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Abstract: Quantum teleportation is analyzed in the context of multi-mode interference effects. 
The teleportation fidelity depends on the spectral relationship between the entangled photons and 
on the spectral overlap between the photons in the Bell-state measurement.  
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Quantum teleportation [1] is an integral component of many developing applications in quantum information 
science, such as quantum computation, quantum communication, etc. Teleportation using photons is of particular 
interest for the purposes of developing quantum channels over long distances using, for example, quantum repeaters 
[2]. In the early descriptions of quantum teleportation, as well as in nearly all subsequent treatments, the photons are 
treated as single-mode (hence, monochromatic) entities. In actual experiments, however, the photons do not have 
infinitesimal bandwidths. In fact, if the photons are created via type-II down-conversion pumped by a short-pulse 
laser, then they may carry spectral features that have been shown to compromise certain quantum interference 
effects [3]. In this paper, we analyze the effects of these spectral features on the fidelity of quantum teleportation.  

The experimental setup under consideration is shown in Fig. 1. Photons 2 and 3 are initially entangled, while 
photons 1 and 2 combine at a lossless 50:50 beamsplitter and are then directed to polarization beamsplitters. As 
shown by Braunstein and Mann [4], certain coincidence measurements (V1 and H2, for example) correspond to 
Bell-state measurements of the composite state and result in the teleportation of the state of photon 1 onto photon 3.   
The state of the first photon may be written as 
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For photons 2 and 3, we first consider the case in which the photons have spectral differences that are correlated 
with polarization. This corresponds to the usual experimental configuration in which the photons are taken directly 
from the down-conversion crystal with only birefringent delay compensation. In this case, the entangled state is 
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Following detections of photons with frequencies ω1 and ω2 at detectors V1 and H2, respectively, the density matrix 
of photon 3 is 
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However, since it is the polarization degree of freedom that is to be teleported, the more relevant quantity is the 
polarization density matrix, which is given by 
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From this expression, the roles of the spectral properties of the three photons are more evident. In particular, the 
teleportation fidelity, which is defined as 
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In general, the fidelity depends on the state to be teleported, as well as the 
spectral features of all three photons. For the remainder of the analysis, we 
restrict attention to the cases for which 
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dependence on the spectral functions is governed by a number of 
parameters, but space restrictions preclude a full analysis here. It is 
instructive, however, to consider a few limiting cases. 

Anti-correlated spectra (strong spectral entanglement): In this case, 
photons 2 and 3 may each have fairly large bandwidths, but the photon 
energies are constrained to be strongly anti-correlated. This type of spectral 

 



entanglement would be obtained from a source with a large down-conversion bandwidth but with a narrow pump 
bandwidth. One might expect that this type of spectral entanglement would work well in quantum teleportation, 
since it has the high degree of spectral symmetry that is needed in many two-photon experiments. This turns out not 
to be the case, however, as can be seen in Fig. 2(a), which shows a plot of the fidelity versus the bandwidth of 
photon 1. The fidelity reaches maximum value when the bandwidth of photon 1 matches that of photon 2, but the 
peak value is still quite low. 

Uncorrelated spectra (no spectral entanglement): Here, the energies of the horizontally and vertically polarized 
photons are assumed to be completely uncorrelated, i.e., the energy of one polarization yields no information about 
the energy of the other. Figure 2(b) shows plots of the teleportation fidelity versus the bandwidth of photon 1. The 
different curves correspond to different bandwidths for the vertically polarized photon (the bandwidth of the 
horizontally polarized photon was held fixed). The uncorrelated spectra yield higher fidelities in general, and the 
fidelity reaches unity for the case in which the bandwidths of the two polarizations are identical. The different 
curves reach their maxima for different values of the bandwidth of photon 1. The reason for this is that photon 2 can 
be regarded as having two bandwidths: one for horizontal polarization and one for vertical polarization. The 
optimum bandwidth is somewhere between the two. 

Spectral characteristics correlated with path: The analysis thus far has been limited to the case in which spectral 
differences are correlated with polarization. While this is the typical case for type-II down-conversion photons, it is 
also possible to generate photon pairs for which the spectral features are correlated with path [5]. In this case, the 
two-photon state would be written 
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The analysis proceeds as above, with the resulting fidelity given by 
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Note that the ordering of the frequency arguments is slightly different. This, in turn, results in slightly different 
results for the limiting cases considered above. Most notable is the case in which the spectra are uncorrelated, i.e., 
the energy of photon 2, which is independent of polarization, carries no information whatsoever about the energy of 
photon 3, also independent of polarization. The curve in Fig. 2(c) shows the teleportation fidelity versus the 
bandwidth of photon 1. It is interesting to note that the fidelity is completely independent of the bandwidth, and even 
the center wavelength, of photon 3. 
 

 
 
 
Fig. 2. Plots of fidelity versus the bandwidth of photon 1, normalized to the bandwidth of photon 2. In 2(a) and 2(b), the 
spectral differences between the entangled photons are correlated with polarization. In 2(a), the photon energies are 
strongly correlated with each other, whereas in 2(b) there is no spectral entanglement. The three curves correspond to three 
different spectral widths for the vertically polarized photon. In 2(c), the spectral differences are correlated with path. 
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