodissociative system. Using the calculated
WPI signal from the model photodissociative system we*Corresponding Author. e-mail: cina@uoregon.edu
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reconstruct the one-pulse target state using our state
reconstruction procedure.

Theory

We consider a time-dependent Hamiltonian,

, (1)

composed of a time-independent molecular Hamiltonian H
and a time-dependent external potential V(t). For both two-
electronic-level systems considered below, the molecular
Hamiltonian is of the form 

, (2)

where  and  are the ground and excited electronic
states and Hα is the corresponding nuclear Hamiltonian with
α = g, e. The time-dependent external potential, 

J = A, B, C, D, (3)

accounts for the interaction between the molecule and a
sequence of four ultrashort laser pulses, where

(4)

is the electronic dipole moment operator. The Jth electric
field, 

 ,  (5) 

has polarization vector eJ, temporal envelope ,
carrier frequency ΩJ, and phase ΦJ.11 We specify that the A
and B pulses are phase-locked such that  =  +
φp where Ωp is the phase-locking frequency and φp is an
experimentally controlled phase-locking angle.1 Similarly
for the C and D pulses, we require that 

, with Ωd the phase-locking frequency and φd the
phase-locking angle. However, interpulse-pair optical phase
differences are not controlled, and may formally be regarded
as taking a random value between 0 and 2π on any given
laser shot.

The WPI signal is proportional to the interference population,
i.e. the portion of the excited-state population that is
quadrilinear in the incident electric fields.12 The relevant
contributions to the excited-state probability amplitude are
therefore due either to the effects of a single pulse or a
combination of three different pulses.13 There are thus eight
relevant contributions to the excited-state probability amplitude,
each of which can be expressed through the action of an
operator on the initial vibrational state, assumed here to be
an eigenstate, , of Hg. The resulting excited-state prob-
ability amplitude (through third order in perturbation theory)
at a time after the last pulse is2,14 

+ .

(6)

The one-pulse UJ operators are 

(7a) 

(7b)

(7c)

, (7d)

while the three-pulse TJ operators are 

 (8a)

(8b)

(8c)

. (8d)

The operator PJ, referred to as the Jth pulse propagator,
specifies the effects of the Jth pulse on the vibrational
wavepackets during  electronic transitions. The
Hermitian conjugate, , accounts for the same effects
during  electronic transitions. Under the rotating
wave approximation and neglecting the effects of pulse
overlap,15 the pulse propagator takes the form16

. (9)

The UJ operators in Eqs. (7) act on the initial vibrational
state by back-propagating the initial time-zero state  to
the arrival time of the Jth pulse and then transferring nuclear
amplitude from the ground to excited surface via PJ. This
transferred wavepacket then evolves under the excited-state
Hamiltonian until time 0. Each wavepacket created by a UJ

operator is proportional to the Jth electric field.17 
The effects of the TJ operators in Eqs. (8) on the initial

vibrational state have a similar interpretation. After back-
propagation, a pulse propagator transfers amplitude from the
ground state to the excited state where the wavepacket
propagates until a second pulse propagator transfers the
amplitude back to the ground state. Here the wavepacket
evolves until a third pulse re-excites it to the excited surface
where it propagates until time 0. The resulting wavepacket is
trilinear in the contributing electric fields.17 

The interference population calculated from the probability
amplitude (6) has four contributing terms:

. (10)

Each UJ operator in Eq. (10) is matched with the corre-
sponding TJ operator. By defining the complex quantity 

(11)

H t( ) = H + V t( )
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j
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as the overlap between the states  and  with
both phase-locking angles set to zero, the WPI signal can be
re-expressed as 

.
(12)

The presence of terms involving the sum and difference of
the experimentally controlled phase-locking angles suggests
a phase-cycling scheme in which signals collected at
different (φp,φd) are combined to isolate the A0 +  and B0

+ C0 overlaps. As discussed below, the ability to isolate these
contributions to the signal will prove useful for reconstruct-
ing the target vibronic state  from nonlinear WPI
data. In particular, our interest will be in the real and
imaginary parts of the B0 + C0 overlaps, which can be
isolated as 

(13a)

. (13b)

State Reconstruction

As shown in Eqs. (13), the sum of B0 and C0 overlaps is
isolable from the total signal by combining signals obtained
with different combinations of phase-locking angles.1,18 In
cases where the B0 contribution is temporally well separated
from the C0 contribution or is negligible (as will be the case
for the model dissociative system discussed below, but not
for a one-dimensional displaced harmonic oscillator) it
becomes possible to completely isolate the C0 overlap. The
collection of C0 values for various tp and tw corresponds to
the overlap of a one-pulse target state created by the UC

operator with various three-pulse reference states deter-
mined by the TC operator. As noted previously,2 when
considering the case of displaced uncoupled harmonic
potentials and transform limited pulses with durations less
than the inverse absorption bandwidth, the reference states
belong to a family of coherent states. When the collection of
overlaps between the target and reference states is effectively
exhaustive, the C0 contribution comprises a full set of
expansion coefficients for the target state in a coherent state
representation. Knowledge of the coherent basis states
would then allow the reconstruction of the target state using
the experimentally determined expansion coefficients. We
now further develop the idea of state reconstruction using a
more general scheme suited to arbitrary potentials.

When C0 is isolable, we can rewrite the entire collection of
delay dependent overlaps as 

. (14)

For a collection of M pairs of time delays (tp, tw) and an N-
point spatial grid for the wavefunction expansion,19 the
reference matrix ARef is a real 2M-by-2N matrix partitioned
into four submatrices as

. (15)

Ar is a real M-by-N matrix whose elements are
Re , and Ai is a real M-by-N matrix whose
elements are Im . The 2N-by-1 vector xTar is the
target wavefunction partitioned so that the first N elements
are Re  and the second N elements are
Im . The vector bSig is a real 2M-by-1 vector
whose first M elements contain the real components of C0

over the collection of time delays and whose second M
elements contain the imaginary components of C0. 

Knowledge of the signal bSig and the reference matrix ARef

can be used to obtain a solution to Eq. (14) in the least
squares sense using singular value decomposition (SVD).
The SVD of the 2M-by-2N matrix ARef is20 

, (16)

where U is a 2M-by-2N row-orthogonal matrix, W is a
diagonal 2N-by-2N matrix with elements , and V
is a 2N-by-2N orthogonal matrix. Using the SVD of ARef and
backsubstitution of the signal bSig one finds the vector xSVD,
which minimizes the norm, , and the residual,

, according to

, (17)

The matrix WM is the matrix W modified by setting to
infinity those diagonal elements that are 0.  is the
inverse of WM. In the case that W has only nonzero diagonal
elements, then xSVD is the exact solution to Eq. (14).

Signal Calculations

As an example of a nonlinear WPI signal we first consider
a system of two electronic levels supporting one-dimen-
sional harmonic oscillator potentials whose minima are
displaced from one another by a distance d. For this system it
is possible to obtain analytical expressions for the eight
operators in Eqs. (7) and (8) and for the signal in Eq. (10) for
the case of transform limited pulses whose durations are
much smaller than the inverse frequency-width of the absorption
spectrum. We choose ng = 0 and utilize the properties of the
harmonic oscillator coherent states.21 In particular, the
generalized translation operator ,
where a and a† are the lowering and raising operators, is
used to shift the excited-state Hamiltonian by the dimen-
sionless distance , so that 

, where ε is the bare electronic energy.
Some straightforward manipulations lead to the following
signal contributions (11).

× 

(18a)
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× 

(18b)

(18c)

(18d)

where  is a dimensionless prefactor, and
.

The four contributions in Eq. (18) are used to calculate
interferograms according to Eq. (12) for a system with m =
63.5 amu, ω = 2πc(250 cm−1), and d = 0.09216 Å (α0

2 =
1.9995). We fix the third time delay at td = 0.25τVib = 33.35
fs, and set the carrier and phase-locking frequencies for both
pulse-pairs equal to  (i.e. the vertical
resonance frequency). The WPI signal is shown in Figure 1
under four phase-locking conditions sufficient to isolate the

 (or ) contributions to the total
signal. The real part of , given by Eq. (13a), is
shown in Figure 2 as an illustration of a quantity that can be
isolated by phase-cycling.

In the two-level displaced harmonic oscillator model,
straightforward dynamical separation of the  contribu-
tion from the  contribution is impossible; according to
Eqs. (18b) and (18c) the real part of the exponent in each
contribution is the same, whereas the imaginary part is not.
The  and  contributions therefore have identical
magnitudes but different phases at any (tp, tw). An analogous
situation is found for  and  in Eqs. (18a) and
(18d). To rationalize these coincident magnitudes, Figure 3
shows classical phase-space diagrams for the trajectories of
the  and  coherent states. We choose time
delays that lead to maximal magnitude for both  and

 (or  and ) contributions. The diagrams

B0
SHO = fexp i Ωd ε–( )td − Ωp ε–( )tp( )[ ]

exp[α0
2(e
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i– ω tw e
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− 2)]
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SHO C0

SHO+ A0
SHO D0

SHO*+
B0

SHO C0
SHO+

B0
SHO

C0
SHO

B0
SHO C0

SHO

A0
SHO D0

SHO*

UJ ng| 〉 TJ ng| 〉
B0

SHO

C0
SHO A0

SHO D0
SHO*

Figure 1. Plots of nonlinear WPI signals for a displaced harmonic
oscillator model at four different phase-locking combinations:
From top to bottom (φp, φd) = (0, 0), (−π/2, π/2), (0, −π/2), and (−π/2,
0). Solid (Dashed) lines are positive (negative) contours of
dimensionless signal given by Eq. (10) divided by |f | and have a
maximum (minimum) value of 4 (−4) and a spacing of 4/7.

Figure 2. The real part of  obtained by combining
WPI signals according to Eq. (13a) divided by |f |. Solid (Dashed)
lines are positive (negative) contours with a maximum (minimum)
value of 2 (−2) and a spacing of 2/7.

B0
SHO C0

SHO
+
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indicate that although the wavepacket dynamics are different
for  and  (or  and ) the overlap
between the corresponding  and  states should
be maximal for each term. 

As a second case, we consider a two-level system with one
vibrational degree of freedom in which wavepacket dynamics
leads to a negligible B0 contribution, i.e. a completely
isolable C0 contribution: a system with a harmonic ground
state and an unbound excited state. Within the UB and TB

operators given by Eqs. (7b) and (8b), respectively, wave-
packet propagation during the tw interval is on the excited-
state potential. In the case of an unbound excited state and

long tw, the wavepackets associated with the UB and TB

operators move well away from the Franck-Condon point by
the time the third pulse arrives. Under these conditions, the
B0 contribution should be negligible as the wavepackets
associated with the UB and TB operators will be disparate, as
sketched in the phase-space diagram in Figure 4. Although
our calculations here use vibrationally abrupt pulses, in any
real experiment the B0 contribution will be further diminish-
ed by spectral discrimination, as the TB wavepacket will be
outside the spatial region where the third laser pulse
effectively transfers amplitude (illustrated by the blocked
region in Fig. 4). Similar arguments can be made for the A0

contribution. Long tw does not diminish the C0 contribution,
because the wavepacket created by the TC operator
undergoes harmonic motion on the ground state during the tw
interval, while the wavepacket associated with UC does not
depend on tw. Therefore the C0 contribution repeats as a
function of tw with period τVib. An analogous situation occurs
for the overlap between the UD and TD wavepackets.22 

To make quantitative calculations on a photodissociative
model, we consider a system with a harmonic ground state
(using the same parameters as for the harmonic oscillator
model) and an excited-state potential given by

. (19)

Our parameters are chosen so that the zeroth, first, and
second derivatives of the potential (19) at the Franck-
Condon point match the corresponding derivatives of the
displaced harmonic oscillator excited-state potential previously

B0
SHO C0

SHO A0
SHO D0

SHO*

UJ ng| 〉 TJ ng| 〉

Ve x( ) = Dee
βex–

 + ε′

Figure 3. Phase-space diagrams for the  and  coherent states in the displaced harmonic oscillator system shown at a time delay
that maximizes the J0 contribution. The notation [t]α implies time-evolution for time t under Hα. In (a) trajectories are shown, with tp = td =
τVib/4 and tw = 3τVib/4, that lead to maxima in both C0 and B0 contributions. In (b) trajectories are shown, with tp = tw = td = τVib/4, that lead to
maxima in both A0 and D0 contributions.

UJ 0| 〉 TJ 0| 〉

Figure 4. A schematic phase-space diagram for the case of a
harmonic ground state and an unbound excited state using the time-
dependent expectation values of position and momentum of 
and  to demonstrate the effect of a long tw delay on the B0

contribution for fixed tp and td. The notation [t]α implies time-
evolution for time t under Hα. The block region represents the
resonant spatial range within which finite-bandwidth pulses would
efficiently transfer amplitude between ground and excited states.

UB 0| 〉
TB 0| 〉
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discussed. This allows for a consistency check between our
calculated signal and the harmonic oscillator system, as the
excited-state dynamics should be similar for short times. To
satisfy these conditions we use a bare electronic difference
energy  − 2ω, a Franck-Condon energy De = 2πc
(1000 cm−1) and an inverse length scale βe = 10.85 Å−1. The
excited-state probability amplitude (6) for this system was
calculated by wavepacket propagation on a spatial grid using
the split-operator technique23 with a time step of 0.01 fs.24 In
Figure 5 we show the resulting interferograms under four
phase-locking conditions. These signals can be used to
isolate the real and imaginary parts of B0 + C0, shown in
Figs. 6(a) and 6(b), respectively.

As anticipated from our discussion of the wavepacket
dynamics, the A0 and B0 contributions to the signal become
negligible very quickly in the model photodissociative
system, as these contributions decay to zero in less than
τVib/4 in either the tp or tw directions. As a result the isolated
contributions in Figures 6(a) and 6(b) are almost exclusively
C0. Although it is not shown here, the  contribution is
similarly isolable as the sole significant contributor to A0 +

. The C0 and  contributions for the displaced
harmonic oscillator and model photodissociative systems are
similar in form for small tp, though this is not visible from
Figures 1 and 5 since the overlapping B0 contribution is also

ε′ = ε

D0
*

D0
*

D0
*

Figure 5. Calculated WPI signals at four different phase-locking
combinations for the dissociative system. From top to bottom: (φp,
φd) = (0, 0), (−π/2, π/2), (0, −π/2), and (−π/2, 0). Solid (Dashed)
lines are positive (negative) contours of dimensionless signal given
by Eq. (10) divided by |f | and have a maximum (minimum) value
of 2 (−2) and a spacing of 2/7.

Figure 6. The (a) real and (b) imaginary components of the C0

contribution for the dissociative system divided by |f |. The
components are obtained by combining signals with different
optical phase shifts according to Eq. (13). Notice that the B0

contribution is barely visible, at small tw and tp. Solid (Dashed)
lines are positive (negative) contours of dimensionless signal and
have a maximum (minimum) value of 1 (−1) and a spacing of 1/7.
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present in the former case. For larger tp, however, both C0

and  contributions to the photodissociative system signal
decay completely, which is in contrast to the periodic
repetition of the same terms for the displaced harmonic
oscillator. The location of peak C0 magnitude for the
photodissociative system can be predicted by determining
when the reference state maximally overlaps the target state.
Using classical trajectory arguments the magnitude is
expected to occur at (tp = td , tw = τVib − td) as this reference
wavepacket most closely coincides with the target wave-
packet in phase-space. For times tp > td the signal magnitude
is expected to decay permanently as observed in Figure 6
because the reference wavepackets become more distant
from the target state.

For state reconstruction we use the isolable C0 contribu-
tion from the model photodissociative system as bSig and
construct the reference matrix ARef using the numerically
propagated reference wavepackets. We use 50 equally
spaced values for both the tp and tw delay parameters,
ranging from 0 fs to τVib = 133.4 fs.25 We use the SVD
routine from Reference 20 to calculate Eq. (16) and make
use of the resulting U, W, and V matrices to reconstruct the
512-by-1 vector xSVD according to Eq. (17).26 The magnitude
of the overlap between the numerically propagated target
state, shown in Figure 7(a), and the reconstructed state,
shown in Figure 7(b), was unity within machine precision. 

Discussion and Concluding Remarks

We have presented calculations of nonlinear WPI signals
for a displaced harmonic oscillator system and a model
photodissociative system. We have shown that the complex-
valued overlap between a target wavepacket and a variable
reference wavepacket can be experimentally determined by

combining signals with different phase-locking angles.27 For
the case of the model photodissociative system, we demon-
strated how the measurement of a set of overlaps between a
given one-pulse target state and variable three-pulse refer-
ence states can be used to accurately reconstruct the target
wavepacket.

Averbukh et al.6 recently put forward a related method for
vibronic state reconstruction termed quantum state holo-
graphy. In quantum state holography a single pair of pulses
prepares both a target state and a reference state on an
excited-state potential. Measurements of the time- and
frequency-integrated fluorescence under different phase-
locking conditions and for variable intrapulse-pair delay
provide the overlap between a one-pulse target state and a set
of variable one-pulse reference states. Signal measurements
and prior knowledge of the energy eigenstates of the excited-
state potential lead to a set of simultaneous equations that
can be inverted using an SVD procedure similar to the one
employed in this paper. Averbukh et al. also considered an
alternative reconstruction method based on coherence
observation by interference noise. The latter approach,
however, relies on a signal that is bilinear rather than linear
in the target wavepacket.

From the perspective of the present paper, quantum state
holography6 is a form of linear WPI. The variable one-pulse
reference states prepared in a linear WPI experiment are
restricted to a one-dimensional subspace of the system's
phase space parametrized by the intrapulse-pair delay.
Isolation of the complex overlap between one-pulse target
and reference states in linear WPI by phase-cycling was
demonstrated in the second paper of Reference 1. In
nonlinear WPI reference states are prepared by a sequence of
three pulses and are not restricted to a one-dimensional
subspace. Greater exploration of the system's Hilbert space
with the three-pulse reference wavepackets in nonlinear WPI
provides a greatly expanded set of overlaps between the
target and reference states and therefore allows more
thorough characterization of the target state. As is evident
from the reconstruction of a squeezed-state wavepacket in
Reference 6, the restriction of linear WPI reference states to
the Franck-Condon energy shell limits the collection of
overlaps between the target and reference states and can
diminish the fidelity of the reconstruction. The determination
of a target state prepared by a shaped pulse may therefore be
incomplete in a linear WPI experiment.28

An additional advantage afforded by nonlinear WPI is the
possibility of performing two-color measurements, in which
the A and B pulses would drive transitions between the
ground electronic state and an intermediate electronic state,
while the C and D pulses drive transitions between the
ground state and a final (perhaps higher-lying) electronic
state. In this scenario the A0 and B0 contributions to the
signal are negligible because the A and B pulses are not
resonant with the ground-state-to-final-state transition. The
reference matrix of Eq. (14) will be well defined if the
reference wavepackets are prepared on well-characterized
ground and intermediate electronic states. Two-color nonlinear

D0
*

Figure 7. The target state (a) and the reconstructed state (b)
obtained by singular value decomposition in the position
representation from the signal in Fig. 6. Distance is measured in
angstroms and probability amplitude has been divided by the
dimensionless prefactor aC.
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WPI therefore would provide a means to probe the dynamics
of a target wavepacket on an unknown higher-lying potential
energy surface.

A possible extension of nonlinear WPI as a state determi-
nation technique is to the reconstruction of a one-pulse
excited-state density matrix increment prepared from a
thermal ground state distribution. Our current efforts are
focused on this topic as well as on incorporating the effects
of finite duration pulses into our calculations using the pulse
propagators defined in Eq. (9). We further intend to explore
the inclusion of rotational states and additional vibrational
degrees of freedom in nonlinear wavepacket interferometry
signals.
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