

Multi - FFT Vectorization for the Cell Multicore Processor

J. Barhen [1]* T. Humble [1]

[1] CESAR, Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN 37831-6015, USA
barhenj@ornl.gov
humblet@ornl.gov
mitrap@ornl.gov

mike.traweek@navy.mil

P. Mitra [1, 2] M. Traweek [3]
 [2]Computer Science and Engineering

University of Notre Dame
Notre-Dame, IN 46556, USA

[3] Maritime Sensing Branch
Office of Naval Research
Arlington, VA 2221, USA

Abstract. The emergence of streaming multicore processors
with multi-SIMD architectures and ultra-low power operation
combined with real-time compute and I/O reconfigurability
opens unprecedented opportunities for executing sophisticated
signal processing algorithms faster and within a much lower
energy budget. Here, we present an unconventional FFT
implementation scheme for the IBM Cell, named transverse
vectorization. It is shown to outperform (both in terms of
timing or GFLOP throughput) the fastest FFT results reported
to date in the open literature.

Keywords: multicore processors, FFT, IBM Cell, transverse
vectorization.

I. INTRODUCTION

In commenting on Charles Van Loan�’s seminal book [1]
Computational Frameworks for the Fast Fourier Trans-
form, David Bailey wrote in the journal SIAM Review that
�“... the FFT has found application in almost every field of
modern science, including fields as diverse as astronomy,
acoustics, image processing, fluid dynamics, petroleum
exploration, medicine, and quantum physics �… It is not an
exercise in hyperbole to say that the world as we know it
would be different without the FFT.�” [2]. This observation,
made over a decade ago, is ever more valid today.

The application area of interest to us involves detection,
classification and tracking of underwater targets [3]. As
stealth technologies become more pervasive, there is a need
to deploy ever more performing sensor arrays. To fully
exploit the information contained in data measured by these
novel devices requires use of unconventional algorithms that
exhibit growing computational complexity (function of the
number of acoustic channels and the number of complex
samples in each observation window). For example, signal
whitening has long been recognized as an essential stage in
processing sonar array data [4]. The unconventional twice
whitening paradigm includes the inversion of the spatio-
temporal covariance matrix for ambient noise via unitary
Fourier factorization [3]. The computational challenge one
faces in such an endeavor stems from the following
considerations. An array consisting of Ne acoustic channels,
capturing Nt complex samples per time window per channel,

(Ne 310~ , Nt 4)10~ yields a spatio-temporal covariance
matrix of size 107 107 for diffuse ambient noise. Its
inversion involves 33 10 16K -point complex FFTs [3].

This, in turn, translates into computational throughput that
cannot readily be met with conventional hardware. In such a
context, the emergence of streaming multicore processors
with multi-SIMD architectures (e.g., the IBM �“Cell�” [5], the
NVIDIA Tesla [6]), or with ultra-low power operation
combined with real-time compute and I/O reconfigurability
(Coherent Logix �“HyperX�” [7]), opens unprecedented
opportunities for executing many sophisticated signal
processing algorithms, including FFTs, faster and within a
much lower energy budget.

Here, our objective is to report on the development,
implementation, and demonstration of a novel, massively
parallel computational scheme for the FFT that exploit the
capabilities of one such multicore processor, namely the
IBM Cell. Our paper is organized as follows. Section 2
briefly reviews current approaches to parallelizing the FFT,
and motivates the new concept of transverse vectorization.
Section 3 highlights several multicore platforms that are
under consideration for sensor array processing. The
implementation of the transverse vectorization scheme on
the IBM Cell is subsequently discussed in Section 4. Results
are grouped in Section 5. Finally, conclusions reached so far
are given in Section 6.

II. VECTORIZATION OF THE FFT

Exploiting the capabilities of single-instruction-multiple-
data stream (SIMD) processors to improve the performance
of the FFT has long been of interest to the applied
mathematics, signal processing, and computer science
communities [8-10, 1, 11]. Historically, SIMD schemes first
appeared in the in the 1970s and 1980s, in the so-called
�“vector supercomputers�” (such as the Cray 1), where the
emphasis was on multiple vector registers, each of which
held many words. For instance, the Cray 1 had eight vector
registers, each holding sixty four 64-bit long words. But
operations on words of lengths of up to 512 bits had also
been proposed (e.g., on the CDC STAR-100). In recent
years, with the emergence of SIMD-enhanced multicore

!000111000 111000ttthhh IIIEEEEEEEEE///AAACCCMMM IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn CCCllluuusssttteeerrr,,, CCClllooouuuddd aaannnddd GGGrrriiiddd CCCooommmpppuuutttiiinnnggg

!777888---000---777666!555---444000333!---! 222000111000

UUU...SSS... GGGooovvveeerrrnnnmmmeeennnttt WWWooorrrkkk NNNooottt PPPrrrooottteeecccttteeeddd bbbyyy UUU...SSS... CCCooopppyyyrrriiiggghhhttt

DDDOOOIII 111000...111111000!///CCCCCCGGGRRRIIIDDD...222000111000...777888

777888000

devices with short vector instructions (up to 128 bits), there
is a rapidly increasing interest in the topic [12-15]. Most of
the latest reported innovations attempt to achieve optimal
device-dependent performance by optimizing cache
utilization or vectorizing operations carried out on a single
data sequence. In this paper, we address a complementary
question. Specifically, we propose an algorithm that extends
an existing sequential FFT algorithm (say decimation in
frequency) so as to carry out an FFT on several data vectors
concurrently.

SIMD multicore computing architectures, such as the IBM
Cell, offer new opportunities for quickly and efficiently
calculating multiple one-dimensional (1D) FFTs of acoustic
signals. Since time-sampled data arrays can naturally be
partitioned across the multiple cores, there is a very strong
incentive to design vectorized FFT algorithms.

Most Cell implementation efforts reported so far have
focused on parallelizing a single FFT across all synergistic
cores (SPEs). We define such a paradigm as inline
vectorization. It is this approach that has produced the
fastest execution time published to date [14]. In contra-
distinction, we are interested in the case where M 1D data
arrays, each of length N , would be Fourier-transformed
concurrently by a single SPE core. This would result in
8M arrays that could be handled simultaneously by the
Cell processor, with each core exploiting its own SIMD
capability. We define such a paradigm as transverse
vectorization.

III. MULTICORE PLATFORMS

Four parameters are of paramount importance when
evaluating the relevance of emerging computational
platforms for time-critical, embedded applications. They
are: computational speed, communication speed (the I/O
and inter-processor data transfer rates), the power dissipated
(measured in pico-Joules per floating point operation), and
the processor footprint. For each of these parameters, one
can compare the performance of an algorithm for different
hardware platforms and software (e.g., compilers) tools.
Multicore processors of particular relevance for many
computationally intensive maritime sensing applications
include the IBM Cell [5], the Coherent Logix HyperX [7],
and the NVIDIA Tesla, Tegra and Fermi devices [6]. In this
article, we focus on the Cell. A companion article [17]
addresses implementation on the HyperX and the Tesla.

The Cell Broadband Engine�™ multicore architecture is the
product of five years of intensive R&D efforts undertaken in
2000 by IBM, Sony, and Toshiba [5]. Results reported in
this paper refer to the PXC 8i (third generation) release of
the processor, implemented on QS 22 blades that utilize an
IBM BladeCenterTM H. The PXC 8i model includes one
multi-threaded 64-bit PowerPC processor element (PPE)
with two levels of globally coherent cache, and eight
synergistic processor elements (SPE). Each SPE consists of
a processor (SPU) designed for streaming workloads, local

memory, and a globally coherent DMA engine. Emphasis is
on SIMD processing. An integrated high-bandwidth element
inter-connect bus (EIB) connects the nine processors and
their ports to external memory and to system I/O.

The key design parameters of the PXC 8i are as follows.
Each SPE comprises a 28.75 GFLOP (single precision)
synergistic processing unit (SPU), a 256 KB local store
memory, a 2 25.6 GB/s memory flow controller (MFC)
with a non-blocking DMA engine, and 128 registers, each
128-bit wide to enable SIMD-type exploitation of data
parallelism. It is designed to dissipate 4W at a 4 GHz clock
rate. We, however, run the SPEs at 3.2 GHz to enable
comparison with results published to date. The EIB provides
2 25.6 GB/s memory bandwidth to each SPE local store,
and allows external communication (I/O) up to 35 GB/s
(out), 25 GB/s (in). The PPE has a 64-bit RISC PowerPC
architecture, a 32KB L1 cache, a 512 KB L2 cache, and can
operate at clock rates in excess of 3 GHz. It includes a
vector multimedia extension (VMX) unit. The total power
dissipation is estimated nominally around 125W per node
(not including system memory and NIC). The total peak
throughput exceeds 230 GFLOPS per Cell processor, for a
total communication bandwidth above 204.8 GB/s. The Cell
architecture is illustrated in Figure 1. Further details on the
design parameters of the PXC 8i are well documented [14-
16] and will not be repeated here. Note that both FORTRAN
95/2003 and C/C++ compilers for multi-core acceleration
under Linux (i.e., XLF and XLC) are provided by IBM.

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 7

EIB up to 96 B / cycle

PPE

PPU

L1

L2

MIC BIC

DDR2 RRAC I/O

16 B/c

16 B/c

16 B/c

16 B/c 16 B/c x 2

32 B/c

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 7

EIB up to 96 B / cycle

PPE

PPU

L1

L2

MIC BIC

DDR2 RRAC I/O

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 7

EIB up to 96 B / cycle

PPE

PPU

L1

L2

MIC BIC

DDR2 RRAC I/O

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 7

EIB up to 96 B / cycle

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 7

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 7

SPU

LS

AUC

MFC

SPE 7

EIB up to 96 B / cycleEIB up to 96 B / cycle

PPE

PPU

L1

L2

PPE

PPU

L1

L2

MIC BIC

DDR2 RRAC I/O

MIC BICMIC BIC

DDR2 RRAC I/O

16 B/c

16 B/c

16 B/c

16 B/c 16 B/c x 2

32 B/c

Fig 1. IBM CELL processor architecture [5]

777888111

IV. TRANSVERSE VECTORIZATION

We now present the transverse vectorization of the FFT on a
Cell. The problem under consideration is function of two
parameters, namely the number of sensing channels Ne , and
the number of complex data samples, Nt. In order to convert
complexities to computational costs, two additional para-
meters are needed: , which is the cost per multiplication
(or division) expressed in the appropriate units (e.g., FLOPs,
instructions per cycle, etc), and , the cost per addition
(subtraction), expressed in the same units.

Our approach makes use, via intrinsic functions calls, of the
SIMD instruction set and large number of vector registers
inherent to each SPE core in order to efficiently calculate, in
a concurrent fashion, the FFTs of the M 1D data arrays.
Furthermore, no inter-core synchronization mechanism is
required.

Complexity. In order to provide quantitative estimates of
potential vectorization gains, we consider the following
parameters. Note that communication costs are not included,
as we fully exploit the non-blocking nature of the Cell�’s
DMA engines.

number of data samples per 1D array
number of 1D FTs to be performed per core
multiplication (division) cost multiplier,

 in units of FLOP
addition (subs

 traction)
r

M

e

N

al
 cost multiplier

number of synchronous floating point operations
 executable per o

re

 c

The conventional computational complexities of DFT and
FFT algorithms are usually characterized as follows [18]:

 DFT

FFT 2

[]

(log

Discrete Fourier Transform

Fast Fourier Transform

 (1)

 / 2) ()

C M N N N

C M N N

Consider now the two types of vectorization. Under the
Inline Vectorization paradigm, one would vectorize the
operations for each 1D FT within a core, extend the
parallelization across all SPE cores, but would then compute
the M 1D FTs sequentially. Under the Transverse
Vectorization paradigm, each 1D FT is computed using a
standard scheme (in our case we chose decimation in
frequency), but all M 1D FTs processed by a core are
computed in parallel. Clearly, the optimal value of
M depends on the parameter defined above. Moreover,
all cores of a processor would operate in parallel. The latter
is of relevance only if a sufficient number of FFTs need to
be computed, which is typically the case in array signal
processing.

For the discrete Fourier transform, there is no difference in
computational complexity between the inline and transverse
vectorizations. Indeed,

 CDFT
inline M N [

N N 1
]

 CDFT
transv M

N [N (N 1)]

However, there is a very substantial difference between
inline and transverse vectorization for the FFT. Because of
the recursive (nested) nature of the FFT scheme, only a
small scalar factor speed-up can be achieved for inline
vectorization. This factor is radix dependent. Therefore, past
emphasis for this approach has been on extending the
computation over multiple cores, in conjunction with
developing very fast inter-core synchronization schemes
[14]. On the other hand, our proposed algorithm, which
provides a generalization via transverse vectorization of the
decimation in frequency scheme, is shown to achieve linear
speed-up. The complexity expression is

 CFFT
transv M (

2
) N log2(N)

Implementation. Some details of the Transverse Vectori-
zation scheme, including the compilers we used, platform
description and the optimization levels are now presented.
We also highlight the key data structures.

Programs were written in a mixed language framework
(FORTRAN 95/2003 and C) using the IBM XLF and XLC
compilers for multicore acceleration under Linux. The C
components made use of the IBM Cell SDK 3.1 and, in
particular, the SPE management library libspe2 for spaw-
ning tasks on the SPU, for managing DMA transfers, and
for passing local store (LS) address information to the
FORTRAN subroutines. The FORTRAN code was used for
the numerically intensive computations. Subroutines were
written and compiled using IBM XLF 11.1.

Intrinsic SIMD functions including spu add , spu sub ,
spu splats , spu mul , and specialized data structures
for SIMD operations were exploited. These functions
benefit from the large number of vector registers available
within each core. The FORTRAN code was compiled at the
O5 optimization level. Examples of data structures are
shown in Table 1.

SUBROUTINE FFT_TV_simd(Y_REAL,Y_IMAG, WW, &
 Z_REAL, Z_IMAG, TSAM, NK, NX, NV, IOPM)
COMPLEX(4) WW(1:NK)
VECTOR(REAL(4)) Y_REAL(1:NK), Y_IMAG(1:NK)
VECTOR(REAL(4)) Z_REAL, Z_IMAG
...

Table 1 Calling arguments and typical SIMD data structures
 used for Transverse Vectorization FFT code. Here
 NK = number of samples; NX = log2 (NK); and WW
 contains the complex exponential factors.

777888222

Our code, named FFT TV was executed on an IBM Blade
Center H using an IBM QS22 blade running at 3.2 GHz.
Two transverse vectorization (TV) routines were developed
for the decimation in frequency scheme. One was for
implicit transverse vectorization (FFT TV impl). It
implemented the TV concept through the FORTRAN
column (:) array operator. The other routine was for explicit
vectorization (FFT TV simd), and included explicit calls to
the SIMD intrinsic functions shown in Table 2.

Communications and data transfers between the PPE and
SPE cores were established using the Cell SPE Runtime
Management Library version 2 (libspe2). This API is
available in the C programming language and, therefore,
FFT TV is mixed-language. FORTRAN was used to
initialize the array of complex-valued input data, and
partition the data into the transposed blocks to be processed
by each SPE. Then, threads for each SPE were initialized
and spawned using the libspe2 API. On each SPE core, data
was fetched from main memory using the libspe2 API, and
each data chunk of 4 input vectors was transformed by
calling the FORTRAN-based transverse vectorization FFT
program, as shown in Table 3.

Upon return, the output was written back to main memory
using the libspe2 interface. Completion of the SPE tasks
was signaled by termination of the threads, and the
transformed output was then written to file using
FORTRAN.

VI. RESULTS

For test purposes we have used up to 128 data vectors per
core, with each vector containing 1024 complex samples.
Figure 2 illustrates results for the following three cases.

 Sequential: We read in 1 vector at a time from system
memory to SPE local address space, then perform the
FFT, and write it back to system memory (no pipeline).

 4 vectors (implicit TV): We read in 4 vectors from
system memory to a single SPE local address space,
perform the FFT on them concurrently, and write them
back to system memory. We use a pipelined flow
structure with a triple-buffering scheme. Since the SPE
can operate on data in parallel while reading and
writing data from and to system memory, the pipelined
flow structure hides the DMA latencies. Note that, due
to DMA size constraints, two transfers are required for
each quartet of input vectors.

 4 vectors (explicit TV): An explicitly vectorized version
of the FFT_TV algorithm was constructed using SIMD
data structure VECTOR(REAL(4)) shown in Table 1,
and SIMD intrinsic functions / instructions on the SPU,
as illustrated in Table 2. As in the case of the implicit
vectorization above, multiple input vectors of 1024
complex data samples were processed in an SPE core.
However, these complex vectors were de-interleaved,
and their real and imaginary components were stored
separately. This step was considered necessary since,
due to C language limitations, the SIMD intrinsic
spu mul does not yet support complex data types. As
above, data was processed 4 vectors at a time, with a
triple-buffering scheme to hide the DMA latencies.

Remark. Because SPU short vectors necessarily hold data
from 4 input vectors, no sequential or pair-wise FFT TV
tests were conducted, as this would involve ineffective zero-
padding of the data array.

Timing results for all of the routines were obtained using the
SPU decrementers and time base to convert clock cycles
into microseconds. The SPU clock was started before
issuing the first DMA fetch of input data and stopped after
confirming the final output data was written to main
memory. Over the course of these tests, the timing results
for each case were found to be consistent to within ±1 s,
representing a maximum uncertainty in timing of less than
1%. The results of all cases were compared with results
from a scalar FFT program run on the PPU core and found
to be accurate to within floating-point (32-bit) precision.

Each scenario above was timed with respect to the number
of input vectors. The results of these timings are shown in
Figure 3. This figure plots (in units of logarithm base 2) the
number of input vectors (NV) against the processing time
(expressed in logarithm base 10 units). The performance is
linear with respect to NV, however, the slopes and absolute
times for each case are different.

...
I = 1
L = NK

DO i_e = 1,NX
 N = L / 2
 i_w = I + 1

 DO m = 1,NK,L
 k = m + N
 Z_REAL = SPU_ADD(Y_REAL(m), Y_REAL(k))
 Z_IMAG = SPU_ADD(Y_IMAG(m), Y_IMAG(k))
 Y_REAL(k) = SPU_SUB(Y_REAL(m), Y_REAL(k))
 Y_IMAG(k) = SPU_SUB(Y_IMAG(m), Y_IMAG(k))
 Y_REAL(m) = Z_REAL
 Y_IMAG(m) = Z_IMAG
 ENDDO

Table 2 Excerpts from FFT_TV_simd source listing
 illustrating usage of SIMD intrinsic functions.

// Fetch the real and imaginary data components
mfc_getb(buffer_real, inp_addr_real, SIZE, …);
mfc_getb(buffer_imag, inp_addr_imag, SIZE, …);

// Perform the TV FFT on the data set
fft_tv_simd(buffer_real, buffer_imag, ww, …);

// Write out the deinterleaved results
mfc_putb(buffer_real, out_addr_real, SIZE, …);
mfc_putb(buffer_imag, out_addr_imag, SIZE, …);

Table 3. Excerpts of SPE code showing
 interface between C and FORTRAN

777888333

Next, we provide a comparison to the latest and best results
related to FFT implementation on the Cell that have been
published to date in the open literature [14]. The comparison
is illustrated in Figure 3. For complex data vectors of length
1024, Bader reports a processing time of 5.2 microseconds
when using all SPEs of a Cell processor running at 3.2GHz.
To compare his processing time to ours, we observe that we
need 181 microseconds to process 64 vectors on the 8 SPEs
of the Cell. This results in a time of 2.82 microseconds per
1D data vector. We also timed the processing of 128 vectors
per SPE (that is a total of 1024 vectors, each of length 1024
complex samples). The timing results are shown in Table 4.

The average time is 2709.75 microseconds, corresponding
to 2.64 microseconds per FFT. This is even faster than the
result shown above for 64 vectors per SPE, due to the
reduced impact of pipeline start-up and shutdown. The
timing uncertainty is under 0.4%. Finally, we note that
additional efforts are also needed to overcome the absence
of dynamic branch predictor in the Cell, which affects code
with many IF statements.

We conclude this Section with a few remarks about the vital
role of programming languages. For developing high-
performance, computationally-intensive programs, modern
FORTRAN (including appropriate compilers and libraries)
appears essential. In this study, we have used the IBM XLF
v11.1 compiler for multicore acceleration on Linux operated
systems. It is tuned for the IBM PowerXCell 8i third
generation architecture, and is intended to fully implement
the intrinsic array language, compiler optimization,
numerical (e.g., complex numbers), and I/O capabilities of
FORTRAN.

DMA can be performed either in conjunction with the XLC
library (as we have done here), or solely in FORTRAN
using the IBM DACS library. XLF supports the modern,
leading-edge F2003 programming standard. It has an
optimizer capable of performing inter-procedure analysis,
loop optimizations, and true SIMD vectorization for array
processing. Note that the MASS (mathematical acceleration
subsystem) libraries of mathematical intrinsic functions

tuned for optimum performance on SPUs and PPU can be
used by both FORTRAN and C applications. XLF can
automatically generate code overlays for the SPUs. This
enables one to create SPU programs that would otherwise be
too large to fit in the local memory store of the SPUs.

.

VI. CONCLUSIONS

To achieve the real-time and low power performance
required for maritime sensing, many existing algorithms
may need to be revised and adapted to the emerging
revolutionary computing technologies. Novel hardware
platforms of interest to naval applications include the IBM
Cell, the Coherent Logix HyperX, and the NVIDIA Tesla,
Tegra, and upcoming Fermi devices.

In this article, we have developed, implemented on the Cell,
and demonstrated a novel algorithm for transverse
vectorization of multiple one-dimensional fast Fourier
transforms. This algorithm was shown to outperform, by at
least a factor of two, the fastest results from competing
leading edge methods published to date in the open
literature. Analysis of the assembly code generated by the
compiler indicates that follow-on work to mitigate the
absence of dynamic branch predictor in the Cell (the IF
statements) could result in considerable further added
performance. We believe that the transverse vectorization
should benefit signal processing paradigms where many 1-D
FFTs must be processed.

Finally, in the longer term, the emergence of multicore
devices will enable the implementation of novel, more
powerful information�–processing paradigms that could not
be considered heretofore.

ACKNOWLEDGMENTS
This work was supported by the United States Office of Naval Research.
Oak Ridge National Laboratory is managed for the US Department of
Energy by UT-Battelle, LLC under contract DE-AC05-00OR22725.

REFERENCES
1. C. Van Loan, Computational Frameworks for the Fast Fourier

Transform, SIAM Press (1992).
2. D. H. Bailey, �“Computational Frameworks for the Fast Fourier

Transform�”, SIAM Review, 35(1), 142-143 (1993).
3. J. Barhen et al, �“Vector-Sensor Array Algorithms for Advanced

Multicore Processors�”, US Navy Journal of Underwater Acoustics (in
press, 2010).

4. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part
I, Wiley (1968); Part III, Wiley (1971); ibid, Wiley �–Interscience
(2001).

5. J. A. Kahle et al, �“Introduction to the Cell multi-processor�”, IBM
Journal of Research and Development, 49(4-5), 589-604 (2005).

6. www.nvidia.com
7. M. Stolka (Coherent Logix), personal communication; see also:

www.coherentlogix.com
8. R. W. Hockney and C. R. Jesshope, Parallel Computers, Adam

Hilger (1981).
9. P. Swarztrauber, �“Vectorizing the FFTs�”, in Parallel Computations,

SPU # Time (in us)
0 2710
1 2710
2 2705
3 2714
4 2707
5 2705
6 2715
7 2712

Table 4. Timing results for 1024 complex FFTs
 (each of length 1024 points) processing
 128 vectors per core across all SPEs.

777888444

G. Rodrigue ed, pp. 51-83, Academic Press (1982).
10. P. Swarztrauber, �“FFT Algorithms for Vector Computers�”, Parallel

Computing, 1, 45-63 (1984).
11. E. Chu and A. George, Inside the FFT Black Box: Serial and Parallel

Fast Fourier Transform Algorithms, CRC Press (1999).
12. S. Kral, F. Franchetti, J. Lorenz, and C. Ueberhuber, �“SIMD

Vectorization of Straight Line FFT Code�”, Lecture Notes in
Computer Science, 2790, 251-260 (2003).

13. D. Takahashi, �“Implementation of Parallel FFT Using SIMD
Instructions on Multicore Processors�”, Proceedings of the
International Workshop on Innovative Architectures for Future
Generation Processors and Systems, pp. 53-59, IEEE Computer
Society Press (2007).

14. D.A. Bader, V. Agarwal, and S. Kang, �“Computing Discrete
Transforms on the Cell Broadband Engine�”, Parallel Computing,
35(3), 119-137 (2009).

15. S. Chellappa, F. Franchetti, and M. Pueschel, �“Computer Generation
of Fast Fourier Transforms for the Cell Broadband Engine�”,
Proceedings of the International Conference on Supercomputing, pp.
26-35 (2009).

16. J. Kurzak and J. Dongarra, �“QR Factorization for the Cell Broadband
Engine�”, Scientific Programming, 17(1-2), 31-42 (2009).

17. T. Humble, P. Mitra, B. Schleck, J. Barhen, and M. Traweek,
�“Spatio-Temporal Signal Whitening Algorithms on the HyperX
Ultra-Low Power Multicore Processor�”, IEEE Oceans�’10 (under
review, 2010).

18. E. Oran Brigham, The Fast Fourier Transform, Prentice Hall (1974).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8

Number of Vectors per SPE (in
log2 units)

Pr
oc

es
si

ng
 T

im
e

M
ic

ro
se

cs
 (i

n
lo

g1
0

un
its

)

 Sequential

 Transverse (4) -
implicit

 Transverse (4)
SIMD explicit

Fig 2. Timing performance of transverse vectorization FFT.

0
2
4
6
8

10
12

Leading Edge Methods

Ti
m

e
pe

r F
FT

 8
 S

PE
s

(i
n

us
)

 FFTW FFTC FFT_TV_SIMD

Fig 3. Comparison of FFT_TV to best competing methods [14].

777888555

