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Abstract. The emergence of streaming multicore processors 
with multi-SIMD architectures and ultra-low power operation 
combined with real-time compute and I/O reconfigurability 
opens unprecedented opportunities for executing sophisticated 
signal processing algorithms faster and within a much lower 
energy budget. Here, we present an unconventional FFT 
implementation scheme for the IBM Cell, named transverse 
vectorization. It is shown to outperform (both in terms of 
timing or GFLOP throughput) the fastest FFT results reported 
to date in the open literature.  

Keywords: multicore processors, FFT, IBM Cell, transverse 
vectorization. 

I.  INTRODUCTION 

In commenting on Charles Van Loan�’s seminal book [1] 
Computational Frameworks for the Fast Fourier Trans-
form, David Bailey wrote in the journal SIAM Review that 
�“... the FFT has found application in almost every field of 
modern science, including fields as diverse as astronomy, 
acoustics, image processing, fluid dynamics, petroleum 
exploration, medicine, and quantum physics �… It is not an 
exercise in hyperbole to say that the world as we know it 
would be different without the FFT.�” [2]. This observation, 
made over a decade ago, is ever more valid today. 

The application area of interest to us involves detection, 
classification and tracking of underwater targets [3]. As 
stealth technologies become more pervasive, there is a need 
to deploy ever more performing sensor arrays. To fully 
exploit the information contained in data measured by these 
novel devices requires use of unconventional algorithms that 
exhibit growing computational complexity (function of the 
number of acoustic channels and the number of complex 
samples in each observation window). For example, signal 
whitening has long been recognized as an essential stage in 
processing sonar array data [4]. The unconventional twice 
whitening paradigm includes the inversion of the spatio-
temporal covariance matrix for ambient noise via unitary 
Fourier factorization [3]. The computational challenge one 
faces in such an endeavor stems from the following 
considerations. An array consisting of Ne acoustic channels, 
capturing Nt complex samples per time window per channel, 

(Ne 310~ , Nt 4 )10~  yields a spatio-temporal covariance 
matrix of size 107 107 for diffuse ambient noise. Its 
inversion involves 33 10  16K -point complex FFTs [3]. 

This, in turn, translates into computational throughput that 
cannot readily be met with conventional hardware. In such a 
context, the emergence of streaming multicore processors 
with multi-SIMD architectures (e.g., the IBM �“Cell�” [5], the 
NVIDIA Tesla [6]), or with ultra-low power operation 
combined with real-time compute and I/O reconfigurability 
(Coherent Logix �“HyperX�” [7]), opens unprecedented 
opportunities for executing many sophisticated signal 
processing algorithms, including FFTs, faster and within a 
much lower energy budget. 

Here, our objective is to report on the development, 
implementation, and demonstration of a novel, massively 
parallel computational scheme for the FFT that exploit the 
capabilities of one such multicore processor, namely the 
IBM Cell. Our paper is organized as follows. Section 2 
briefly reviews current approaches to parallelizing the FFT, 
and motivates the new concept of transverse vectorization. 
Section 3 highlights several multicore platforms that are 
under consideration for sensor array processing. The 
implementation of the transverse vectorization scheme on 
the IBM Cell is subsequently discussed in Section 4. Results 
are grouped in Section 5. Finally, conclusions reached so far 
are given in Section 6.  

II. VECTORIZATION OF THE FFT 

Exploiting the capabilities of single-instruction-multiple-
data stream (SIMD) processors to improve the performance 
of the FFT has long been of interest to the applied 
mathematics, signal processing, and computer science 
communities [8-10, 1, 11]. Historically, SIMD schemes first 
appeared in the in the 1970s and 1980s, in the so-called 
�“vector supercomputers�” (such as the Cray 1), where the 
emphasis was on multiple vector registers, each of which 
held many words. For instance, the Cray 1 had eight vector 
registers, each holding sixty four 64-bit long words. But 
operations on words of lengths of up to 512 bits had also 
been proposed (e.g., on the CDC STAR-100). In recent 
years, with the emergence of SIMD-enhanced multicore 
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devices with short vector instructions (up to 128 bits), there 
is a rapidly increasing interest in the topic [12-15]. Most of 
the latest reported innovations attempt to achieve optimal 
device-dependent performance by optimizing cache 
utilization or vectorizing operations carried out on a single 
data sequence. In this paper, we address a complementary 
question. Specifically, we propose an algorithm that extends 
an existing sequential FFT algorithm (say decimation in 
frequency) so as to carry out an FFT on several data vectors 
concurrently. 

SIMD multicore computing architectures, such as the IBM 
Cell, offer new opportunities for quickly and efficiently 
calculating multiple one-dimensional (1D) FFTs of acoustic 
signals. Since time-sampled data arrays can naturally be 
partitioned across the multiple cores, there is a very strong 
incentive to design vectorized FFT algorithms.  

Most Cell implementation efforts reported so far have 
focused on parallelizing a single FFT across all synergistic 
cores (SPEs). We define such a paradigm as inline 
vectorization. It is this approach that has produced the 
fastest execution time published to date [14]. In contra-
distinction, we are interested in the case where M 1D data 
arrays, each of length N , would be Fourier-transformed 
concurrently by a single SPE core. This would result in 
8M  arrays that could be handled simultaneously by the 
Cell processor, with each core exploiting its own SIMD 
capability. We define such a paradigm as transverse 
vectorization.  

III.  MULTICORE  PLATFORMS 

Four parameters are of paramount importance when 
evaluating the relevance of emerging computational 
platforms for time-critical, embedded applications. They 
are: computational speed, communication speed (the I/O 
and inter-processor data transfer rates), the power dissipated 
(measured in pico-Joules per floating point operation), and 
the processor footprint. For each of these parameters, one 
can compare the performance of an algorithm for different 
hardware platforms and software (e.g., compilers) tools. 
Multicore processors of particular relevance for many 
computationally intensive maritime sensing applications 
include the IBM Cell [5], the Coherent Logix HyperX [7], 
and the NVIDIA Tesla, Tegra and Fermi devices [6]. In this 
article, we focus on the Cell. A companion article [17] 
addresses implementation on the HyperX and the Tesla. 

The Cell Broadband Engine�™ multicore architecture is the 
product of five years of intensive R&D efforts undertaken in 
2000 by IBM, Sony, and Toshiba [5]. Results reported in 
this paper refer to the PXC 8i (third generation) release of 
the processor, implemented on QS 22 blades that utilize an 
IBM BladeCenterTM H. The PXC 8i model includes one 
multi-threaded 64-bit PowerPC processor element (PPE) 
with two levels of globally coherent cache, and eight 
synergistic processor elements (SPE). Each SPE consists of 
a processor (SPU) designed for streaming workloads, local 

memory, and a globally coherent DMA engine. Emphasis is 
on SIMD processing. An integrated high-bandwidth element 
inter-connect bus (EIB) connects the nine processors and 
their ports to external memory and to system I/O.  

The key design parameters of the PXC 8i are as follows. 
Each SPE comprises a 28.75 GFLOP (single precision) 
synergistic processing unit (SPU), a 256 KB local store 
memory, a 2 25.6 GB/s memory flow controller (MFC) 
with a non-blocking DMA engine, and 128 registers, each 
128-bit wide to enable SIMD-type exploitation of data 
parallelism. It is designed to dissipate 4W at a 4 GHz clock 
rate. We, however, run the SPEs at 3.2 GHz to enable 
comparison with results published to date. The EIB provides 
2  25.6 GB/s memory bandwidth to each SPE local store, 
and allows external communication (I/O) up to 35 GB/s 
(out), 25 GB/s (in). The PPE has a 64-bit RISC PowerPC 
architecture, a 32KB L1 cache, a 512 KB L2 cache, and can 
operate at clock rates in excess of 3 GHz. It includes a 
vector multimedia extension (VMX) unit. The total power 
dissipation is estimated nominally around 125W per node 
(not including system memory and NIC). The total peak 
throughput exceeds 230 GFLOPS per Cell processor, for a 
total communication bandwidth above 204.8 GB/s. The Cell 
architecture is illustrated in Figure 1. Further details on the 
design parameters of the PXC 8i are well documented [14-
16] and will not be repeated here. Note that both FORTRAN 
95/2003 and C/C++ compilers for multi-core acceleration 
under Linux (i.e., XLF and XLC) are provided by IBM.  
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Fig 1. IBM CELL processor architecture [5] 
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IV.  TRANSVERSE VECTORIZATION  

We now present the transverse vectorization of the FFT on a 
Cell. The problem under consideration is function of two 
parameters, namely the number of sensing channels Ne , and 
the number of complex data samples, Nt. In order to convert 
complexities to computational costs, two additional para-
meters are needed: , which is the cost per multiplication 
(or division) expressed in the appropriate units (e.g., FLOPs, 
instructions per cycle, etc), and , the cost per addition 
(subtraction), expressed in the same units.  

Our approach makes use, via intrinsic functions calls, of the 
SIMD instruction set and large number of vector registers 
inherent to each SPE core in order to efficiently calculate, in 
a concurrent fashion, the FFTs of the M 1D data arrays. 
Furthermore, no inter-core synchronization mechanism is 
required.  

Complexity. In order to provide quantitative estimates of 
potential vectorization gains, we consider the following 
parameters. Note that communication costs are not included, 
as we fully exploit the non-blocking nature of the Cell�’s 
DMA engines. 
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The conventional computational complexities of DFT and 
FFT algorithms are usually characterized as follows [18]: 

         DFT

FFT 2

[ ]

( log

Discrete Fourier Transform

Fast Fourier Transform

    ( 1)

    / 2 ) ( )

C M N N N

C M N N

 

Consider now the two types of vectorization. Under the 
Inline Vectorization paradigm, one would vectorize the 
operations for each 1D FT within a core, extend the 
parallelization across all SPE cores, but would then compute 
the M 1D FTs sequentially. Under the Transverse 
Vectorization paradigm, each 1D FT is computed using a 
standard scheme (in our case we chose decimation in 
frequency), but all M 1D FTs processed by a core are 
computed in parallel. Clearly, the optimal value of 
M depends on the parameter   defined above. Moreover, 
all cores of a processor would operate in parallel. The latter 
is of relevance only if a sufficient number of FFTs need to 
be computed, which is typically the case in array signal 
processing. 

For the discrete Fourier transform, there is no difference in 
computational complexity between the inline and transverse 
vectorizations. Indeed,  

          CDFT
inline M N [

N N 1
]

   CDFT
transv M

N [ N (N 1) ]

 

However, there is a very substantial difference between 
inline and transverse vectorization for the FFT. Because of 
the recursive (nested) nature of the FFT scheme, only a 
small scalar factor speed-up can be achieved for inline 
vectorization. This factor is radix dependent. Therefore, past 
emphasis for this approach has been on extending the 
computation over multiple cores, in conjunction with 
developing very fast inter-core synchronization schemes 
[14]. On the other hand, our proposed algorithm, which 
provides a generalization via transverse vectorization of the 
decimation in frequency scheme, is shown to achieve linear 
speed-up. The complexity expression is 

          CFFT
transv M (

2
) N log2(N )  

Implementation. Some details of the Transverse Vectori-
zation scheme, including the compilers we used, platform 
description and the optimization levels are now presented. 
We also highlight the key data structures.  

Programs were written in a mixed language framework 
(FORTRAN 95/2003 and C) using the IBM XLF and XLC 
compilers for multicore acceleration under Linux. The C 
components made use of the IBM Cell SDK 3.1 and, in 
particular, the SPE management library libspe2 for spaw-
ning tasks on the SPU, for managing DMA transfers, and 
for passing local store (LS) address information to the 
FORTRAN subroutines. The FORTRAN code was used for 
the numerically intensive computations. Subroutines were 
written and compiled using IBM XLF 11.1.  

Intrinsic SIMD functions including spu add , spu sub , 
spu splats , spu mul , and specialized data structures 
for SIMD operations were exploited. These functions 
benefit from the large number of vector registers available 
within each core. The FORTRAN code was compiled at the 
O5 optimization level.  Examples of data structures are 
shown in Table 1.  

 

SUBROUTINE FFT_TV_simd( Y_REAL,Y_IMAG, WW,    & 
      Z_REAL, Z_IMAG, TSAM, NK, NX, NV, IOPM  ) 
COMPLEX(4)      WW(1:NK) 
VECTOR(REAL(4)) Y_REAL(1:NK), Y_IMAG(1:NK) 
VECTOR(REAL(4)) Z_REAL, Z_IMAG 
... 

 
Table 1 Calling arguments and typical SIMD data structures 
              used for Transverse Vectorization FFT code. Here 
              NK = number of samples; NX = log2 (NK); and WW 
              contains the complex exponential factors.  
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Our code, named FFT TV was executed on an IBM Blade 
Center H using an IBM QS22 blade running at 3.2 GHz. 
Two transverse vectorization (TV) routines were developed 
for the decimation in frequency scheme. One was for 
implicit transverse vectorization (FFT TV impl). It 
implemented the TV concept through the FORTRAN 
column (:) array operator. The other routine was for explicit 
vectorization (FFT TV simd), and included explicit calls to 
the SIMD intrinsic functions shown in Table 2. 

Communications and data transfers between the PPE and 
SPE cores were established using the Cell SPE Runtime 
Management Library version 2 (libspe2). This API is 
available in the C programming language and, therefore, 
FFT TV is mixed-language. FORTRAN was used to 
initialize the array of complex-valued input data, and 
partition the data into the transposed blocks to be processed 
by each SPE. Then, threads for each SPE were initialized 
and spawned using the libspe2 API. On each SPE core, data 
was fetched from main memory using the libspe2 API, and 
each data chunk of 4 input vectors was transformed by 
calling the FORTRAN-based transverse vectorization FFT 
program, as shown in Table 3. 

Upon return, the output was written back to main memory 
using the libspe2 interface. Completion of the SPE tasks 
was signaled by termination of the threads, and the 
transformed output was then written to file using 
FORTRAN. 

VI.  RESULTS 

For test purposes we have used up to 128 data vectors per 
core, with each vector containing 1024 complex samples. 
Figure 2 illustrates results for the following three cases. 

 Sequential: We read in 1 vector at a time from system 
memory to SPE local address space, then perform the 
FFT, and write it back to system memory (no pipeline). 

 4 vectors (implicit TV): We read in 4 vectors from 
system memory to a single SPE local address space, 
perform the FFT on them concurrently, and write them 
back to system memory. We use a pipelined flow 
structure with a triple-buffering scheme. Since the SPE 
can operate on data in parallel while reading and 
writing data from and to system memory, the pipelined 
flow structure hides the DMA latencies. Note that, due 
to DMA size constraints, two transfers are required for 
each quartet of input vectors.  

 4 vectors (explicit TV): An explicitly vectorized version 
of the FFT_TV algorithm was constructed using SIMD 
data structure VECTOR(REAL(4)) shown in Table 1, 
and SIMD intrinsic functions / instructions on the SPU, 
as illustrated in Table 2. As in the case of the implicit 
vectorization above, multiple input vectors of 1024 
complex data samples were processed in an SPE core. 
However, these complex vectors were de-interleaved, 
and their real and imaginary components were stored 
separately. This step was considered necessary since, 
due to C language limitations, the SIMD intrinsic 
spu mul does not yet support complex data types. As 
above, data was processed 4 vectors at a time, with a 
triple-buffering scheme to hide the DMA latencies.  

Remark. Because SPU short vectors necessarily hold data 
from 4 input vectors, no sequential or pair-wise FFT TV  
tests were conducted, as this would involve ineffective zero-
padding of the data array.  

Timing results for all of the routines were obtained using the 
SPU decrementers and time base to convert clock cycles 
into microseconds. The SPU clock was started before 
issuing the first DMA fetch of input data and stopped after 
confirming the final output data was written to main 
memory. Over the course of these tests, the timing results 
for each case were found to be consistent to within ±1 s, 
representing a maximum uncertainty in timing of less than 
1%. The results of all cases were compared with results 
from a scalar FFT program run on the PPU core and found 
to be accurate to within floating-point (32-bit) precision. 

Each scenario above was timed with respect to the number 
of input vectors. The results of these timings are shown in 
Figure 3. This figure plots (in units of logarithm base 2) the 
number of input vectors (NV) against the processing time 
(expressed in logarithm base 10 units). The performance is 
linear with respect to NV, however, the slopes and absolute 
times for each case are different.  

... 
I = 1 
L = NK 
       
DO i_e = 1,NX 
 N   = L / 2 
 i_w = I + 1 
 
 DO m = 1,NK,L 
  k = m + N 
  Z_REAL = SPU_ADD(Y_REAL(m), Y_REAL(k)) 
  Z_IMAG = SPU_ADD(Y_IMAG(m), Y_IMAG(k)) 
  Y_REAL(k) = SPU_SUB(Y_REAL(m), Y_REAL(k)) 
  Y_IMAG(k) = SPU_SUB(Y_IMAG(m), Y_IMAG(k)) 
  Y_REAL(m) = Z_REAL 
  Y_IMAG(m) = Z_IMAG 
 ENDDO 
 ....  

  
Table 2  Excerpts from FFT_TV_simd source listing 
              illustrating usage of SIMD intrinsic functions. 

 
// Fetch the real and imaginary data components  
mfc_getb(buffer_real, inp_addr_real, SIZE, …); 
mfc_getb(buffer_imag, inp_addr_imag, SIZE, …); 
 
// Perform the TV FFT on the data set 
fft_tv_simd(buffer_real, buffer_imag, ww, …); 
 
// Write out the deinterleaved results 
mfc_putb(buffer_real, out_addr_real, SIZE, …); 
mfc_putb(buffer_imag, out_addr_imag, SIZE, …); 

 
Table 3.  Excerpts of SPE code showing  
                interface between C and FORTRAN 
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Next, we provide a comparison to the latest and best results 
related to FFT implementation on the Cell that have been 
published to date in the open literature [14]. The comparison 
is illustrated in Figure 3. For complex data vectors of length 
1024, Bader reports a processing time of 5.2 microseconds 
when using all SPEs of a Cell processor running at 3.2GHz. 
To compare his processing time to ours, we observe that we 
need 181 microseconds to process 64 vectors on the 8 SPEs 
of the Cell. This results in a time of 2.82 microseconds per 
1D data vector. We also timed the processing of 128 vectors 
per SPE (that is a total of 1024 vectors, each of length 1024 
complex samples). The timing results are shown in Table 4.  

 

The average time is 2709.75 microseconds, corresponding 
to 2.64 microseconds per FFT. This is even faster than the 
result shown above for 64 vectors per SPE, due to the 
reduced impact of pipeline start-up and shutdown. The 
timing uncertainty is under 0.4%. Finally, we note that 
additional efforts are also needed to overcome the absence 
of dynamic branch predictor in the Cell, which affects code 
with many IF statements.   

We conclude this Section with a few remarks about the vital 
role of programming languages. For developing high-
performance, computationally-intensive programs, modern 
FORTRAN (including appropriate compilers and libraries) 
appears essential.  In this study, we have used the IBM XLF 
v11.1 compiler for multicore acceleration on Linux operated 
systems. It is  tuned for the IBM PowerXCell 8i third 
generation architecture, and is intended to fully implement 
the intrinsic array language, compiler optimization, 
numerical (e.g., complex numbers), and I/O capabilities of 
FORTRAN. 

DMA can be performed either in conjunction with the XLC 
library (as we have done here), or solely in FORTRAN 
using the IBM DACS library. XLF supports the modern, 
leading-edge F2003 programming standard. It has an 
optimizer capable of performing inter-procedure analysis, 
loop optimizations, and true SIMD vectorization for array 
processing. Note that the MASS (mathematical acceleration 
subsystem) libraries of mathematical intrinsic functions 

tuned for optimum performance on SPUs and PPU can be 
used by both FORTRAN and C applications. XLF can 
automatically generate code overlays for the SPUs. This 
enables one to create SPU programs that would otherwise be 
too large to fit in the local memory store of the SPUs.  

. 

VI.  CONCLUSIONS 

To achieve the real-time and low power performance 
required for maritime sensing, many existing algorithms 
may need to be revised and adapted to the emerging 
revolutionary computing technologies. Novel hardware 
platforms of interest to naval applications include the IBM 
Cell, the Coherent Logix HyperX, and the NVIDIA Tesla, 
Tegra, and upcoming Fermi devices. 

In this article, we have developed, implemented on the Cell, 
and demonstrated a novel algorithm for transverse 
vectorization of multiple one-dimensional fast Fourier 
transforms. This algorithm was shown to outperform, by at 
least a factor of two, the fastest results from competing 
leading edge methods published to date in the open 
literature. Analysis of the assembly code generated by the 
compiler indicates that follow-on work to mitigate the 
absence of dynamic branch predictor in the Cell (the IF 
statements) could result in considerable further added 
performance. We believe that the transverse vectorization 
should benefit signal processing paradigms where many 1-D 
FFTs must be processed.  

Finally, in the longer term, the emergence of multicore 
devices will enable the implementation of novel, more 
powerful information�–processing paradigms that could not 
be considered heretofore. 
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Fig 2. Timing performance of transverse vectorization FFT. 
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Fig 3. Comparison of FFT_TV to best competing methods [14]. 
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